1
|
Winters SJ, Moore JP. PACAP: A regulator of mammalian reproductive function. Mol Cell Endocrinol 2020; 518:110912. [PMID: 32561449 PMCID: PMC7606562 DOI: 10.1016/j.mce.2020.110912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/14/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an ancestral molecule that was isolated from sheep hypothalamic extracts based on its action to stimulate cAMP production by pituitary cell cultures. PACAP is one of a number of ligands that coordinate with GnRH to control reproduction. While initially viewed as a hypothalamic releasing factor, PACAP and its receptors are widely distributed, and there is growing evidence that PACAP functions as a paracrine/autocrine regulator in the CNS, pituitary, gonads and placenta, among other tissues. This review will summarize current knowledge concerning the expression and function of PACAP in the hypothalamic-pituitary-gonadal axis with special emphasis on its role in pituitary function in the fetus and newborn.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Joseph P Moore
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville School of Medicine, Louisville, KY, 40202, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| |
Collapse
|
2
|
Li Q, Yan Z, Kuang Y, Zhou X, Jin L, He L, Sun X, Tao T, Wang L. Genetic variations in the 3′-untranslated region ofSLC18A2are associated with serum FSH concentration in polycystic ovary syndrome patients and regulate gene expressionin vitro. Hum Reprod 2016; 31:2150-7. [DOI: 10.1093/humrep/dew162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/02/2016] [Indexed: 12/27/2022] Open
|
3
|
Winters SJ, Ghooray DT, Yang RQ, Holmes JB, O'Brien AR, Morgan J, Moore JP. Dopamine-2 receptor activation suppresses PACAP expression in gonadotrophs. Endocrinology 2014; 155:2647-57. [PMID: 24823390 PMCID: PMC4060190 DOI: 10.1210/en.2013-2147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is expressed at a high level in the fetal pituitary and decreases profoundly between embryonic day 19 and postnatal day 1 (PN1), with a further decrease from PN1 to PN4. In this series of experiments, we investigated the hypothesis that dopamine 2 receptor (Drd2) activation interrupts a cAMP-dependent feed-forward loop that maintains PACAP expression at a high level in the fetal pituitary. Using single-cell RT-PCR of pituitary cell cultures from newborn rats, Drd2 mRNA was identified in gonadotrophs that were also positive for PACAP mRNA. PACAP expression in pituitary cultures from embryonic day 19 rats was suppressed by the PACAP6-38 antagonist and by the Drd2 agonist bromocriptine. Increasing concentrations of bromocriptine inhibited cAMP production as well as cAMP signaling based on cAMP response element-luciferase activity, decreased PACAP promoter activity, and decreased PACAP mRNA levels in αT3-1 gonadotroph cells. Furthermore, blockade of dopamine receptors by injecting haloperidol into newborn rat pups partially reversed the developmental decline in pituitary PACAP mRNA that occurs between PN1 and PN4. These results provide evidence that dopamine receptor signaling regulates PACAP expression under physiological conditions and lend support to the hypothesis that a rise in hypothalamic dopamine at birth abrogates cAMP signaling in fetal gonadotrophs to interrupt a feed-forward mechanism that maintains PACAP expression at a high level in the fetal pituitary. We propose that this perinatal decline in pituitary PACAP reduces pituitary follistatin which permits GnRH receptors and FSH-β to increase to facilitate activation of the neonatal gonad.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism & Diabetes (S.J.W., D.T.G., J.B.H., A.R.W.O., J.M., J.P.M.), and Department of Anatomy and Neurobiology (R.Q.Y., J.P.M.), University of Louisville, Louisville, Kentucky 40202
| | | | | | | | | | | | | |
Collapse
|
4
|
