1
|
López-Cepeda ML, Angarita-Rodríguez A, Rojas-Cruz AF, Pérez Mejia J, Khatri R, Brehler M, Martínez-Martínez E, Pinzón A, Aristizabal-Pachon AF, González J. Extracellular Competing Endogenous RNA Networks Reveal Key Regulators of Early Amyloid Pathology Propagation in Alzheimer's Disease. Int J Mol Sci 2025; 26:3544. [PMID: 40332030 PMCID: PMC12027385 DOI: 10.3390/ijms26083544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/23/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Extracellular vesicles (EVs) are small capsular bodies released by cells, mediating responses in intercellular communication. The role of EVs in Aβ pathology spreading in the Alzheimer's disease (AD) brain has been evidenced, although whether this occurs due to the co-transportation of Aβ peptides or contribution of other factors, such as EV-associated transcripts, remains uncertain. In vitro studies of miRNA cargo in neuron-derived extracellular vesicles (NDEVs) show that Aβ hyperexpression alters the transcriptomic profile; however, it is not clear to what extent this causes changes at the organ level. By utilizing datasets from published studies, we generated competing endogenous RNA (ceRNA) networks for miRNAs co-expressed in NDEVs and the brain in different stages of pathology, using both an APP overexpressing neuronal model (in vitro) and brain cortices from 6- and 9-month-old APP/PSEN1 mice (in vivo). Networks integrating information from mRNAs, lncRNAs, and circRNAs showed two candidate lncRNAs (Kcnq1ot1 and Gm42969) and a circRNA (Pum1), while enrichment analyses detected that NDEVs miRNAs signal to other CNS cells and that this signal can be disrupted by Aβ pathology, contributing to the loss of long-term potentiation seen in early AD.
Collapse
Affiliation(s)
- Misael Leonardo López-Cepeda
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.L.L.-C.); (A.A.-R.); (A.F.R.-C.); (J.P.M.)
| | - Andrea Angarita-Rodríguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.L.L.-C.); (A.A.-R.); (A.F.R.-C.); (J.P.M.)
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Alexis Felipe Rojas-Cruz
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.L.L.-C.); (A.A.-R.); (A.F.R.-C.); (J.P.M.)
| | - Julián Pérez Mejia
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.L.L.-C.); (A.A.-R.); (A.F.R.-C.); (J.P.M.)
| | - Robin Khatri
- Institute of Medical Systems Bioinformatics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Michael Brehler
- Institute of Medical Systems Bioinformatics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication & Extracellular Vesicles, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Andrés Felipe Aristizabal-Pachon
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.L.L.-C.); (A.A.-R.); (A.F.R.-C.); (J.P.M.)
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.L.L.-C.); (A.A.-R.); (A.F.R.-C.); (J.P.M.)
| |
Collapse
|
2
|
Leal AF, Suarez DA, Echeverri-Peña OY, Albarracín SL, Alméciga-Díaz CJ, Espejo-Mojica ÁJ. Sphingolipids and their role in health and disease in the central nervous system. Adv Biol Regul 2022; 85:100900. [PMID: 35870382 DOI: 10.1016/j.jbior.2022.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/22/2022]
Abstract
Sphingolipids (SLs) are lipids derived from sphingosine, and their metabolism involves a broad and complex network of reactions. Although SLs are widely distributed in the body, it is well known that they are present in high concentrations within the central nervous system (CNS). Under physiological conditions, their abundance and distribution in the CNS depend on brain development and cell type. Consequently, SLs metabolism impairment may have a significant impact on the normal CNS function, and has been associated with several disorders, including sphingolipidoses, Parkinson's, and Alzheimer's. This review summarizes the main SLs characteristics and current knowledge about synthesis, catabolism, regulatory pathways, and their role in physiological and pathological scenarios in the CNS.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Olga Yaneth Echeverri-Peña
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Sonia Luz Albarracín
- Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.
| | - Ángela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.
| |
Collapse
|
3
|
Xu CJ, Li MQ, Li-Zhao, Chen WG, Wang JL. Short-term high-fat diet favors the appearances of apoptosis and gliosis by activation of ERK1/2/p38MAPK pathways in brain. Aging (Albany NY) 2021; 13:23133-23148. [PMID: 34620734 PMCID: PMC8544319 DOI: 10.18632/aging.203607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 01/26/2023]
Abstract
High-fat diet (HFD) has been associated with neuroinflammation and apoptosis in distinct brain regions. To explore the effect of short-term (7, 14 and 21 days) high-fat overfeeding on apoptosis, inflammatory signaling proteins, APP changes and glial cell activities in cerebral cortex and cerebellum. Mice were fed with HFD for different lengths (up to 21 days) and after each time body weights of mice was tested, then the apoptotic proteins, IL-1β, APP, BACE1and MAPKs, Akt and NF-κB signaling activity were evaluated by western blots. Results demonstrate that short period of high-fat overnutrition significantly promotes apoptosis, APP expression at day 21 of cerebral cortex and at day 7 of cerebellum compared to chow diet. In addition, increased GFAP+astrocytes, Iba-1+microglia and IL-1β 30 were observed in cerebral cortex after 21 days HFD, but no changes for 7 days overfeeding of cerebellum. Serendipitously, ERK1/2 pathway was activated both in cerebral cortex and cerebellum for different time course of HFD. Furthermore, increased phospho-p38 MAPK level was observed in cerebellum only. In consistent with in vivo results, SH-SY5Y cells treatment with cholesterol (50 μM, 100 μM) for 48 h culture in vitro demonstrated that pro-apoptotic proteins were enhanced as well. In brief, short-term HFD consumption increases sensitivity to apoptosis, APP and IL-1β production as well as gliosis in cerebral cortex and cerebellum, which may be related to enhancement of ERK1/2 and p38 MAPK activation.
Collapse
Affiliation(s)
- Chao-Jin Xu
- Department of Histology and Embryology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Mei-Qi Li
- School of 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Li-Zhao
- School of 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Wei-Guang Chen
- Department of Histology and Embryology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jun-Ling Wang
- Center for Reproductive Medicine, Affiliated Hospital 1 of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| |
Collapse
|
4
|
Saghi E, Norouzy A, Nematy M, Jarahi L, Boostani R, Zemorshidi F, Vahidi Z, Rafatpanah H. Dietary Intake and Serum Selenium Levels Influence the Outcome of HTLV-1 Infection. Biol Trace Elem Res 2021; 199:3242-3252. [PMID: 33169347 DOI: 10.1007/s12011-020-02472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
Human T cell leukemia virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP), as the most common neurological emersion related to HTLV-1, is a debilitating and lifelong treating disease with no definitive treatment. Furthermore, it has been determined that dietary compositions (inflammatory and anti-inflammatory) and some micronutrients (such as vitamin D and selenium) have an effect on inflammatory and immune processes and with this background; the study was done to compare the nutritional status between age- and sex-matched with infected and non-infected HTLV-1. In a multi-center setting, 70 healthy controls (HCs), 35 asymptomatic carriers (ACs), and 35 HAM/TSP patients were recruited in the HTLV-1 Foundation, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran. Nutritional status including anthropometric indices, dietary (micro- and macronutrient) intake, and serum vitamin D, vitamin B12, zinc, and selenium were measured. In anthropometric indices, mean waist circumference (WC) in the carrier group was significantly higher than the patient and the control groups (p = 0.008). In the dietary intake, the patient group received less energy, protein, mono-unsaturated fatty acids (MUFA), and oleic, but more fat than the HTLV-1 carrier and control groups, and these differences were remarkable in three groups (p = 0.002, 0.005, 0.001, 0.01, and 0.001, respectively), whereas the carrier group received more saturated fatty acid and less poly-unsaturated fatty acids (PUFA), linoleic, and linolenic than patient and control groups with a different significant (p = 0.01, 0.007, 0.005, and 0.006, respectively) in three groups. In micronutrient intake, although selenium, zinc, and vitamins B12 and D were lower in the patient group than the carrier and control group, however, no significant differences were observed. In comparison with micronutrient serum concentrations, vitamins B12 and D and selenium in the patient group were lower than the carrier and control groups, but statistically, the considerable difference was found only in the selenium concentration (p = 0.001). The study showed that there were differences in dietary intake (including energy, macronutrients, and fatty acids), WC, and selenium serum levels between HAM/TSP patients and HTLV-1 carriers, suggesting that nutritional statues influence the inflammatory immune response in HTLV-1 infection.
Collapse
Affiliation(s)
- Effat Saghi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Abdolreza Norouzy
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.
| | - Mohsen Nematy
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Lida Jarahi
- Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Zemorshidi
- Department of Neurology, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Vahidi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Bloise AMNDLG, Simões-Alves AC, Debora Santos A, Morio B, Costa-Silva JH. Cardiometabolic impacts of saturated fatty acids: are they all comparable? Int J Food Sci Nutr 2021; 73:1-14. [PMID: 34229557 DOI: 10.1080/09637486.2021.1940885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In last decades, a phenomenon named nutrition transition has been observed in many countries around the world. It has been characterised by increased consumption of fat-rich diets, predisposing to cardiometabolic diseases and high prevalence of the obesity. In the dietary recommendations cited to prevent metabolic diseases, there is a consensus to decrease intake of saturated fatty acids (SFA) to less than 10% of total energy intake, as recommended by the Food Safety Authorities. However, fatty acids of different chain lengths may exhibit different cardiometabolic effects. Thus, our major aim was to review the cardiometabolic effects of different classes of SFA according to carbon chain length, i.e. short-, medium- and long-chains. The review emphasises that not all SFA may have harmful cardiometabolic effects since short- and medium-chain SFA can provide beneficial health effects and participate to the prevention of metabolic disorders.
