1
|
Kim HD, Choi H, Park JY, Kim CH. Distinct structural basis and catalytic classification of matrix metalloproteinases and their endogenous tissue inhibitors with glycosylation issue in cellular and tissue regulation. Arch Biochem Biophys 2025; 769:110436. [PMID: 40280381 DOI: 10.1016/j.abb.2025.110436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Matrix metalloproteinase (MMP) enzymes cleave proteins on the extracellular matrix (ECM) region. MMPs are categorized as Zn2+-binding endo-proteinases. MMPs are stringently regulated in cancers, inflammatory cells and tissues. There are 29 types of MMPs as initially expressed in inactive zymogens (proMMPs) and activated by proteolysis in vertebrates including human. MMPs consist of three highly conserved parts of pro-MMP in precursor, catalytic and hemopexin domains. The MMPs are composed of systemic complexes with their endogenously expressed inhibitors of the tissue inhibitors of metalloproteinases (TIMPs). Therefore, TIMPs intrinsically control such activated MMPs, indicating the existence of self-modulation capacity. N-linked glycosylation (N-glycosylation) saves biological information than known phosphorylation, ubiquitination and acetylation. The MMPs are roughly present as membrane-merged and secreted glycoproteins. MMPs N-glycans regulate cellular behaviors, immune tolerance, and developing angiogenesis. Aberrant N-glycosylation of MMPs may cause the pathogenic properties. N-glycosylation shapes phenotypes of MMPs-producing cells during early MMPs involved in human. Additionally, issues of MMPs and TIMPs glycosylation have been described to view the importance of the glycans in their interaction with owns and other targets. Most of MMPs and 4 TIMPs are not well studied for their glycosylation and its functional roles.
Collapse
Affiliation(s)
- Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, Gyunggi-Do, 16419, Republic of Korea
| | - Hyunju Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, Gyunggi-Do, 16419, Republic of Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, Gyunggi-Do, 16419, Republic of Korea; Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon, 34141, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, Gyunggi-Do, 16419, Republic of Korea; Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, 06351, Republic of Korea.
| |
Collapse
|
2
|
Li M, Deng T, Chen Q, Jiang S, Li H, Li J, You S, Xie HQ, Shen B. A versatile platform based on matrix metalloproteinase-sensitive peptides for novel diagnostic and therapeutic strategies in arthritis. Bioact Mater 2025; 47:100-120. [PMID: 39897588 PMCID: PMC11787566 DOI: 10.1016/j.bioactmat.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Matrix metalloproteinases (MMPs), coupled with other proteinases and glycanases, can degrade proteoglycans, collagens, and other extracellular matrix (ECM) components in inflammatory and non-inflammatory arthritis, making them important pathogenic molecules and ideal disease indicators and pharmaceutical intervention triggers. For MMP responsiveness, MMP-sensitive peptides (MSPs) are among the most easily synthesized and cost-effective substrates, with free terminal amine and/or carboxyl groups extensively employed in multiple designs. We hereby provide a comprehensive review over the mechanisms and advances in MSP applications for the management of arthritis. These applications include early and precise diagnosis of MMP activity via fluorescence probe technologies; acting as nanodrug carriers to enable on-demand drug release triggered by pathological microenvironments; and facilitating cartilage engineering through MMP-mediated degradation, which promotes cell migration, matrix synthesis, and tissue integration. Specifically, the ultra-sensitive MSP diagnostic probes could significantly advance the early diagnosis and detection of osteoarthritis (OA), while MSP-based drug carriers for rheumatoid arthritis (RA) can intelligently release anti-inflammatory drugs effectively during flare-ups, or even before symptoms manifest. The continuous progress in MSP development may acceleratedly lead to novel management regimens for arthropathy in the future.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tao Deng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Quan Chen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shenghu Jiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiayi Li
- Department of Nephrology, The People's Hospital of Yubei District of Chongqing, Chongqing, China
| | - Shenglan You
- Animal Imaging Core Facilities, West China Hospital, Sichuan University, China
| | - Hui-qi Xie
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Stem Cell and Tissue Engineering Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Stern LJ, Clement C, Galluzzi L, Santambrogio L. Non-mutational neoantigens in disease. Nat Immunol 2024; 25:29-40. [PMID: 38168954 PMCID: PMC11075006 DOI: 10.1038/s41590-023-01664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024]
Abstract
The ability of mammals to mount adaptive immune responses culminating with the establishment of immunological memory is predicated on the ability of the mature T cell repertoire to recognize antigenic peptides presented by syngeneic MHC class I and II molecules. Although it is widely believed that mature T cells are highly skewed towards the recognition of antigenic peptides originating from genetically diverse (for example, foreign or mutated) protein-coding regions, preclinical and clinical data rather demonstrate that novel antigenic determinants efficiently recognized by mature T cells can emerge from a variety of non-mutational mechanisms. In this Review, we describe various mechanisms that underlie the formation of bona fide non-mutational neoantigens, such as epitope mimicry, upregulation of cryptic epitopes, usage of non-canonical initiation codons, alternative RNA splicing, and defective ribosomal RNA processing, as well as both enzymatic and non-enzymatic post-translational protein modifications. Moreover, we discuss the implications of the immune recognition of non-mutational neoantigens for human disease.