Hodson DJ, Henderson HL, Townsend J, Tortonese DJ. Photoperiodic modulation of the suppressive actions of prolactin and dopamine on the pituitary gonadotropin responses to gonadotropin-releasing hormone in sheep. Biol Reprod 2012; 86:122. [PMID: 22302689 DOI: 10.1095/biolreprod.111.096909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In a variety of species, the LH-secretory response to gonadotropin-releasing hormone (GnRH) is completely suppressed by the combined actions of prolactin (PRL) and dopamine (DA). In sheep, this effect is only observed under long days (nonbreeding season [NBS]). To investigate the level at which these mechanisms operate, we assessed the effects of PRL and bromocriptine (Br), a DA agonist, on the gonadotropin-secretory and mRNA responses to GnRH in pituitary cell cultures throughout the ovine annual reproductive cycle. As expected, the LH-secretory response to GnRH was only abolished during the NBS following combined PRL and Br application. Conversely, the LHB subunit response to GnRH was reduced during both the BS and NBS by the combined treatment and Br alone. Similar results were obtained in pars distalis-only cultures, indicating that the effects are pars tuberalis (PT)- independent. Further signaling studies revealed that PRL and Br alter the LH response to GnRH via convergence at the level of PLC and PKC. Results for FSH generally reflected those for LH, except during the BS where removal of the PT allowed PRL and Br to suppress the FSH-secretory response to GnRH. These data show that suppression of the LH-secretory response to GnRH by PRL and DA is accompanied by changes in mRNA synthesis, and that the photoperiodic modulation of this inhibition operates primarily at the level of LH release through alterations in PKC and PLC. Furthermore, the suppressive effects of PRL and DA on the secretion of FSH are photoperiodically regulated in a PT-dependent manner.
Collapse
Affiliation(s)
- David J Hodson
- Department of Anatomy, University of Bristol, Bristol, England, United Kingdom
| | | | | | | |
Collapse
|
5
|
Li Y, Li C, Chen Z, He J, Tao Z, Yin ZQ. A microRNA, mir133b, suppresses melanopsin expression mediated by failure dopaminergic amacrine cells in RCS rats. Cell Signal 2011; 24:685-98. [PMID: 22101014 DOI: 10.1016/j.cellsig.2011.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 10/28/2011] [Indexed: 01/11/2023]
Abstract
The photopigment melanopsin and melanopsin-containing RGCs (mRGCs or ipRGCs) represent a brand-new and exciting direction in the field of visual field. Although the melanopsin is much less sensitive to light and has far less spatial resolution, mRGCs have the unique ability to project to brain areas by the retinohypothalamic tract (RHT) and communicate directly with the brain. Unfortunately, melanopsin presents lower expression levels in many acute and chronic retinal diseases. The molecular mechanisms underlying melanopsin expression are not yet really understood. MicroRNAs play important roles in the control of development. Most importantly, the link of microRNA biology to a diverse set of cellular processes, ranging from proliferation, apoptosis and malignant transformation to neuronal development and fate specification is emerging. We employed Royal College of Surgeon (RCS) rats as animal model to investigate the underlying molecular mechanism regulating melanopsin expression using a panel of miRNA by quantitative real-time reverse transcription polymerase chain reaction. We identified a microRNA, mir133b, that is specifically expressed in retinal dopaminergic amacrine cells as well as markedly increased expression at early stage during retinal degeneration in RCS rats. The overexpression of mir133b downregulates the important transcription factor Pitx3 expression in dopaminergic amacrine cells in RCS rats retinas and makes amacrine cells stratification deficit in IPL. Furthermore, deficient dopaminergic amacrine cells presented decreased TH expression and dopamine production, which lead to a failure to direct mRGCs dendrite to stratify and enter INL and lead to the reduced correct connections between amacrine cells and mRGCs. Our study suggested that overexpression of mir133b and downregulated Pitx3 suppress maturation and function of dopaminergic amacrine cells, and overexpression of mir133b decreased TH and D2 receptor expression as well as dopamine production, which finally resulted in reduced melanopsin expression.