Collapse
Affiliation(s)
- Aline Maria Nunes de Lira Gomes Bloise
- Department of Physical Education and Sport Sciences, Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão-PE, Brazil
| | - Aiany Cibelle Simões-Alves
- Department of Physical Education and Sport Sciences, Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão-PE, Brazil.,Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition (CarMeN), INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Alves Debora Santos
- Department of Physical Education and Sport Sciences, Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão-PE, Brazil
| | - Beatrice Morio
- Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition (CarMeN), INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, Lyon, France
| | - João Henrique Costa-Silva
- Department of Physical Education and Sport Sciences, Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão-PE, Brazil.,Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition (CarMeN), INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
6
|
Chang Y, Zheng C, Chinnathambi A, Alahmadi TA, Alharbi SA. Cytotoxicity, anti-acute leukemia, and antioxidant properties of gold nanoparticles green-synthesized using Cannabis sativa L leaf aqueous extract. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
7
|
Symmank J, Chorus M, Appel S, Marciniak J, Knaup I, Bastian A, Hennig CL, Döding A, Schulze-Späte U, Jacobs C, Wolf M. Distinguish fatty acids impact survival, differentiation and cellular function of periodontal ligament fibroblasts. Sci Rep 2020; 10:15706. [PMID: 32973207 PMCID: PMC7518255 DOI: 10.1038/s41598-020-72736-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 09/03/2020] [Indexed: 01/03/2023] Open
Abstract
Alveolar bone (AB) remodeling is necessary for the adaption to mechanical stimuli occurring during mastication and orthodontic tooth movement (OTM). Thereby, bone degradation and assembly are strongly regulated processes that can be altered in obese patients. Further, increased fatty acids (FA) serum levels affect bone remodeling cells and we, therefore, investigated whether they also influence the function of periodontal ligament fibroblast (PdLF). PdLF are a major cell type regulating the differentiation and function of osteoblasts and osteoclasts localized in the AB. We stimulated human PdLF (HPdLF) in vitro with palmitic (PA) or oleic acid (OA) and analyzed their metabolic activity, growth, survival and expression of osteogenic markers and calcium deposits. Our results emphasize that PA increased cell death of HPdLF, whereas OA induced their osteoblastic differentiation. Moreover, quantitative expression analysis of OPG and RANKL revealed altered levels in mechanically stimulated PA-treated HPdLF. Furthermore, osteoclasts stimulated with culture medium of mechanical stressed FA-treated HPdLF revealed significant changes in cell differentiation upon FA-treatment. For the first time, our results highlight a potential role of specific FA in the function of HPdLF-modulated AB remodeling and help to elucidate the complex interplay of bone metabolism, mechanical stimulation and obesity-induced alterations.
Collapse
Affiliation(s)
- Judit Symmank
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.
| | - Martin Chorus
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.,Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sophie Appel
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.,Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jana Marciniak
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Isabel Knaup
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Asisa Bastian
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | | | - Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
8
|
Metformin as a Potential Agent in the Treatment of Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21175957. [PMID: 32825027 PMCID: PMC7503488 DOI: 10.3390/ijms21175957] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Metformin, a synthetic derivative of guanidine, is commonly used as an oral antidiabetic agent and is considered a multi-vector application agent in the treatment of other inflammatory diseases. Recent studies have confirmed the beneficial effect of metformin on immune cells, with special emphasis on immunological mechanisms. Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by various clinical courses. Although the pathophysiology of MS remains unknown, it is most likely a combination of disturbances of the immune system and biochemical pathways with a disruption of blood-brain barrier (BBB), and it is strictly related to injury of intracerebral blood vessels. Metformin has properties which are greatly desirable for MS therapy, including antioxidant, anti-inflammatory or antiplatelet functions. The latest reports relating to the cardiovascular disease confirm an increased risk of ischemic events in MS patients, which are directly associated with a coagulation cascade and an elevated pro-thrombotic platelet function. Hence, this review examines the potential favourable effects of metformin in the course of MS, its role in preventing inflammation and endothelial dysfunction, as well as its potential antiplatelet role.
Collapse
|
9
|
Ortiz-Rodriguez A, Arevalo MA. The Contribution of Astrocyte Autophagy to Systemic Metabolism. Int J Mol Sci 2020; 21:E2479. [PMID: 32260050 PMCID: PMC7177973 DOI: 10.3390/ijms21072479] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Autophagy is an essential mechanism to maintain cellular homeostasis. Besides its role in controlling the quality of cytoplasmic components, it participates in nutrient obtaining and lipid mobilization under stressful conditions. Furthermore, autophagy is involved in the regulation of systemic metabolism as its blockade in hypothalamic neurons can affect the central regulation of metabolism and impact body energy balance. Moreover, hypothalamic autophagy can be altered during obesity, one of the main alterations of metabolism nowadays. In this review, we focus on the role of astrocytes, essential cells for brain homeostasis, which represent key metabolic regulators. Astrocytes can sense metabolic signals in the hypothalamus and modulate systemic functions as glucose homeostasis and feeding response. Moreover, the response of astrocytes to obesity has been widely studied. Astrocytes are important mediators of brain inflammation and can be affected by increased levels of saturated fatty acids associated with obesity. Although autophagy plays important roles for astrocyte homeostasis and functioning, the contribution of astrocyte autophagy to systemic metabolism has not been analyzed yet. Furthermore, how obesity can impact astrocyte autophagy is poorly understood. More studies are needed in order to understand the contribution of astrocyte autophagy to metabolism.
Collapse
Affiliation(s)
- Ana Ortiz-Rodriguez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain;
| | - Maria-Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Involvement of Metabolic Lipid Mediators in the Regulation of Apoptosis. Biomolecules 2020; 10:biom10030402. [PMID: 32150849 PMCID: PMC7175142 DOI: 10.3390/biom10030402] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is the physiological mechanism of cell death and can be modulated by endogenous and exogenous factors, including stress and metabolic alterations. Reactive oxygen species (ROS), as well as ROS-dependent lipid peroxidation products (including isoprostanes and reactive aldehydes including 4-hydroxynonenal) are proapoptotic factors. These mediators can activate apoptosis via mitochondrial-, receptor-, or ER stress-dependent pathways. Phospholipid metabolism is also an essential regulator of apoptosis, producing the proapoptotic prostaglandins of the PGD and PGJ series, as well as the antiapoptotic prostaglandins of the PGE series, but also 12-HETE and 20-HETE. The effect of endocannabinoids and phytocannabinoids on apoptosis depends on cell type-specific differences. Cells where cannabinoid receptor type 1 (CB1) is the dominant cannabinoid receptor, as well as cells with high cyclooxygenase (COX) activity, undergo apoptosis after the administration of cannabinoids. In contrast, in cells where CB2 receptors dominate, and cells with low COX activity, cannabinoids act in a cytoprotective manner. Therefore, cell type-specific differences in the pro- and antiapoptotic effects of lipids and their (oxidative) products might reveal new options for differential bioanalysis between normal, functional, and degenerating or malignant cells, and better integrative biomedical treatments of major stress-associated diseases.