Collapse
Affiliation(s)
- Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbiology Program, UMass Chan Medical School, Worcester, MA, USA
| | - Cristina Clement
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Bian Y, Xiang Z, Wang Y, Ren Q, Chen G, Xiang B, Wang J, Zhang C, Pei S, Guo S, Xiao L. Immunomodulatory roles of metalloproteinases in rheumatoid arthritis. Front Pharmacol 2023; 14:1285455. [PMID: 38035026 PMCID: PMC10684723 DOI: 10.3389/fphar.2023.1285455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune pathology characterized by persistent synovial inflammation and gradually advancing bone destruction. Matrix metalloproteinases (MMPs), as a family of zinc-containing enzymes, have been found to play an important role in degradation and remodeling of extracellular matrix (ECM). MMPs participate in processes of cell proliferation, migration, inflammation, and cell metabolism. A growing number of persons have paid attention to their function in inflammatory and immune diseases. In this review, the details of regulation of MMPs expression and its expression in RA are summarized. The role of MMPs in ECM remodeling, angiogenesis, oxidative and nitrosative stress, cell migration and invasion, cytokine and chemokine production, PANoptosis and bone destruction in RA disease are discussed. Additionally, the review summarizes clinical trials targeting MMPs in inflammatory disease and discusses the potential of MMP inhibition in the therapeutic context of RA. MMPs may serve as biomarkers for drug response, pathology stratification, and precision medicine to improve clinical management of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yanqin Bian
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xiang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaofeng Wang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ren
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Guoming Chen
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bei Xiang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Wang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengbo Zhang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoqiang Pei
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Lianbo Xiao
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Metzemaekers M, Malengier-Devlies B, Gouwy M, De Somer L, Cunha FDQ, Opdenakker G, Proost P. Fast and furious: The neutrophil and its armamentarium in health and disease. Med Res Rev 2023; 43:1537-1606. [PMID: 37036061 DOI: 10.1002/med.21958] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/27/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023]
Abstract
Neutrophils are powerful effector cells leading the first wave of acute host-protective responses. These innate leukocytes are endowed with oxidative and nonoxidative defence mechanisms, and play well-established roles in fighting invading pathogens. With microbicidal weaponry largely devoid of specificity and an all-too-well recognized toxicity potential, collateral damage may occur in neutrophil-rich diseases. However, emerging evidence suggests that neutrophils are more versatile, heterogeneous, and sophisticated cells than initially thought. At the crossroads of innate and adaptive immunity, neutrophils demonstrate their multifaceted functions in infectious and noninfectious pathologies including cancer, autoinflammation, and autoimmune diseases. Here, we discuss the kinetics of neutrophils and their products of activation from bench to bedside during health and disease, and provide an overview of the versatile functions of neutrophils as key modulators of immune responses and physiological processes. We focus specifically on those activities and concepts that have been validated with primary human cells.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Division of Pediatric Rheumatology, University Hospital Leuven, Leuven, Belgium
- European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at the University Hospital Leuven, Leuven, Belgium
| | | | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Hascoët E, Blanchard F, Blin-Wakkach C, Guicheux J, Lesclous P, Cloitre A. New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis. Bone Res 2023; 11:26. [PMID: 37217496 DOI: 10.1038/s41413-023-00257-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 05/24/2023] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases leading to increased bone resorption. Preventing this inflammatory bone resorption is a major health challenge. Both diseases share immunopathogenic similarities and a common inflammatory environment. The autoimmune response or periodontal infection stimulates certain immune actors, leading in both cases to chronic inflammation that perpetuates bone resorption. Moreover, RA and periodontitis have a strong epidemiological association that could be explained by periodontal microbial dysbiosis. This dysbiosis is believed to be involved in the initiation of RA via three mechanisms. (i) The dissemination of periodontal pathogens triggers systemic inflammation. (ii) Periodontal pathogens can induce the generation of citrullinated neoepitopes, leading to the generation of anti-citrullinated peptide autoantibodies. (iii) Intracellular danger-associated molecular patterns accelerate local and systemic inflammation. Therefore, periodontal dysbiosis could promote or sustain bone resorption in distant inflamed joints. Interestingly, in inflammatory conditions, the existence of osteoclasts distinct from "classical osteoclasts" has recently been reported. They have proinflammatory origins and functions. Several populations of osteoclast precursors have been described in RA, such as classical monocytes, a dendritic cell subtype, and arthritis-associated osteoclastogenic macrophages. The aim of this review is to synthesize knowledge on osteoclasts and their precursors in inflammatory conditions, especially in RA and periodontitis. Special attention will be given to recent data related to RA that could be of potential value in periodontitis due to the immunopathogenic similarities between the two diseases. Improving our understanding of these pathogenic mechanisms should lead to the identification of new therapeutic targets involved in the pathological inflammatory bone resorption associated with these diseases.
Collapse
Affiliation(s)
- Emilie Hascoët
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Frédéric Blanchard
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | | | - Jérôme Guicheux
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France.
| | - Philippe Lesclous
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Alexandra Cloitre
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| |
Collapse
|
7
|
Grillet B, Pereira RVS, Van Damme J, Abu El-Asrar A, Proost P, Opdenakker G. Matrix metalloproteinases in arthritis: towards precision medicine. Nat Rev Rheumatol 2023; 19:363-377. [PMID: 37161083 DOI: 10.1038/s41584-023-00966-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/11/2023]
Abstract
Proteolysis of structural molecules of the extracellular matrix (ECM) is an irreversible post-translational modification in all arthropathies. Common joint disorders, including osteoarthritis and rheumatoid arthritis, have been associated with increased levels of matrix remodelling enzymes, including matrix metalloproteinases (MMPs). MMPs, in concert with other host proteinases and glycanases, destroy proteoglycans, collagens and other ECM molecules. MMPs may also control joint remodelling indirectly by signalling through cell-surface receptors or by proteolysis of cytokines and receptor molecules. After synthesis as pro-forms, MMPs can be activated by various types of post-translational modifications, including proteolysis. Once activated, MMPs are controlled by general and specific tissue inhibitors of metalloproteinases (TIMPs). In rheumatoid arthritis, proteolysis of the ECM results in so-called remnant epitopes that enhance and perpetuate autoimmune processes in susceptible hosts. In osteoarthritis, the considerable production of MMP-13 by chondrocytes, often concurrent with mechanical overload, is a key event. Hence, information about the regulation, timing, localization and activities of MMPs in specific disease phases and arthritic entities will help to develop better diagnostics. Insights into beneficial and detrimental effects of MMPs on joint tissue inflammation are also necessary to plan and execute (pre)clinical studies for better therapy and precision medicine with MMP inhibitors. With the advances in proteomics and single-cell transcriptomics, two critical points need attention: neglected neutrophil MMP biology, and the analysis of net proteolytic activities as the result of balances between MMPs and their inhibitors.