Collapse
Affiliation(s)
- Yaochen Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chong Qing, China
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Hypothalamic-hypophysiotropic peptides are the proximate regulators of pituitary cells, but they cannot fully account for the complex functioning of these cells. Accordingly, awareness is growing that an array of peptides produced in the pituitary exert paracrine/autocrine functions. One such peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), was originally identified as a hypothalamic activator of cAMP production in pituitary cells. Gonadotrophs and folliculostellate cells are the main source of pituitary PACAP, and each pituitary cell type expresses a PACAP receptor. PACAP increases alpha-subunit (Cga) and Lhb mRNAs, and it stimulates the transcription of follistatin (Fst) that, in turn, restrains activin signaling to repress Fshb and gonadotropin-releasing hormone-receptor (Gnrhr) expression as well as other activin-responsive genes. The PACAP (Adcyap1) promoter is activated by cAMP, and pituitary cells may communicate by a feed-forward, cAMP-dependent mechanism to maintain a high level of PACAP in the fetal pituitary. At birth, pituitary PACAP declines and pituitary follistatin levels decrease, which together with increased gonadotropin-releasing hormone secretion allow Gnrhr and Fshb to increase and facilitate activation of the newborn gonads. Changes in Adcyap1 expression levels in the adult pituitary may contribute to the selective rise in follicle-stimulating hormone (FSH) from age 20-30 days to the midcycle surge and to the secondary increase in FSH that occurs before estrus. These results provide further support for the notion that PACAP is a key player in reproduction through its actions as a pituitary autocrine/paracrine hormone.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism, and Diabetes, University of Louisville School of Medicine, 550 Jackson Street, Louisville, KY 40202, USA.
| | | |
Collapse
|
7
|
Hodson DJ, Townsend J, Tortonese DJ. Characterization of the Effects of Prolactin in Gonadotroph Target Cells1. Biol Reprod 2010; 83:1046-55. [DOI: 10.1095/biolreprod.110.084947] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
8
|
Hodson DJ, Townsend J, Gregory SJ, Walters C, Tortonese DJ. Role of prolactin in the gonadotroph responsiveness to gonadotrophin-releasing hormone during the equine annual reproductive cycle. J Neuroendocrinol 2010; 22:509-17. [PMID: 20236228 DOI: 10.1111/j.1365-2826.2010.01986.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combined suppressive effect of prolactin (PRL) and dopamine on the secretion of luteinising hormone (LH) at the level of the pituitary gland has been identified in sheep, a short-day breeder. However, little is known about the role of PRL in the intra-pituitary regulation of the gonadotrophic axis in long-day breeders. In the present study, we investigated the effects of PRL on LH and follicle-stimulating hormone (FSH) secretion during the equine annual reproductive cycle. Horse pituitaries were obtained during the breeding season (BS) and nonbreeding season (NBS). Cells were dispersed, plated to monolayer cultures and assigned to one of the following specific treatments: (i) medium (Control); (ii) rat PRL (rPRL); (iii) thyrotrophin-releasing hormone (TRH); (iv) bromocriptine (Br); and (v) Br + rPRL. Gonadotrophin-releasing hormone (GnRH) dose-dependently stimulated LH release during the BS and NBS. During the BS, neither rPRL nor TRH affected the LH response to GnRH, but Br significantly (P < 0.01) enhanced both basal and GnRH-stimulated LH release through a mechanism that did not involve alterations in the concentrations of PRL. However, rPRL prevented the Br-induced increase in basal and GnRH-stimulated LH output, and suppressed LH below basal values (P < 0.05). Conversely, during the NBS, no significant effects of treatments were observed. Interestingly, at this time of year, the incidence of pituitary gap junctions within the pars distalis decreased by 50% (P < 0.01). By contrast to the effects on LH, no treatment effects were detected on the FSH response to GnRH, which was only apparent during the NBS. These results reveal no direct effects of PRL but an interaction between PRL and dopamine in the inhibitory regulation of LH, but not FSH, release at the level of the pituitary in the horse, and a modulatory role of season/photoperiod associated with alterations in folliculostellate cell-derived gap junctions.