Collapse
|
11
|
Garcia‐Arencibia M, Molina-Holgado E, Molina‐Holgado F. Effect of endocannabinoid signalling on cell fate: life, death, differentiation and proliferation of brain cells. Br J Pharmacol 2019; 176:1361-1369. [PMID: 29797438 PMCID: PMC6487559 DOI: 10.1111/bph.14369] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Cell fate events are regulated by different endogenous developmental factors such as the cell micro-environment, external or remote signals and epigenetic factors. Among the many regulatory factors, endocannabinoid-associated signalling pathways are known to conduct several of these events in the developing nervous system and in the adult brain. Interestingly, endocannabinoids exert modulatory actions in both physiological and pathological conditions. Endocannabinoid signalling can promote cell survival by acting on non-transformed brain cells (neurons, astrocytes or oligodendrocytes) and can have either a protumoural or antitumoural effect on transformed cells. Moreover, endocannabinoids are able to attenuate the detrimental effects on neurogenesis and neuroinflammation associated with ageing. Thus, the endocannabinoid system emerges as an important regulator of cell fate, controlling cell survival/cell death decisions depending on the cell type and its environment. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Moises Garcia‐Arencibia
- Departamento Sanitario IES TerorConsejería de Educación y Universidades del Gobierno de CanariasLas PalmasSpain
| | - Eduardo Molina-Holgado
- Laboratorio de NeuroinflamaciónUnidad de Investigación, Hospital Nacional de Parapléjicos‐SESCAMToledo45071Spain
| | | |
Collapse
|
12
|
de Wit NM, den Hoedt S, Martinez-Martinez P, Rozemuller AJ, Mulder MT, de Vries HE. Astrocytic ceramide as possible indicator of neuroinflammation. J Neuroinflammation 2019; 16:48. [PMID: 30803453 PMCID: PMC6388480 DOI: 10.1186/s12974-019-1436-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), and frontotemporal lobar dementia (FTLD) are characterized by progressive neuronal loss but differ in their underlying pathological mechanisms. However, neuroinflammation is commonly observed within these different forms of dementia. Recently, it has been suggested that an altered sphingolipid metabolism may contribute to the pathogenesis of a variety of neurodegenerative conditions. Especially ceramide, the precursor of all complex sphingolipids, is thought to be associated with pro-apoptotic cellular processes, thereby propagating neurodegeneration and neuroinflammation, although it remains unclear to what extent. The current pathological study therefore investigates whether increased levels of ceramide are associated with the degree of neuroinflammation in various neurodegenerative disorders. METHODS Immunohistochemistry was performed on human post-mortem tissue of PDD and FTLD Pick's disease cases, which are well-characterized cases of dementia subtypes differing in their neuroinflammatory status, to assess the expression and localization of ceramide, acid sphingomyelinase, and ceramide synthase 2 and 5. In addition, we determined the concentration of sphingosine, sphingosine-1-phosphate (S1P), and ceramide species differing in their chain-length in brain homogenates of the post-mortem tissue using HPLC-MS/MS. RESULTS Our immunohistochemical analysis reveals that neuroinflammation is associated with increased ceramide levels in astrocytes in FTLD Pick's disease. Moreover, the observed increase in ceramide in astrocytes correlates with the expression of ceramide synthase 5. In addition, HPLC-MS/MS analysis shows a shift in ceramide species under neuroinflammatory conditions, favoring pro-apoptotic ceramide. CONCLUSIONS Together, these findings suggest that detected increased levels of pro-apoptotic ceramide might be a common denominator of neuroinflammation in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Nienke M. de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Sandra den Hoedt
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pilar Martinez-Martinez
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Annemieke J. Rozemuller
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Monique T. Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| |
Collapse
|
13
|
Tse EK, Belsham DD. Palmitate induces neuroinflammation, ER stress, and Pomc mRNA expression in hypothalamic mHypoA-POMC/GFP neurons through novel mechanisms that are prevented by oleate. Mol Cell Endocrinol 2018; 472:40-49. [PMID: 29180108 DOI: 10.1016/j.mce.2017.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 11/23/2017] [Indexed: 01/17/2023]
Abstract
Dietary fats can modulate brain function. How free fatty acids (FFAs) alter hypothalamic pro-opiomelanocortin (POMC) neurons remain undefined. The saturated FFA, palmitate, increased neuroinflammatory and ER stress markers, as well as Pomc mRNA levels, but did not affect insulin signaling, in mHypoA-POMC/GFP-2 neurons. This effect was mediated through the MAP kinases JNK and ERK. Further, the increase in Pomc was dependent on palmitoyl-coA synthesis, but not de novo ceramide synthesis, as inhibition of SPT enhanced palmitate-induced Pomc expression, while methylpalmitate had no effect. While palmitate concomitantly induces neuroinflammation and ER stress, these effects were independent of changes in Pomc expression. Palmitate thus has direct acute effects on Pomc, which appears to be important for negative feedback, but not directly related to neuroinflammation. The monounsaturated FFA oleate completely blocked the palmitate-mediated increase in neuroinflammation, ER stress, and Pomc mRNAs. This study provides insight into the complex central metabolic regulation by FFAs.
Collapse
Affiliation(s)
- Erika K Tse
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Departments of Medicine and Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
14
|
17β-estradiol modulates NGF and BDNF expression through ERβ mediated ERK signaling in cortical astrocytes. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0099-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Lipotoxic Effects of Palmitic Acid on Astrocytes Are Associated with Autophagy Impairment. Mol Neurobiol 2018; 56:1665-1680. [PMID: 29916142 DOI: 10.1007/s12035-018-1183-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/07/2018] [Indexed: 12/23/2022]
|
16
|
Fonseca BM, Teixeira NA, Correia-da-Silva G. Cannabinoids as Modulators of Cell Death: Clinical Applications and Future Directions. Rev Physiol Biochem Pharmacol 2017; 173:63-88. [PMID: 28425013 DOI: 10.1007/112_2017_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocannabinoids are bioactive lipids that modulate various physiological processes through G-protein-coupled receptors (CB1 and CB2) and other putative targets. By sharing the activation of the same receptors, some phytocannabinoids and a multitude of synthetic cannabinoids mimic the effects of endocannabinoids. In recent years, a growing interest has been dedicated to the study of cannabinoids properties for their analgesic, antioxidant, anti-inflammatory and neuroprotective effects. In addition to these well-recognized effects, various studies suggest that cannabinoids may affect cell survival, cell proliferation or cell death. These observations indicate that cannabinoids may play an important role in the regulation of cellular homeostasis and, thus, may contribute to tissue remodelling and cancer treatment. For a long time, the study of cannabinoid receptor signalling has been focused on the classical adenylyl cyclase/cyclic AMP/protein kinase A (PKA) pathway. However, this pathway does not totally explain the wide array of biological responses to cannabinoids. In addition, the diversity of receptors and signalling pathways that endocannabinoids modulate offers an interesting opportunity for the development of specific molecules to disturb selectively the endogenous system. Moreover, emerging evidences suggest that cannabinoids ability to limit cell proliferation and to induce tumour-selective cell death may offer a novel strategy in cancer treatment. This review describes the main properties of cannabinoids in cell death and attempts to clarify the different pathways triggered by these compounds that may help to understand the complexity of respective molecular mechanisms and explore the potential clinical benefit of cannabinoids use in cancer therapies.
Collapse
Affiliation(s)
- B M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal.
| | - N A Teixeira
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - G Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Lukhele ST, Motadi LR. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:335. [PMID: 27586579 PMCID: PMC5009497 DOI: 10.1186/s12906-016-1280-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/11/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cervical cancer remains a global health related issue among females of Sub-Saharan Africa, with over half a million new cases reported each year. Different therapeutic regimens have been suggested in various regions of Africa, however, over a quarter of a million women die of cervical cancer, annually. This makes it the most lethal cancer amongst black women and calls for urgent therapeutic strategies. In this study we compare the anti-proliferative effects of crude extract of Cannabis sativa and its main compound cannabidiol on different cervical cancer cell lines. METHODS To achieve our aim, phytochemical screening, MTT assay, cell growth analysis, flow cytometry, morphology analysis, Western blot, caspase 3/7 assay, and ATP measurement assay were conducted. RESULTS Results obtained indicate that both cannabidiol and Cannabis sativa extracts were able to halt cell proliferation in all cell lines at varying concentrations. They further revealed that apoptosis was induced by cannabidiol as shown by increased subG0/G1 and apoptosis through annexin V. Apoptosis was confirmed by overexpression of p53, caspase 3 and bax. Apoptosis induction was further confirmed by morphological changes, an increase in Caspase 3/7 and a decrease in the ATP levels. CONCLUSIONS In conclusion, these data suggest that cannabidiol rather than Cannabis sativa crude extracts prevent cell growth and induce cell death in cervical cancer cell lines.
Collapse
|
18
|
Pyszniak M, Tabarkiewicz J, Łuszczki JJ. Endocannabinoid system as a regulator of tumor cell malignancy - biological pathways and clinical significance. Onco Targets Ther 2016; 9:4323-36. [PMID: 27486335 PMCID: PMC4958360 DOI: 10.2147/ott.s106944] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The endocannabinoid system (ECS) comprises cannabinoid receptors (CBs), endogenous cannabinoids, and enzymes responsible for their synthesis, transport, and degradation of (endo)cannabinoids. To date, two CBs, CB1 and CB2, have been characterized; however, orphan G-protein-coupled receptor GPR55 has been suggested to be the third putative CB. Several different types of cancer present abnormal expression of CBs, as well as other components of ECS, and this has been shown to correlate with the clinical outcome. Although most effects of (endo)cannabinoids are mediated through stimulation of classical CBs, they also interact with several molecules, either prosurvival or proapoptotic molecules. It should be noted that the mode of action of exogenous cannabinoids differs significantly from that of endocannabinoid and results from the studies on their activity both in vivo and in vitro could not be easily compared. This review highlights the main signaling pathways involved in the antitumor activity of cannabinoids and the influence of their activation on cancer cell biology. We also discuss changes in the expression pattern of the ECS in various cancer types that have an impact on disease progression and patient survival. A growing amount of experimental data imply possible exploitation of cannabinoids in cancer therapy.
Collapse
Affiliation(s)
- Maria Pyszniak
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine; Department of Immunology, Faculty of Medicine, University of Rzeszów, Rzeszów; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa
| | - Jacek Tabarkiewicz
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine; Department of Immunology, Faculty of Medicine, University of Rzeszów, Rzeszów
| | - Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University of Lublin; Isobolographic Analysis Laboratory, Institute of Agricultural Medicine, Lublin, Poland
| |
Collapse
|
19
|
Huang L, Tang X, Zhang W, Jiang R, Zhong H. Laser Activated Electron Tunneling Based Mass Spectrometric Imaging of Molecular Architectures of Mouse Brain Revealing Regional Specific Lipids. Anal Chem 2015; 88:732-9. [DOI: 10.1021/acs.analchem.5b02871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Lulu Huang
- Mass Spectrometry Center
for Structural Identification of Biological Molecules and Precision
Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry
of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China
| | - Xuemei Tang
- Mass Spectrometry Center
for Structural Identification of Biological Molecules and Precision
Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry
of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China
| | - Wenyang Zhang
- Mass Spectrometry Center
for Structural Identification of Biological Molecules and Precision
Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry
of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China
| | - Ruowei Jiang
- Mass Spectrometry Center
for Structural Identification of Biological Molecules and Precision
Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry
of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China
| | - Hongying Zhong
- Mass Spectrometry Center
for Structural Identification of Biological Molecules and Precision
Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry
of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China
| |
Collapse
|
20
|
Cherry AE, Stella N. G protein-coupled receptors as oncogenic signals in glioma: emerging therapeutic avenues. Neuroscience 2014; 278:222-36. [PMID: 25158675 DOI: 10.1016/j.neuroscience.2014.08.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 12/20/2022]
Abstract
Gliomas are the most common malignant intracranial tumors. Newly developed targeted therapies for these cancers aim to inhibit oncogenic signals, many of which emanate from receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR). Unfortunately, the first-generation treatments targeting these oncogenic signals provide little survival benefit in both mouse xenograft models and human patients. The search for new treatment options has uncovered several G protein-coupled receptor (GPCR) candidates and generated a growing interest in this class of proteins as alternative therapeutic targets for the treatment of various cancers, including glioblastoma multiforme (GBM). GPCRs constitute a large family of membrane receptors that influence oncogenic pathways through canonical and non-canonical signaling. Accordingly, evidence indicates that GPCRs display a unique ability to crosstalk with receptor tyrosine kinases, making them important molecular components controlling tumorigenesis. This review summarizes the current research on GPCR functionality in gliomas and explores the potential of modulating these receptors to treat this devastating disease.