Collapse
Affiliation(s)
- Bernard Grillet
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Rafaela Vaz Sousa Pereira
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ahmed Abu El-Asrar
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Ophthalmology, King Saud University, Riyadh, Saudi Arabia
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
- Department of Ophthalmology, King Saud University, Riyadh, Saudi Arabia.
- University Hospitals Gasthuisberg, UZ Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Bissenova S, Ellis D, Mathieu C, Gysemans C. Neutrophils in autoimmunity: when the hero becomes the villain. Clin Exp Immunol 2022; 210:128-140. [PMID: 36208466 PMCID: PMC9750832 DOI: 10.1093/cei/uxac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023] Open
Abstract
Neutrophils were long considered to be a short-lived homogenous cell population, limited to their role as first responders in anti-bacterial and -fungal immunity. While it is true that neutrophils are first to infiltrate the site of infection to eliminate pathogens, growing evidence suggests their functions could extend beyond those of basic innate immune cells. Along with their well-established role in pathogen elimination, utilizing effector functions such as phagocytosis, degranulation, and the deployment of neutrophil extracellular traps (NETs), neutrophils have recently been shown to possess antigen-presenting capabilities. Moreover, the identification of different subtypes of neutrophils points to a multifactorial heterogeneous cell population with great plasticity in which some subsets have enhanced pro-inflammatory characteristics, while others seem to behave as immunosuppressors. Interestingly, the aberrant presence of activated neutrophils with a pro-inflammatory profile in several systemic and organ-specific autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), multiple sclerosis (MS), and type 1 diabetes (T1D) could potentially be exploited in novel therapeutic strategies. The full extent of the involvement of neutrophils, and more specifically that of their various subtypes, in the pathophysiology of autoimmune diseases is yet to be elucidated.
Collapse
Affiliation(s)
- Samal Bissenova
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Association of MMP-2 and MMP-9 Polymorphisms with Diabetes and Pathogenesis of Diabetic Complications. Int J Mol Sci 2022; 23:ijms231810571. [PMID: 36142480 PMCID: PMC9503220 DOI: 10.3390/ijms231810571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) affects millions of people around the world, and its complications have serious health consequences. In addition to external factors, the causes of morbidity and increased risk were also sought in the variability of the human genome. A phenomenon that can answer these questions is the occurrence of single-nucleotide polymorphisms (SNP). They constitute a field for research into genetic determinants responsible for the increase in the risk of the discussed metabolic disease. This article presents the outline of two enzymes: metalloproteinases 2 and 9 (MMP-2, MMP-9), their biological activity and the effect caused by differences in individual alleles in the population, as well as the reports on the importance of these DNA sequence variations in the occurrence of diabetes mellitus type 2 and associated conditions. The results of the conducted research indicate a relationship between two MMP-2 polymorphisms (rs243865, rs243866) and two MMP-9 polymorphisms (rs3918242, rs17576) and the presence of T2D. This could offer a promising possibility to use them as predictive and diagnostic markers. However, due to the low number of reports, more research is needed to clearly confirm the link between these SNPs and diabetes.