Collapse
Affiliation(s)
- D J Hodson
- Department of Anatomy, University of Bristol, Bristol, England, UK
| | | | | | | | | |
Collapse
|
9
|
Dufour S, Sebert ME, Weltzien FA, Rousseau K, Pasqualini C. Neuroendocrine control by dopamine of teleost reproduction. JOURNAL OF FISH BIOLOGY 2010; 76:129-160. [PMID: 20738703 DOI: 10.1111/j.1095-8649.2009.02499.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
While gonadotropin-releasing hormone (GnRH) is considered as the major hypothalamic factor controlling pituitary gonadotrophins in mammals and most other vertebrates, its stimulatory actions may be opposed by the potent inhibitory actions of dopamine (DA) in teleosts. This dual neuroendocrine control of reproduction by GnRH and DA has been demonstrated in various, but not all, adult teleosts, where DA participates in an inhibitory role in the neuroendocrine regulation of the last steps of gametogenesis (final oocyte maturation and ovulation in females and spermiation in males). This has major implications for inducing spawning in aquaculture. In addition, DA may also play an inhibitory role during the early steps of gametogenesis in some teleost species, and thus interact with GnRH in the control of puberty. Various neuroanatomical investigations have shown that DA neurones responsible for the inhibitory control of reproduction originate in a specific nucleus of the preoptic area (NPOav) and project directly to the region of the pituitary where gonadotrophic cells are located. Pharmacological studies showed that the inhibitory effects of DA on pituitary gonadotrophin production are mediated by DA-D2 type receptors. DA-D2 receptors have now been sequenced in several teleosts, and the coexistence of several DA-D2 subtypes has been demonstrated in a few species. Hypophysiotropic DA activity varies with development and reproductive cycle and probably is controlled by environmental cues as well as endogenous signals. Sex steroids have been shown to regulate dopaminergic systems in several teleost species, affecting both DA synthesis and DA-D2 receptor expression. This demonstrates that sex steroid feedbacks target DA hypophysiotropic system, as well as the other components of the brain-pituitary gonadotrophic axis, GnRH and gonadotrophins. Recent studies have revealed that melatonin modulates the activity of DA systems in some teleosts, making the melatonin-DA pathway a prominent relay between environmental cues and control of reproduction. The recruitment of DA neurons for the neuroendocrine control of reproduction provides an additional brain pathway for the integration of various internal and environmental cues. The plasticity of the DA neuroendocrine role observed in teleosts may have contributed to their large diversity of reproductive cycles.
Collapse
Affiliation(s)
- S Dufour
- Muséum National d'Histoire Naturelle, UMR Biologie des Organismes et Ecosystèmes Aquatiques" MNHN-CNRS-IRD-UPMC, 7 rue Cuvier, CP 32, 75231 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
10
|
Lasa M, Gil-Araujo B, Palafox M, Aranda A. Thyroid hormone antagonizes tumor necrosis factor-alpha signaling in pituitary cells through the induction of dual specificity phosphatase 1. Mol Endocrinol 2009; 24:412-22. [PMID: 20032197 DOI: 10.1210/me.2009-0298] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pituitary function has been shown to be regulated by an increasing number of factors, including cytokines and hormones, such as TNFalpha and T(3). Both the proinflammatory cytokine TNFalpha and T(3) have been suggested to be involved in the maintenance of tissue homeostasis in the anterior pituitary gland. In this report we show that T(3) negatively interferes with MAPK p38 and nuclear factor-kappaB (NF-kappaB) activation by TNFalpha in GH4C1 cells. Our data demonstrate that MAPK p38 is specifically activated upon exposure to TNFalpha and that T(3) abolishes this activation in a time-dependent manner by a mechanism that involves the induction of the MAPK phosphatase, DUSP1. Our data show that the pool of up-regulated DUSP1 by T(3) is mainly localized to the cytosol, and that TNFalpha does not affect this localization. On the other hand, we show that T(3) impairs the activation of the NF-kappaB pathway induced by TNFalpha, producing a significant decrease in NF-kappaB-dependent transcription, phosphorylation of IkappaBalpha, translocation of p65/NF-kappaB to the nucleus, and p65/NF-kappaB transactivation potential. Interestingly, the overexpression of DUSP1 inhibits the NF-kappaB activation achieved by either TNFalpha or ectopic expression of the upstream inducer of MAPK p38. Conversely, DUSP1 depletion abrogates the inhibitory effect of T(3) on the induction of NF-kappaB-dependent transcription by TNFalpha. Overall, our results indicate that T(3) antagonizes TNFalpha signaling in rat pituitary tumor cells through the induction of DUSP1.