Collapse
Affiliation(s)
- A E Cherry
- Department of Pharmacology, University of Washington, 1959 NE Pacific Street, BB1538, Health Sciences Building, Seattle, WA 98195, United States.
| | - N Stella
- Department of Pharmacology, University of Washington, 1959 NE Pacific Street, BB1538, Health Sciences Building, Seattle, WA 98195, United States; Department of Psychiatry & Behavioral Sciences, University of Washington, 1959 NE Pacific Street, BB1538, Health Sciences Building, Seattle, WA 98195, United States.
| |
Collapse
|
21
|
Liu L, Chan C. The role of inflammasome in Alzheimer's disease. Ageing Res Rev 2014; 15:6-15. [PMID: 24561250 PMCID: PMC4029867 DOI: 10.1016/j.arr.2013.12.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/12/2013] [Accepted: 12/23/2013] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a chronic, progressive and irreversible neurodegenerative disease with clinical characteristics of memory loss, dementia and cognitive impairment. Although the pathophysiologic mechanism is not fully understood, inflammation has been shown to play a critical role in the pathogenesis of AD. Inflammation in the central nervous system (CNS) is characterized by the activation of glial cells and release of proinflammatory cytokines and chemokines. Accumulating evidence demonstrates that inflammasomes, which cleave precursors of interleukin-1β (IL-1β) and IL-18 to generate their active forms, play an important role in the inflammatory response in the CNS and in AD pathogenesis. Therefore, modulating inflammasome complex assembly and activation could be a potential strategy for suppressing inflammation in the CNS. This review aims to provide insight into the role of inflammasomes in the CNS, with respect to the pathogenesis of AD, and may provide possible clues for devising novel therapeutic strategies.
Collapse
Affiliation(s)
- Li Liu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States; Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Christina Chan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
22
|
Wang Z, Liu D, Zhang Q, Wang J, Zhan J, Xian X, Du Z, Wang X, Hao A. Palmitic acid affects proliferation and differentiation of neural stem cells in vitro. J Neurosci Res 2014; 92:574-86. [PMID: 24446229 DOI: 10.1002/jnr.23342] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/28/2013] [Accepted: 11/12/2013] [Indexed: 11/08/2022]
Abstract
High-lipid diet composed of saturated fatty acids (SFAs) has significant detrimental effects on brain homeostasis, and deleterious effects of SFAs on various cells have been well documented. However, the effects of SFAs on neural stem Cells (NSCs) function have not been fully explored. The aim of this study was to determine whether palmitic acid (PA) affected the proliferation and differentiation of murine-derived NSCs. The results showed that PA dose dependently suppressed viability of NSCs and was cytotoxic at high concentrations. The toxic levels of PA inhibited the proliferation of NSCs as shown by reduced bromodeoxyuridine labeling of NSCs, which is correlated with reactive oxygen species generation. Pretreatment of the cells with the antioxidant N-acetyl-L-cysteine inhibitor significantly attenuated the effects of PA on the proliferation of NSCs. Furthermore, nontoxic levels of PA promoted astrocytogenesis in the differentiated NSCs, associated with Stat3 activation and altered expression of serial of basic helix-loop-helix transcription factor genes. Altogether, our data have demonstrated that PA has a significant impact on proliferation and differentiation of NSCs in vitro and may be useful for elucidating the role of SFAs in regulating NSCs fate in physiological and pathological settings.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Physiology, Shandong University School of Medicine, Shandong, People's Republic of China; Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wu MS, Lien GS, Shen SC, Yang LY, Chen YC. N
-acetyl-L
-cysteine enhances fisetin-induced cytotoxicity via induction of ROS-independent apoptosis in human colonic cancer cells. Mol Carcinog 2013; 53 Suppl 1:E119-29. [DOI: 10.1002/mc.22053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 04/18/2013] [Accepted: 05/03/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Ming-Shun Wu
- Graduate Institute of Clinical Medicine; College of Medicine, Taipei Medical University; Taipei Taiwan
- Division of Gastroenterology; Department of Internal Medicine; Wan Fang Hospital; Taipei Medical University; Taipei Taiwan
| | - Gi-Shih Lien
- Graduate Institute of Clinical Medicine; College of Medicine, Taipei Medical University; Taipei Taiwan
- Division of Gastroenterology; Department of Internal Medicine; Wan Fang Hospital; Taipei Medical University; Taipei Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences; Taipei Medical University; Taipei Taiwan
| | - Liang-Yo Yang
- Department of Physiology and Graduate Institute of Neuroscience; Taipei Medical University; Taipei Taiwan
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences; Taipei Medical University; Taipei Taiwan
- Cancer Research Center and Orthopedics Research Center; Taipei Medical University Hospital; Taipei Taiwan
| |
Collapse
|
24
|
Sukumaran P, Lönnfors M, Långvik O, Pulli I, Törnquist K, Slotte JP. Complexation of c6-ceramide with cholesteryl phosphocholine - a potent solvent-free ceramide delivery formulation for cells in culture. PLoS One 2013; 8:e61290. [PMID: 23620740 PMCID: PMC3631171 DOI: 10.1371/journal.pone.0061290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/06/2013] [Indexed: 12/15/2022] Open
Abstract
Ceramides are potent bioactive molecules in cells. However, they are very hydrophobic molecules, and difficult to deliver efficiently to cells. We have made fluid bilayers from a short-chain D-erythro-ceramide (C6-Cer) and cholesteryl phosphocholine (CholPC), and have used this as a formulation to deliver ceramide to cells. C6-Cer complexed with CholPC led to much larger biological effects in cultured cells (rat thyroid FRTL-5 and human HeLa cells in culture) compared to C6-Cer dissolved in dimethyl sulfoxide (DMSO). Inhibition of cell proliferation and induction of apoptosis was significantly more efficient by C6-Cer/CholPC compared to C6-Cer dissolved in DMSO. C6-Cer/CholPC also permeated cell membranes and caused mitochondrial Ca2+ influx more efficiently than C6-Cer in DMSO. Even though CholPC was taken up by cells to some extent (from C6-Cer/CholPC bilayers), and was partially hydrolyzed to free cholesterol (about 9%), none of the antiproliferative effects were due to CholPC or excess cholesterol. The ceramide effect was not limited to D-erythro-C6-Cer, since L-erythro-C6-Cer and D-erythro-C6-dihydroCer also inhibited cell priolifereation and affected Ca2+ homeostasis. We conclude that C6-Cer complexed to CholPC increased the bioavailability of the short-chain ceramide for cells, and potentiated its effects in comparison to solvent-dissolved C6-Cer. This new ceramide formulation appears to be superior to previous solvent delivery approaches, and may even be useful with longer-chain ceramides.
Collapse
Affiliation(s)
| | - Max Lönnfors
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Otto Långvik
- Laboratory of Organic Chemistry, Department of Natural Sciences, Åbo Akademi University, Turku, Finland
| | - Ilari Pulli
- Cell Biology, Åbo Akademi University, Turku, Finland
| | - Kid Törnquist
- Cell Biology, Åbo Akademi University, Turku, Finland
- Minerva Foundation Institute of Medical Research, Biomedicum Helsinki, Helsinki, Finland
- * E-mail: (KT); (JPS)
| | - J. Peter Slotte
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
- * E-mail: (KT); (JPS)
| |
Collapse
|
25
|
Endogenous cannabinoids revisited: A biochemistry perspective. Prostaglandins Other Lipid Mediat 2013; 102-103:13-30. [DOI: 10.1016/j.prostaglandins.2013.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/13/2022]
|
26
|
Role of mitochondrial Bax, caspases, and MAPKs for ceramide-induced apoptosis in renal proximal tubular cells. Mol Cell Biochem 2013; 379:37-42. [PMID: 23543151 DOI: 10.1007/s11010-013-1624-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
Abstract
It remains elusive whether crosstalk exists among mitochondrial Bax, caspases, and mitogen-activated protein kinases (MAPKs), and whether epidermal growth factor (EGF), which may activate MAPKs, affects ceramide-induced apoptosis through the crosstalk in renal proximal tubular cells (RPTCs). Effect of ceramide on expression of mitochondrial Bax and phosphorylated (p)-ERK, p38MAPK and JNK, that of MAPKs inhibition, and of EGF in the presence or absence of MAPKs inhibition on ceramide-induced apoptosis were examined in HK-2 cells. Apoptosis and expression of mitochondrial Bax and p-MAPKs were measured by Hoechst 33258 staining and Western blotting. C2-ceramide, but not dihydroC2-ceramide, inactive C2-ceramide, induced apoptosis at 24 h. C2-ceramide enhanced the mitochondrial Bax expression at 1 h, which was peaked at 3-6 h and decreased at 24 h, but remained increased, compared to control. An inhibitor of caspases, zVAD-fmk, ameliorated ceramide-induced apoptosis, suggesting a role of caspases for ceramide-induced apoptosis. C2-ceramide enhanced the expression of p-ERK and p-p38MAPK, but not p-JNK, at 1 h, which was increased till 24 h. An inhibitor of ERK, PD98059, or of p38MAPK, SB202190, failed to affect C2-ceramide-induced apoptosis. EGF, which enhanced the expression of p-ERK and p-p38MAPK but not p-JNK, ameliorated C2-ceramide-induced apoptosis without affecting mitochondrial Bax. Inhibition of ERK or p38MAPK failed to abolish the protective effect of EGF on C2-ceramide-induced apoptosis. Mitochondrial Bax and caspases, but not MAPKs, play a role for ceramide-induced apoptosis in RPTCs. EGF ameliorates ceramide-induced apoptosis in Bax- and MAPKs-independent pathways. The mechanism of ceramide-induced apoptosis and anti-apoptotic effect of EGF deserves further investigations.