Collapse
|
10
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
11
|
Tang L, He S, Yin Y, Li J, Xiao Q, Wang R, Gao L, Wang W. Combining nanotechnology with the multifunctional roles of neutrophils against cancer and inflammatory disease. NANOSCALE 2022; 14:1621-1645. [PMID: 35079756 DOI: 10.1039/d1nr07725b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neutrophils, the most abundant leukocytes in humans, play a crucial role in acute inflammation during infection and tumorigenesis. Neutrophils are the major types of cells recruited to the inflammation sites induced by pathogens, exhibiting great homing ability towards inflammatory disorders and tumor sites. Therefore, a neutrophil-based drug delivery system (NDDS) has become a promising platform for anti-cancer and anti-inflammatory treatment. Recent decades have witnessed the huge progress of applying nanomaterials in drug delivery. Nanomaterials are regarded as innovative components to enrich the field of neutrophil-based therapies due to their unique physiochemical characteristics. In this review, the latest advancement of combining diverse nanomaterials with an NDDS for cancer and inflammatory disease treatment will be summarized. It is discussed how nanomaterials empower the therapeutic area of an NDDS and how an NDDS circumvents the limitations of nanomaterials. Moreover, based on the finding that neutrophils are closely involved in the progression of cancer and inflammatory diseases, emerging therapeutic strategies that target neutrophils will be outlined. Finally, as neutrophils were demonstrated to play a central role in the immunopathology of COVID-19, which causes necroinflammation that is responsible for the cytokine storm and sepsis during coronavirus infections, novel therapeutic approaches that anchor neutrophils against the pathological consequences related to COVID-19 will be highlighted as well.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Ruotong Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Lijun Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| |
Collapse
|
12
|
Grillet B, Yu K, Ugarte-Berzal E, Janssens R, Pereira RVS, Boon L, Martens E, Berghmans N, Ronsse I, Van Aelst I, Fiten P, Conings R, Vandooren J, Verschueren P, Van Damme J, Proost P, Opdenakker G. Proteoform Analysis of Matrix Metalloproteinase-9/Gelatinase B and Discovery of Its Citrullination in Rheumatoid Arthritis Synovial Fluids. Front Immunol 2021; 12:763832. [PMID: 34912337 PMCID: PMC8667337 DOI: 10.3389/fimmu.2021.763832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives To explore posttranslational modifications (PTMs), including proteolytic activation, multimerization, complex formation and citrullination of gelatinases, in particular of gelatinase B/MMP-9, and to detect in gelatin-Sepharose affinity-purified synovial fluids, the presence of specific MMP proteoforms in relation to arthritis. Methods Latent, activated, complexed and truncated gelatinase-A/MMP-2 and gelatinase B/MMP-9 proteoforms were detected with the use of zymography analysis to compare specific levels, with substrate conversion assays, to test net proteolytic activities and by Western blot analysis to decipher truncation variants. Citrullination was detected with enhanced sensitivity, by the use of a new monoclonal antibody against modified citrullines. Results All MMP-9 and MMP-2 proteoforms were identified in archival synovial fluids with the use of zymography analysis and the levels of MMP-9 versus MMP-2 were studied in various arthritic diseases, including rheumatoid arthritis (RA). Secondly, we resolved misinterpretations of MMP-9 levels versus proteolytic activities. Thirdly, a citrullinated, truncated proteoform of MMP-9 was discovered in archival RA synovial fluid samples and its presence was corroborated as citrullinated hemopexin-less MMP-9 in a small prospective RA sample cohort. Conclusion Synovial fluids from rheumatoid arthritis contain high levels of MMP-9, including its truncated and citrullinated proteoform. The combination of MMP-9 as analyte and its PTM by citrullination could be of clinical interest, especially in the field of arthritic diseases.
Collapse
Affiliation(s)
- Bernard Grillet
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Karen Yu
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Rafaela Vaz Sousa Pereira
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lise Boon
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Isabelle Ronsse
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ilse Van Aelst
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Pierre Fiten
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - René Conings
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Patrick Verschueren
- Skeletal Biology and Engineering Research Center, Department of Developmental and Regenerative Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the Pathogenesis of Rheumatoid Arthritis and Systemic Lupus Erythematosus: Same Foe Different M.O. Front Immunol 2021; 12:649693. [PMID: 33746988 PMCID: PMC7969658 DOI: 10.3389/fimmu.2021.649693] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulated neutrophil activation contributes to the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Neutrophil-derived reactive oxygen species (ROS) and granule proteases are implicated in damage to and destruction of host tissues in both conditions (cartilage in RA, vascular tissue in SLE) and also in the pathogenic post-translational modification of DNA and proteins. Neutrophil-derived cytokines and chemokines regulate both the innate and adaptive immune responses in RA and SLE, and neutrophil extracellular traps (NETs) expose nuclear neoepitopes (citrullinated proteins in RA, double-stranded DNA and nuclear proteins in SLE) to the immune system, initiating the production of auto-antibodies (ACPA in RA, anti-dsDNA and anti-acetylated/methylated histones in SLE). Neutrophil apoptosis is dysregulated in both conditions: in RA, delayed apoptosis within synovial joints contributes to chronic inflammation, immune cell recruitment and prolonged release of proteolytic enzymes, whereas in SLE enhanced apoptosis leads to increased apoptotic burden associated with development of anti-nuclear auto-antibodies. An unbalanced energy metabolism in SLE and RA neutrophils contributes to the pathology of both diseases; increased hypoxia and glycolysis in RA drives neutrophil activation and NET production, whereas decreased redox capacity increases ROS-mediated damage in SLE. Neutrophil low-density granulocytes (LDGs), present in high numbers in the blood of both RA and SLE patients, have opposing phenotypes contributing to clinical manifestations of each disease. In this review we will describe the complex and contrasting phenotype of neutrophils and LDGs in RA and SLE and discuss their discrete roles in the pathogenesis of each condition. We will also review our current understanding of transcriptomic and metabolomic regulation of neutrophil phenotype in RA and SLE and discuss opportunities for therapeutic targeting of neutrophil activation in inflammatory auto-immune disease.