Collapse
Affiliation(s)
- Marina Lasa
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas Alberto Sols, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28029 Madrid, Spain.
| | | | | | | |
Collapse
|
11
|
Klausen C, Booth M, Habibi HR, Chang JP. Extracellular signal-regulated kinase mediates gonadotropin subunit gene expression and LH release responses to endogenous gonadotropin-releasing hormones in goldfish. Gen Comp Endocrinol 2008; 158:36-46. [PMID: 18558406 DOI: 10.1016/j.ygcen.2008.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/11/2008] [Accepted: 05/02/2008] [Indexed: 11/20/2022]
Abstract
The possible involvement of extracellular signal-regulated kinase (ERK) in mediating the stimulatory actions of two endogenous goldfish gonadotropin-releasing hormones (salmon (s)GnRH and chicken (c)GnRH-II) on gonadotropin synthesis and secretion was examined. Western blot analysis revealed the presence of ERK and phosphorylated (p)ERK in goldfish brain, pituitary, liver, ovary, testis and muscle tissue extracts, as well as extracts of dispersed goldfish pituitary cells and HeLa cells. Interestingly, a third ERK-like immunoreactive band of higher molecular mass was detected in goldfish tissue and pituitary cell extracts in addition to the ERK1-p44- and ERK2-p42-like immunoreactive bands. Incubation of primary cultures of goldfish pituitary cells with either a PKC-activating 4beta-phorbol ester (TPA) or a synthetic diacylglycerol, but not a 4alpha-phorbol ester, elevated the ratio of pERK/total (t)ERK for all three ERK isoforms. The stimulatory effects of TPA were attenuated by the PKC inhibitor GF109203X and the MEK inhibitor PD98059. sGnRH and cGnRH-II also elevated the ratio of pERK/tERK for all three ERK isoforms, in a time-, dose- and PD98059-dependent manner. In addition, treatment with PD98059 reduced the sGnRH-, cGnRH-II- and TPA-induced increases in gonadotropin subunit mRNA levels in Northern blot studies and sGnRH- and cGnRH-II-elicited LH release in cell column perifusion studies with goldfish pituitary cells. These results indicate that GnRH and PKC can activate ERK through MEK in goldfish pituitary cells. More importantly, the present study suggests that GnRH-induced gonadotropin subunit gene expression and LH release involve MEK/ERK signaling in goldfish.
Collapse
Affiliation(s)
- Christian Klausen
- Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W., Calgary, Alta., Canada T2N 1N4
| | | | | | | |
Collapse
|
12
|
Mutiara S, Kanasaki H, Harada T, Miyazaki K. Dopamine D(2) receptor expression and regulation of gonadotropin alpha-subunit gene in clonal gonadotroph LbetaT2 cells. Mol Cell Endocrinol 2006; 259:22-9. [PMID: 16959402 DOI: 10.1016/j.mce.2006.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 07/21/2006] [Accepted: 07/26/2006] [Indexed: 11/28/2022]
Abstract
This study investigated the role of dopamine on the regulation of gonadotropin secretion at the gonadotroph cell line. We examined the function of the dopamine D(2) receptor in the regulation of pituitary gonadotropin gene expression using LbetaT2 cells, a mature, well differentiated clonal gonadotroph cell line. The presence of the dopamine D(2) receptor in the LbetaT2 cells was confirmed by both RT-PCR and Western blot. Gonadotropin releasing hormone (GnRH) stimulation resulted in gonadotropin LHbeta, FSHbeta and alpha-subunit promoter activation, and none were inhibited by quinpirol, a specific dopamine D(2) receptor agonist. Pituitary adenylate cyclase-activating polypeptide (PACAP) increased gonadotropin alpha-subunit promoter activity, but not LHbeta and FSHbeta promoter activity. The activity of PACAP was significantly inhibited in the presence of quinpirol. The protein kinase A inhibitor, H89, also inhibited PACAP-induced alpha-subunit gene expression. PACAP increased intracellular cAMP more than GnRH did in LbetaT2 cells, and the elevation of cAMP was strongly inhibited in the presence of various dopamine D(2) agonists. These results suggest that in pituitary gonadotrophs, the dopamine D(2) receptor is a negative regulator of gonadotropin alpha-subunit gene expression which is induced by cAMP-elevating factors in a cAMP-dependent pathway.