Collapse
|
27
|
Liu L, Martin R, Chan C. Palmitate-activated astrocytes via serine palmitoyltransferase increase BACE1 in primary neurons by sphingomyelinases. Neurobiol Aging 2013; 34:540-50. [PMID: 22727944 PMCID: PMC3459302 DOI: 10.1016/j.neurobiolaging.2012.05.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/27/2012] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
Abstract
Astrocytes play a critical role in neurodegenerative diseases, including Alzheimer's disease (AD). Previously, we showed that saturated free fatty acid, palmitic acid (PA), upregulates β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) level and amyloidogenesis in primary rat neurons mediated by astrocytes. However, the molecular mechanisms by which conditioned media from PA-treated astrocytes upregulates BACE1 level in neurons are unknown. This study demonstrates that serine palmitoyltransferase (SPT) in the astrocytes increases ceramide levels, which enhances the release of cytokines that mediate the activation of neural and acidic sphingomyelinase (SMase) in the neurons, to propagate the deleterious effects of PA (i.e., BACE1 upregulation). In support of the relevance of SPT in AD, our laboratory recently measured and found SPT levels to be significantly upregulated in AD brains as compared with controls. Cytokines, namely tumor necrosis factor-α and interleukin-1β, released into the conditioned media of PA-treated astrocytes activate neural and acidic SMase in the neurons. Neutralizing the cytokines in the PA-treated astrocyte conditioned media reduced BACE1 upregulation. However, inhibiting SPT in the astrocytes decreased the levels of both tumor necrosis factor-α and interleukin-1β in the conditioned media, which in turn reduced the SMase activities and BACE1 level in primary neurons. Thus, our results suggest that the activation of the astrocytes by PA is mediated by SPT, and the activated astrocytes increases BACE1 level in the neurons; the latter is mediate by the SMases.
Collapse
Affiliation(s)
- Li Liu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Rebecca Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Christina Chan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
28
|
Mencarelli C, Martinez–Martinez P. Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci 2013; 70:181-203. [PMID: 22729185 PMCID: PMC3535405 DOI: 10.1007/s00018-012-1038-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 12/14/2022]
Abstract
Ceramide, the precursor of all complex sphingolipids, is a potent signaling molecule that mediates key events of cellular pathophysiology. In the nervous system, the sphingolipid metabolism has an important impact. Neurons are polarized cells and their normal functions, such as neuronal connectivity and synaptic transmission, rely on selective trafficking of molecules across plasma membrane. Sphingolipids are abundant on neural cellular membranes and represent potent regulators of brain homeostasis. Ceramide intracellular levels are fine-tuned and alteration of the sphingolipid-ceramide profile contributes to the development of age-related, neurological and neuroinflammatory diseases. The purpose of this review is to guide the reader towards a better understanding of the sphingolipid-ceramide pathway system. First, ceramide biology is presented including structure, physical properties and metabolism. Second, we describe the function of ceramide as a lipid second messenger in cell physiology. Finally, we highlight the relevance of sphingolipids and ceramide in the progression of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Mencarelli
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Pilar Martinez–Martinez
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
29
|
Babenko NA, Hassouneh LKM, Kharchenko VS, Garkavenko VV. Vitamin E prevents the age-dependent and palmitate-induced disturbances of sphingolipid turnover in liver cells. AGE (DORDRECHT, NETHERLANDS) 2012; 34:905-15. [PMID: 21796379 PMCID: PMC3682064 DOI: 10.1007/s11357-011-9288-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 07/04/2011] [Indexed: 05/31/2023]
Abstract
Sphingolipid turnover has been shown to be activated at old age and in response to various stress stimuli including oxidative stress. Reduction of vitamin E content in the liver under the pro-oxidant action is associated with enhanced sphingolipid turnover and ceramide accumulation in hepatocytes. In the present paper, the correction of sphingolipid metabolism in the liver cells of old rats and in the palmitate-treated young hepatocytes using α-tocopherol has been investigated. 3- and 24-month-old rats, [(14) C]palmitic acid, [methyl-(14) C-choline]sphingomyelin (SM), and [(14) C]serine were used. α-Tocopherol administration to old rats or addition to the culture medium of old liver slices or hepatocytes prevented age-dependent increase of ceramide synthesis and lipid accumulation, and increased SM content in liver tissue and cells. α-Tocopherol treatment of old cells decreased the neutral and acid sphingomyelinase (SMase) activities in hepatocytes and serine palmitoyl transferase activity in the liver cell microsomes. Effect of α- or γ-tocopherol, but not of δ-tocopherol, on the newly synthesized ceramide content in old cells was correlated with the action of inhibitor of serine palmitoyl transferase (SPT) activity (myriocin) and SMase inhibitors (glutathione, imipramine). Addition of α-tocopherol as well as myriocin to the culture medium of young hepatocytes, treated by palmitate, abolished ceramide accumulation and synthesis. The data obtained demonstrate that α-tocopherol normalized elevated ceramide content in the old liver cells via inhibition of acid and neutral SMase activities and lipid synthesis de novo. α-Tocopherol, reducing ceramide synthesis, prevented palmitate-induced aging-like ceramide accumulation in young liver cells.
Collapse
Affiliation(s)
- Nataliya A Babenko
- Department of Physiology of Ontogenesis, Institute of Biology, Kharkov Karazin National University, 4 Svobody pl., Kharkov, Ukraine.
| | | | | | | |
Collapse
|
30
|
Laviad EL, Kelly S, Merrill AH, Futerman AH. Modulation of ceramide synthase activity via dimerization. J Biol Chem 2012; 287:21025-33. [PMID: 22539345 DOI: 10.1074/jbc.m112.363580] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ceramide, the backbone of all sphingolipids, is synthesized by a family of ceramide synthases (CerS) that each use acyl-CoAs of defined chain length for N-acylation of the sphingoid long chain base. CerS mRNA expression and enzymatic activity do not always correlate with the sphingolipid acyl chain composition of a particular tissue, suggesting post-translational mechanism(s) of regulation of CerS activity. We now demonstrate that CerS activity can be modulated by dimer formation. Under suitable conditions, high M(r) CerS complexes can be detected by Western blotting, and various CerS co-immunoprecipitate. CerS5 activity is inhibited in a dominant-negative fashion by co-expression with catalytically inactive CerS5, and CerS2 activity is enhanced by co-expression with a catalytically active form of CerS5 or CerS6. In a constitutive heterodimer comprising CerS5 and CerS2, the activity of CerS2 depends on the catalytic activity of CerS5. Finally, CerS dimers are formed upon rapid stimulation of ceramide synthesis by curcumin. Together, these data demonstrate that ceramide synthesis can be regulated by the formation of CerS dimers and suggest a novel way to generate the acyl chain composition of ceramide (and downstream sphingolipids), which may depend on the interaction of CerS with each other.
Collapse
Affiliation(s)
- Elad L Laviad
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
31
|
Wang Z, Liu D, Wang J, Liu S, Gao M, Ling EA, Hao A. Cytoprotective effects of melatonin on astroglial cells subjected to palmitic acid treatment in vitro. J Pineal Res 2012; 52:253-64. [PMID: 21929682 DOI: 10.1111/j.1600-079x.2011.00952.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin, an endogenously produced neurohormone secreted mainly by the pineal gland, has a variety of physiological functions and neuroprotective effects. Saturated fatty acids (SFAs) have been known to induce neurotoxicity and oxidative stress in central nervous system injuries and neurodegenerative pathologies. However, the effect of melatonin on SFAs-induced cytotoxicity in astroglial cells, if any, has remained to be explored. This study reports that in primary cultured astroglial cells, melatonin significantly attenuated palmitic acid (PA)-induced cytotoxicity in a concentration- and time-dependent manner. Additionally, melatonin effectively suppressed PA-induced reactive oxygen species generation and prevented PA-induced apoptosis whereby the rise in Bax/Bcl-2 ratio and caspase-3 activation in astroglial cells was inhibited. However, it did not appear to exert an obvious effect on PA-induced intracellular calcium overload. Luzindole, a nonselective melatonin receptor antagonist, attenuated melatonin's promotion effect of cell survival and Stat3 phosphorylation, indicating that melatonin exerts its protective property in astroglial cells, at least in part, through the activation of membrane receptors and then Stat3 signaling pathway. Finally, melatonin had an inhibitory effect on the pro-inflammatory cytokine gene expression. The results suggest that melatonin may be an effective cytoprotective agent against PA-based cytotoxicity through modulating cell survival and inflammatory response in astroglial cells.