Collapse
Affiliation(s)
- Sandra Mutiara
- Department of Obstetrics and Gynecology, Shimane University, School of Medicine, Enya Cho 89-1, Izumo 693-8501, Shimane Prefecture, Japan
| | | | | | | |
Collapse
|
13
|
Miyamoto E. Molecular Mechanism of Neuronal Plasticity: Induction and Maintenance of Long-Term Potentiation in the Hippocampus. J Pharmacol Sci 2006; 100:433-42. [PMID: 16799259 DOI: 10.1254/jphs.cpj06007x] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Recent studies have demonstrated that activation of enzymes can be observed in living cells in response to stimulation with neurotransmitters, hormones, growth factors, and so forth. Thus, the activation of enzymes was shown to be closely related to the dynamic states of various cell functions. The development of new experimental methodologies has enabled researchers to study the molecular basis of neuronal plasticity in living cells. In 1973, Bliss and his associates identified the phenomena of long-term potentiation (LTP). Since it was thought to be a model for neuronal plasticity such as learning and memory, its molecular mechanism has been extensively investigated. The mechanism was found to involve a signal transduction cascade that includes release of glutamate, activation of the NMDA glutamate receptors, Ca(2+) entry, and activations of Ca(2+)/calmodulin-dependent protein kinases (CaM kinases) II and IV and mitogen-activated protein kinase (MAPK). Consequently, AMPA glutamate receptors were activated by phosphorylation by CaM kinase II, resulting in an increase of Ca(2+) entry into postsynaptic neurons. Furthermore, activation of CaM kinase IV and MAPK increased phosphorylation of CREB (cyclic AMP response element binding protein) and expression of c-Fos by stimulation of gene expression. These results suggest that LTP induction and maintenance would be models of short- and long-term memory, respectively.
Collapse
Affiliation(s)
- Eishichi Miyamoto
- Department of Electrical Engineering and Bioscience, Graduate School of Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
14
|
Gregory SJ, Townsend J, McNeilly AS, Tortonese DJ. Effects of Prolactin on the Luteinizing Hormone Response to Gonadotropin-Releasing Hormone in Primary Pituitary Cell Cultures During the Ovine Annual Reproductive Cycle. Biol Reprod 2004; 70:1299-305. [PMID: 14695904 DOI: 10.1095/biolreprod.103.022806] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the sheep pituitary, the localization of prolactin (PRL) receptors in gonadotrophs and the existence of gonadotroph-lactotroph associations have provided morphological evidence for possible direct effects of PRL on gonadotropin secretion. Here, we investigated whether PRL can readily modify the LH response to GnRH throughout the ovine annual reproductive cycle. Cell populations were obtained from sheep pituitaries during the breeding season (BS) and the nonbreeding season (NBS), plated to monolayer cultures for 7 days, and assigned to receive one of the following treatments: 1) nil (control), 2) acute (90- min) bromocriptine (ABr), 3) chronic (7-day) bromocriptine (CBr), 4) ABr and PRL, 5) CBr and PRL, 6) PRL alone, or 7) thyrotropin-releasing hormone. Cells were treated as described above, with the aim of decreasing or increasing the concentrations of PRL in the culture, and simultaneously treated with GnRH for 90 min. The LH concentrations in the medium were then determined by RIA. GnRH stimulated LH in a dose-dependent manner during both stages of the annual reproductive cycle. During the NBS, single treatments did not significantly affect the LH response to GnRH. However, when PRL was combined with bromocriptine, either acutely or chronically, GnRH failed to stimulate LH release at all doses tested (P < 0.01). In contrast, during the BS, the LH response to GnRH was not affected by any of the experimental treatments. These results reveal no apparent effects of PRL alone, but an interaction between PRL and dopamine in the regulation of LH secretion within the pituitary gland, and a seasonal modulation of this mechanism.
Collapse
Affiliation(s)
- Susan J Gregory
- Department of Anatomy, University of Bristol, Bristol BS2 8EJ, England, United Kingdom
| | | | | | | |
Collapse
|