Collapse
Affiliation(s)
- Zhen Wang
- Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Role of endothelial dysfunction in modulating the plasma redox homeostasis in visceral leishmaniasis. Biochim Biophys Acta Gen Subj 2011; 1810:652-65. [DOI: 10.1016/j.bbagen.2011.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/11/2011] [Accepted: 03/31/2011] [Indexed: 01/12/2023]
|
33
|
Yin Z, Lee E, Ni M, Jiang H, Milatovic D, Rongzhu L, Farina M, Rocha JBT, Aschner M. Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen. Neurotoxicology 2011; 32:291-9. [PMID: 21300091 PMCID: PMC3079013 DOI: 10.1016/j.neuro.2011.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 12/21/2010] [Accepted: 01/08/2011] [Indexed: 12/26/2022]
Abstract
Methylmercury (MeHg) preferentially accumulates in glia of the central nervous system (CNS), but its toxic mechanisms have yet to be fully recognized. In the present study, we tested the hypothesis that MeHg induces neurotoxicity via oxidative stress mechanisms, and that these effects are attenuated by the antioxidant, ebselen. Rat neonatal primary cortical astrocytes were pretreated with or without 10 μM ebselen for 2h followed by MeHg (0, 1, 5, and 10 μM) treatments. MeHg-induced changes in astrocytic [(3)H]-glutamine uptake were assessed along with changes in mitochondrial membrane potential (ΔΨ(m)), using the potentiometric dye tetramethylrhodamine ethyl ester (TMRE). Western blot analysis was used to detect MeHg-induced ERK (extracellular-signal related kinase) phosphorylation and caspase-3 activation. MeHg treatment significantly decreased (p<0.05) astrocytic [(3)H]-glutamine uptake at all time points and concentrations. Ebselen fully reversed MeHg's (1 μM) effect on [(3)H]-glutamine uptake at 1 min. At higher MeHg concentrations, ebselen partially reversed the MeHg-induced astrocytic inhibition of [(3)H]-glutamine uptake [at 1 min (5 and 10 μM) (p<0.05); 5 min (1, 5 and 10 μM) (p<0.05)]. MeHg treatment (1h) significantly (p<0.05) dissipated the ΔΨ(m) in astrocytes as evidenced by a decrease in mitochondrial TMRE fluorescence. Ebselen fully reversed the effect of 1 μM MeHg treatment for 1h on astrocytic ΔΨ(m) and partially reversed the effect of 5 and 10 μM MeHg treatments for 1h on ΔΨ(m). In addition, ebselen inhibited MeHg-induced phosphorylation of ERK (p<0.05) and blocked MeHg-induced activation of caspase-3 (p<0.05-0.01). These results are consistent with the hypothesis that MeHg exerts its toxic effects via oxidative stress and that the phosphorylation of ERK and the dissipation of the astrocytic mitochondrial membrane potential are involved in MeHg toxicity. In addition, the protective effects elicited by ebselen reinforce the idea that organic selenocompounds represent promising strategies to counteract MeHg-induced neurotoxicity.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Antioxidants/pharmacology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Astrocytes/pathology
- Azoles/pharmacology
- Blotting, Western
- Caspase 3/metabolism
- Cells, Cultured
- Cytoprotection
- Dose-Response Relationship, Drug
- Environmental Pollutants/toxicity
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Glutamine/metabolism
- Isoindoles
- Membrane Potential, Mitochondrial/drug effects
- Mercury Poisoning, Nervous System/etiology
- Mercury Poisoning, Nervous System/metabolism
- Mercury Poisoning, Nervous System/pathology
- Methylmercury Compounds/toxicity
- Microscopy, Fluorescence
- Mitochondria/drug effects
- Mitochondria/metabolism
- Neuroprotective Agents/pharmacology
- Organoselenium Compounds/pharmacology
- Oxidative Stress/drug effects
- Phosphorylation
- Rats
- Rats, Sprague-Dawley
- Time Factors
Collapse
Affiliation(s)
- Zhaobao Yin
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, Tennessee
| | - Mingwei Ni
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Haiyan Jiang
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dejan Milatovic
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lu Rongzhu
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Joao B. T. Rocha
- Departamento de Bioquímica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michael Aschner
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
34
|
Abstract
Evidence has consistently indicated that activation of sphingomyelinases and/or ceramide synthases and the resulting accumulation of ceramide mediate cellular responses to stressors such as lipopolysaccharide, interleukin 1beta, tumor necrosis factor alpha, serum deprivation, irradiation and various antitumor treatments. Recent studies had identified the genes encoding most of the enzymes responsible for the generation of ceramide and ongoing research is aimed at characterizing their individual functions in cellular response to stress. This chapter discusses the seminal and more recent discoveries in regards to the pathways responsible for the accumulation of ceramide during stress and the mechanisms by which ceramide affects cell functions. The former group includes the roles of neutral sphingomyelinase 2, serine palmitoyltransferase, ceramide synthases, as well as the secretory and endosomal/lysosomal forms of acid sphingomyelinase. The latter summarizes the mechanisms by which ceramide activate its direct targets, PKCzeta, PP2A and cathepsin D. The ability of ceramide to affect membrane organization is discussed in the light of its relevance to cell signaling. Emerging evidence to support the previously assumed notion that ceramide acts in a strictly structure-specific manner are also included. These findings are described in the context of several physiological and pathophysiological conditions, namely septic shock, obesity-induced insulin resistance, aging and apoptosis of tumor cells in response to radiation and chemotherapy.
Collapse
|
35
|
Ford JH. Saturated fatty acid metabolism is key link between cell division, cancer, and senescence in cellular and whole organism aging. AGE (DORDRECHT, NETHERLANDS) 2010; 32:231-237. [PMID: 20431990 PMCID: PMC2861752 DOI: 10.1007/s11357-009-9128-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 12/16/2009] [Indexed: 05/29/2023]
Abstract
Cellular senescence is an in vivo and in vitro phenomenon, accompanied by physiological changes including cessation of division and disturbances of organelle structure and function. Review of the literature was undertaken to determine whether there is evidence that whole organism aging and cell senescence share a common initiation pathway. In vivo aged cells of different lineages, including aged T lymphocytes, show high expression of the INK4A-p16 gene. In cell culture when telomeres are shortened past a key length or state, the Arf/Ink gene system (p16/p14 humans, p16/p19 mice) switches on and activates p53, which suppresses further cell division. The p53 gene is a key tumor suppressor and its deletion or mutation allows cancerous growth. The switching on of p53 also causes changes in fatty acid metabolism, especially down-regulation of both fatty acid synthase and stearoyl-CoA (delta-9) desaturase. The co-suppression of these genes together with enhanced uptake of extracellular fatty acids, leads to raised levels of cellular palmitate and induction of either apoptosis or senescence. In senescent cells, the fatty acid composition of the cellular membranes alters and leads to changes in both structure and function of organelles, especially mitochondria. Animal models of accelerated aging exhibit repression of stearoyl-CoA desaturase activity while anti-aging calorie restriction stimulates the same enzyme system. It is concluded that aging in cells and whole organisms share a common initiation pathway and that cellular senescence is protective against cancer. Healthy longevity is likely to be most enhanced by factors that actively suppress excessive cell division.
Collapse
Affiliation(s)
- Judith H Ford
- Rural health and community engagement, University of South Australia, GPO Box 2471, Adelaide 5001, Australia.
| |
Collapse
|
36
|
Haughey NJ, Bandaru VVR, Bae M, Mattson MP. Roles for dysfunctional sphingolipid metabolism in Alzheimer's disease neuropathogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:878-86. [PMID: 20452460 DOI: 10.1016/j.bbalip.2010.05.003] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/29/2010] [Accepted: 05/03/2010] [Indexed: 12/12/2022]
Abstract
Sphingolipids in the membranes of neurons play important roles in signal transduction, either by modulating the localization and activation of membrane-associated receptors or by acting as precursors of bioactive lipid mediators. Activation of cytokine and neurotrophic factor receptors coupled to sphingomyelinases results in the generation of ceramides and gangliosides, which in turn, modify the structural and functional plasticity of neurons. In aging and neurodegenerative conditions such as Alzheimer's disease (AD), there are increased membrane-associated oxidative stress and excessive production and accumulation of ceramides. Studies of brain tissue samples from human subjects, and of experimental models of the diseases, suggest that perturbed sphingomyelin metabolism is a pivotal event in the dysfunction and degeneration of neurons that occurs in AD and HIV dementia. Dietary and pharmacological interventions that target sphingolipid metabolism should be pursued for the prevention and treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
37
|
Arrambide G, Rivadeneira J, Etcheverry SB, Parajón-Costa BS, Gambino D, Baran EJ. Spectroscopic behavior and biological activity of K3[VO(O2)2CO3]∙H2O. Biol Trace Elem Res 2009; 132:176-83. [PMID: 19396406 DOI: 10.1007/s12011-009-8375-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 04/06/2009] [Indexed: 11/25/2022]
Abstract
The potassium salt of the carbonato oxodiperoxovanadate(V) complex, obtained by a known synthetic procedure, was thoroughly characterized by infrared, Raman, and electronic spectroscopy. The bioactivity of the complex on the cell proliferation was tested on osteoblast-like cells (MC3T3E1 osteoblastic mouse calvaria-derived cells and UMR106 rat osteosarcoma-derived cells) in culture. At low doses, the complex is more toxic for the nontransformed osteoblasts than for the tumoral ones, whereas at higher doses the deleterious effects are similar for both cell lines. This peroxo complex seems to be the most toxic compound that has so far been tested on osteoblast-like cells in culture.
Collapse
Affiliation(s)
- G Arrambide
- Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de República, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
38
|
Kang MS, Ahn KH, Kim SK, Jeon HJ, Ji JE, Choi JM, Jung KM, Jung SY, Kim DK. Hypoxia-induced neuronal apoptosis is mediated by de novo synthesis of ceramide through activation of serine palmitoyltransferase. Cell Signal 2009; 22:610-8. [PMID: 19932170 DOI: 10.1016/j.cellsig.2009.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 11/13/2009] [Indexed: 02/07/2023]
Abstract
Cellular hypoxia can lead to cell death or adaptation and has important effects on development, physiology, and pathology. Here, we investigated the role and regulation of ceramide in hypoxia-induced apoptosis of SH-SY5Y neuroblastoma cells. Hypoxia increased the ceramide concentration; subsequently, we observed biochemical changes indicative of apoptosis, such as DNA fragmentation, nuclear staining, and poly ADP-ribose polymerase (PARP) cleavage. The hypoxic cell death was potently inhibited by a caspase inhibitor, zVAD-fmk (benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone). l-Cycloserine, a serine palmitoyltransferase (SPT) inhibitor, and fumonisin B(1) (FB(1)), a ceramide synthase inhibitor, inhibited the hypoxia-induced increase in ceramide, indicating that the increase occurred via the de novo pathway. Hypoxia increased the activity and protein levels of SPT2, suggesting that the hypoxia-induced increase in ceramide is due to the transcriptional up-regulation of SPT2. Specific siRNA of SPT2 prevented hypoxia-induced cell death and ceramide production. However, hypoxia also increased the cellular level of glucosylceramide, which was inhibited by a glucosylceramide synthase (GCS) inhibitor and specific siRNA, but not a ceramidase inhibitor. The increase in glucosylceramide was accompanied by increases in both PARP cleavage and DNA fragmentation. Together, the current results suggest that both SPT and GCS may regulate the cellular level of ceramide, and thus may be critical enzymes for deciding the fate of the cells exposed to hypoxia.
Collapse
Affiliation(s)
- Mi Sun Kang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 221 Huksuk-Dong, Dongjak-Ku, Seoul 156-756, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Plaisance V, Perret V, Favre D, Abderrahmani A, Yang JY, Widmann C, Regazzi R. Role of the transcriptional factor C/EBPbeta in free fatty acid-elicited beta-cell failure. Mol Cell Endocrinol 2009; 305:47-55. [PMID: 19133313 DOI: 10.1016/j.mce.2008.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 01/09/2023]
Abstract
Fatty acids can favour the development of Type 2 diabetes by reducing insulin secretion and inducing apoptosis of pancreatic beta-cells. Here, we show that sustained exposure of the beta-cell line MIN6 or of isolated pancreatic islets to the most abundant circulating fatty acid palmitate increases the level of C/EBPbeta, an insulin transcriptional repressor. In contrast, two unsaturated fatty acids, oleate and linoleate were without effect. The induction of C/EBPbeta elicited by palmitate was prevented by inhibiting the ERK1/2 MAP kinase pathway or by reducing mitochondrial fatty acid oxidation with an inhibitor of Carnitine Palmitoyl Transferase-1. Overexpression of C/EBPbeta mimicked the detrimental effects of palmitate and resulted in a drastic reduction in insulin promoter activity, impairment in the capacity to respond to secretory stimuli and an increase in apoptosis. Our data suggest a potential involvement of C/EBPbeta as mediator of the deleterious effects of unsaturated free fatty acids on beta-cell function.
Collapse
Affiliation(s)
- Valérie Plaisance
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
40
|
Almaguel FG, Liu JW, Pacheco FJ, Casiano CA, De Leon M. Activation and reversal of lipotoxicity in PC12 and rat cortical cells following exposure to palmitic acid. J Neurosci Res 2009; 87:1207-18. [PMID: 18951473 DOI: 10.1002/jnr.21918] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lipotoxicity involves a series of pathological cellular responses after exposure to elevated levels of fatty acids. This process may be detrimental to normal cellular homeostasis and cell viability. The present study shows that nerve growth factor-differentiated PC12 cells (NGFDPC12) and rat cortical cells (RCC) exposed to high levels of palmitic acid (PA) exhibit significant lipotoxicity and death linked to an "augmented state of cellular oxidative stress" (ASCOS). The ASCOS response includes generation of reactive oxygen species (ROS), alterations in the mitochondrial transmembrane potential, and increase in the mRNA levels of key cell death/survival regulatory genes. The observed cell death was apoptotic based on nuclear morphology, caspase-3 activation, and cleavage of lamin B and PARP. Quantitative real-time PCR measurements showed that cells undergoing lipotoxicity exhibited an increase in the expression of the mRNAs encoding the cell death-associated proteins BNIP3 and FAS receptor. Cotreatment of NGFDPC12 and RCC cells undergoing lipotoxicity with docosahexaenoic acid (DHA) and bovine serum albumin (BSA) significantly reduced cell death within the first 2 hr following the initial exposure to PA. The data suggest that lipotoxicity in NGFDPC12 and cortical neurons triggers a strong cell death apoptotic response. Results with NGFDPC12 cells suggest a linkage between induction of ASCOS and the apoptotic process and exhibit a temporal window that is sensitive to DHA and BSA interventions.
Collapse
Affiliation(s)
- Frankis G Almaguel
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA
| | | | | | | | | |
Collapse
|
41
|
Rivadeneira J, Barrio DA, Arrambide G, Gambino D, Bruzzone L, Etcheverry SB. Biological effects of a complex of vanadium(V) with salicylaldehyde semicarbazone in osteoblasts in culture: Mechanism of action. J Inorg Biochem 2009; 103:633-42. [DOI: 10.1016/j.jinorgbio.2008.11.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 11/14/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
|
42
|
Ndengele MM, Cuzzocrea S, Masini E, Vinci MC, Esposito E, Muscoli C, Petrusca DN, Mollace V, Mazzon E, Li D, Petrache I, Matuschak GM, Salvemini D. Spinal ceramide modulates the development of morphine antinociceptive tolerance via peroxynitrite-mediated nitroxidative stress and neuroimmune activation. J Pharmacol Exp Ther 2009; 329:64-75. [PMID: 19033555 PMCID: PMC2670603 DOI: 10.1124/jpet.108.146290] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 11/24/2008] [Indexed: 11/22/2022] Open
Abstract
The effective treatment of pain is typically limited by a decrease in the pain-relieving action of morphine that follows its chronic administration (tolerance). Therefore, restoring opioid efficacy is of great clinical importance. In a murine model of opioid antinociceptive tolerance, repeated administration of morphine significantly stimulated the enzymatic activities of spinal cord serine palmitoyltransferase, ceramide synthase, and acid sphingomyelinase (enzymes involved in the de novo and sphingomyelinase pathways of ceramide biosynthesis, respectively) and led to peroxynitrite-derive nitroxidative stress and neuroimmune activation [activation of spinal glial cells and increase formation of tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-6]. Inhibition of ceramide biosynthesis with various pharmacological inhibitors significantly attenuated the increase in spinal ceramide production, nitroxidative stress, and neuroimmune activation. These events culminated in a significant inhibition of the development of morphine antinociceptive tolerance at doses devoid of behavioral side effects. Our findings implicate ceramide as a key upstream signaling molecule in the development of morphine antinociceptive tolerance and provide the rationale for development of inhibitors of ceramide biosynthesis as adjuncts to opiates for the management of chronic pain.
Collapse
Affiliation(s)
- Michael M Ndengele
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vock C, Gleissner M, Klapper M, Döring F. Oleate regulates genes controlled by signaling pathways of mitogen-activated protein kinase, insulin, and hypoxia. Nutr Res 2009; 28:681-9. [PMID: 19083476 DOI: 10.1016/j.nutres.2008.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/18/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
Oleate (C18:1) is, besides palmitate (C16:0), the most abundant fatty acid in the human diet, and its involvement in the development of insulin resistance is broadly discussed. Because its influence on gene expression is poorly defined in mammalian cells, we performed whole genome expression profiling and quantitative real-time polymerase chain reaction in the human hepatocyte cell line HepG2 to identify oleate-regulated genes. In this respect, HepG2 cells were exposed for 24 hours to a physiologic concentration of oleate coupled to bovine serum albumin (BSA) (200 micromol/L) or BSA alone. Subsequent microarray analysis revealed 14 genes that were significantly (single-sided permutational t test, P < .05) regulated after oleate treatment. To decipher the functional and regulatory connections of these genes, a text mining approach combined with transcription factor binding site analysis was performed using Genomatix BiblioSphere (Munich, Germany) and MatInspector (Munich, Germany). The oleate-inducible genes encoding early growth response 1, c-fos, S-phase kinase-associated protein 2, and splicing factor 2 are mapped into a network, which is controlled by signaling pathways of mitogen-activated protein kinase, insulin, or hypoxia. Comparative in silico promoter analysis revealed putative regulation of oleate-sensitive genes through v-ets erythroblastosis virus E26 oncogene homolog 1 and retinoid X receptor family. In sum, a physiologic oleate concentration modulates genes expression in a very sensitive way as 14 genes were regulated.
Collapse
Affiliation(s)
- Christina Vock
- Molecular Nutrition, Institute of Human Nutrition and Food Research, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel, Germany
| | | | | | | |
Collapse
|
44
|
Huppmann S, Römer S, Altmann R, Obladen M, Berns M. 17beta-estradiol attenuates hyperoxia-induced apoptosis in mouse C8-D1A cell line. J Neurosci Res 2009; 86:3420-6. [PMID: 18618675 DOI: 10.1002/jnr.21777] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In premature infants, oxygen free radicals generated following neonatal resuscitation are associated with subsequent diseases such as retinopathy of prematurity and bronchopulmonary dysplasia. Recent studies in brain tissue samples have shown that nonphysiologic oxygen levels play a key role in induction of apoptosis in the developing brain. Estrogen is a well-established agent in neuroprotection and, therefore, is thought to be neuroprotective even in the premature brain. Astrocytes appear to have a critical role in protection and survival of neurons in the brain. As one of the glial cell types, they have a great potential for possible involvement in the mediation of estrogen neuroprotective effects. The aim of our study was to analyze whether astrocytes in cell cultures are damaged by hyperoxia and whether 17beta-estradiol (E2) can protect them against apoptosis. Additionally, we investigated the mechanism of the protection by E2, hypothesizing that it is mediated through extracellular signal-regulated kinase (ERK1/2). Cells underwent eightfold more apoptosis when cultivated in hyperoxia compared with normoxia. Addition of E2 reduced apoptosis in hyperoxia by more than 50%. Levels of ERK1/2 and phosphorylated ERK1/2 were increased after hyperoxia compared with normoxia. Preincubation with E2 prior to exposure to hyperoxia resulted in decreased levels of ERK1/2 and pERK1/2. Hyperoxia induces apoptosis in C8-D1A cells, and E2 seems to be a protecting factor for astrocytes in hyperoxia. This effect is not mediated through up-regulation of pERK1/2.
Collapse
Affiliation(s)
- Stephanie Huppmann
- Department of Neonatology, Charité, Campus Virchow Klinikum, Berlin, Germany.
| | | | | | | | | |
Collapse
|
45
|
Giussani P, Brioschi L, Bassi R, Riboni L, Viani P. Phosphatidylinositol 3-kinase/AKT pathway regulates the endoplasmic reticulum to golgi traffic of ceramide in glioma cells: a link between lipid signaling pathways involved in the control of cell survival. J Biol Chem 2008; 284:5088-96. [PMID: 19103588 DOI: 10.1074/jbc.m808934200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Different lines of evidence indicate that both aberrant activation of the phosphatidylinositol 3-OH kinase (PI3K)/Akt survival pathway and down-regulation of the death mediator ceramide play a critical role in the aggressive behavior, apoptosis resistance, and adverse clinical outcome of glioblastoma multiforme. Furthermore, the inhibition of the PI3K/Akt pathway and the up-regulation of ceramide have been found functional to the activity of many cytotoxic treatments against glioma cell lines and glioblastomas as well. A reciprocal control between PI3K/Akt and ceramide signaling in glioma cell survival/death is suggested by data demonstrating a protective role of PI3K/Akt on ceramide-induced cell death in glial cells. In this study we investigated the role of the PI3K/Akt pathway in the regulation of the ceramide metabolism in C6 glioma cells, a cell line in which the PI3K/Akt pathway is constitutively activated. Metabolic experiments performed with different radioactive metabolic precursors of sphingolipids and microscopy studies with fluorescent ceramides demonstrated that the chemical inhibition of PI3K and the transfection with a dominant negative Akt strongly inhibited ceramide utilization for the biosynthesis of complex sphingolipids by controlling the endoplasmic reticulum (ER) to Golgi vesicular transport of ceramide. These findings constitute the first evidence for a PI3K/Akt-dependent regulation of vesicle-mediated movements of ceramide in the ER-Golgi district. Moreover, the findings also suggest the activation of the PI3K/Akt pathway as crucial to coordinate the biosynthesis of membrane complex sphingolipids with cell proliferation and growth and/or to maintain low ceramide levels, especially as concerns those treatments that promote ceramide biosynthesis in the ER.
Collapse
Affiliation(s)
- Paola Giussani
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Laboratorio Interdisciplinare di Tecnologie Avanzate, via Fratelli Cervi 93, 20090 Segrate (Milan), Italy
| | | | | | | | | |
Collapse
|
46
|
Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: Lessons from in vitro cadmium toxicity studies. Biochem Pharmacol 2008; 76:1323-32. [DOI: 10.1016/j.bcp.2008.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 11/19/2022]
|
47
|
Abstract
Sphingolipids (SLs) are essential constituents of eukaryotic cells. Besides playing structural roles in cellular membranes, some metabolites, including ceramide, sphingosine, and sphingosine-1-phosphate, have drawn attention as bioactive signaling molecules involved in the regulation of cell growth, differentiation, senescence, and apoptosis. Understanding the many cell regulatory functions of SL metabolites requires an advanced knowledge of how and where in the cell they are generated, converted, or degraded. This review will provide a short overview of the metabolism, localization, and compartmentalization of SLs. Also, a discussion on bioactive members of the SL family and inducers of SL enzymes that lead to ceramide generation will be presented.
Collapse
Affiliation(s)
- Nana Bartke
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | |
Collapse
|
48
|
Prasad VVTS, Nithipatikom K, Harder DR. Ceramide elevates 12-hydroxyeicosatetraenoic acid levels and upregulates 12-lipoxygenase in rat primary hippocampal cell cultures containing predominantly astrocytes. Neurochem Int 2008; 53:220-9. [PMID: 18680775 DOI: 10.1016/j.neuint.2008.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/01/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
Abstract
We report, exogenous addition of ceramide significantly increases 12-hydroxyeicosatetraenoic acid [12-(S)-HETE] levels, in a dose-dependent manner. 12-(S)-HETE levels, in 20, 30 and 40microM ceramide exposed rat primary hippocampal cell cultures containing predominantly astrocytes and few neurons and other glial cells (the cultured hippocampal cells were predominantly astrocytes amounting to over 99% of total cells with few neurons and other glial cells) amounted to 207, 260 and 408% of the controls, respectively. However, dihydroceramide, an inactive analog of ceramide did not alter the levels of 12-(S)-HETE. Ceramide also increased the mRNA and protein expression, and activity of 12-lipoxygease (12-LOX) needed for the synthesis of 12(S)-HETE. These results indicate a possible link between ceramide and 12-LOX pathway. However, ceramide did not alter expression of 5-lipoxygenase (5-LOX), another member of the lipoxygenase family. However, ceramide upregulated expression of cytosolic phospholipase-A(2) (cPLA(2)) and cyclooxygenase-2 (COX-2). Further, ceramide caused a significant increase in the levels of reactive oxygen species (ROS). Ceramide-mediated generation of ROS was inhibited by baicalien but not by indomethacin. In addition, ceramide treated cells exhibited increased mRNA expression of DNA damage induced transcript3 (Ddit3). This report which demonstrate induction of pro-carcinogenic 12-LOX pathway by an anticancer ceramide, may be relevant to cancer biologists studying drug resistant tumors and devising potent anticancer therapeutic strategies to treat drug resistant tumors. These results indicate possibility of 12-LOX involvement in ceramide-mediated generation of ROS and cellular oxidative stress. Induction of 12-LOX pathway by ceramide may have implications in understanding pathophysiology of neurodegenerative diseases involving ROS generation and inflammation.
Collapse
|
49
|
Interactions of PACAP and ceramides in the control of granule cell apoptosis during cerebellar development. J Mol Neurosci 2008; 36:8-15. [PMID: 18574733 DOI: 10.1007/s12031-008-9111-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/28/2008] [Indexed: 12/27/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that belongs to the secretin/glucagon/vasoactive intestinal polypeptide superfamily. The PACAPergic system is actively expressed in the developing cerebellum of mammals. In particular, PACAP receptors are expressed by granule cell precursors suggesting a role of the peptide in neurogenesis of this cell type. Consistent with this hypothesis, several studies reported antiapoptotic effects of PACAP in the developing cerebellum. On the other hand, the sphingomyelin metabolites ceramides are recognized as important signaling molecules that play pivotal roles during neuronal development. Ceramides, which production can be induced by death factors such as FasL or TNFalpha, are involved in the control of cell survival during brain development through activation of caspase-dependent mechanisms. The present review focuses on the interactions between PACAP and ceramides in the control of granule cell survival and on the transduction mechanisms associated with the anti- and proapoptotic effects of PACAP and ceramides, respectively.
Collapse
|
50
|
Patil S, Balu D, Melrose J, Chan C. Brain region-specificity of palmitic acid-induced abnormalities associated with Alzheimer's disease. BMC Res Notes 2008; 1:20. [PMID: 18710535 PMCID: PMC2518273 DOI: 10.1186/1756-0500-1-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 06/04/2008] [Indexed: 11/11/2022] Open
Abstract
Background Alzheimer's disease (AD) is a progressive, neurodegenerative disease mostly affecting the basal forebrain, cortex and hippocampus whereas the cerebellum is relatively spared. The reason behind this region-specific brain damage in AD is not well understood. Here, we report our data suggesting "differential free fatty acid metabolism in the different brain areas" as a potentially important factor in causing the region-specific damage observed in AD brain. Findings The astroglia from two different rat brain regions, cortex (region affected in AD) and cerebellum (unaffected region), were treated with 0.2 mM of palmitic acid. The conditioned media were then transferred to the cortical neurons to study the possible effects on the two main, AD-associated protein abnormalities, viz. BACE1 upregulation and hyperphosphorylation of tau. The conditioned media from palmitic-acid treated cortical astroglia, but not the cerebellar astroglia, significantly elevated levels of phosphorylated tau and BACE1 in cortical neurons as compared to controls (47 ± 7% and 45 ± 4%, respectively). Conclusion The present data provide an experimental explanation for the region-specific damage observed in AD brain; higher fatty acid-metabolizing capacity of cortical astroglia as compared to cerebellar astroglia, may play a causal role in increasing vulnerability of cortex in AD, while sparing cerebellum.
Collapse
Affiliation(s)
- Sachin Patil
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, Michigan, USA.
| | | | | | | |
Collapse
|