Collapse
Affiliation(s)
- Michele Fresneda Alarcon
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Zoe McLaren
- Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Helen Louise Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
14
|
Wright HL, Lyon M, Chapman EA, Moots RJ, Edwards SW. Rheumatoid Arthritis Synovial Fluid Neutrophils Drive Inflammation Through Production of Chemokines, Reactive Oxygen Species, and Neutrophil Extracellular Traps. Front Immunol 2021; 11:584116. [PMID: 33469455 PMCID: PMC7813679 DOI: 10.3389/fimmu.2020.584116] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder affecting synovial joints. Neutrophils are believed to play an important role in both the initiation and progression of RA, and large numbers of activated neutrophils are found within both synovial fluid (SF) and synovial tissue from RA joints. In this study we analyzed paired blood and SF neutrophils from patients with severe, active RA (DAS28>5.1, n=3) using RNA-seq. 772 genes were significantly different between blood and SF neutrophils. IPA analysis predicted that SF neutrophils had increased expression of chemokines and ROS production, delayed apoptosis, and activation of signaling cascades regulating the production of NETs. This activated phenotype was confirmed experimentally by incubating healthy control neutrophils in cell-free RA SF, which was able to delay apoptosis and induce ROS production in both unprimed and TNFα primed neutrophils (p<0.05). RA SF significantly increased neutrophil migration through 3μM transwell chambers (p<0.05) and also increased production of NETs by healthy control neutrophils (p<0.001), including exposure of myeloperoxidase (MPO) and citrullinated histone-H3-positive DNA NETs. IPA analysis predicted NET production was mediated by signaling networks including AKT, RAF1, SRC, and NF-κB. Our results expand the understanding of the molecular changes that take place in the neutrophil transcriptome during migration into inflamed joints in RA, and the altered phenotype in RA SF neutrophils. Specifically, RA SF neutrophils lose their migratory properties, residing within the joint to generate signals that promote joint damage, as well as inflammation via recruitment and activation of both innate and adaptive immune cells. We propose that this activated SF neutrophil phenotype contributes to the chronic inflammation and progressive damage to cartilage and bone observed in patients with RA.
Collapse
Affiliation(s)
- Helen L. Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Max Lyon
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Elinor A. Chapman
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Robert J. Moots
- Department of Rheumatology, Aintree University Hospital, Liverpool, United Kingdom
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, United Kingdom
| | - Steven W. Edwards
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, United Kingdom
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Opdenakker G, Abu El-Asrar A, Van Damme J. Remnant Epitopes Generating Autoimmunity: From Model to Useful Paradigm. Trends Immunol 2020; 41:367-378. [PMID: 32299652 DOI: 10.1016/j.it.2020.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Autoimmune diseases are defined as pathologies of adaptive immunity by the presence of autoantibodies or MHC-restricted autoantigen-reactive T cells. Because autoreactivity is a normal process based on mechanisms producing repertoires of antibodies and T cell receptors, crucial questions about disease mechanisms and key steps for interference have been outstanding. We defined 25 years ago the 'remnant epitopes generate autoimmunity' (REGA)-model in which extracellular proteases from innate immune cells generate autoantigens. Here, we refine the REGA-model, tested in diseases ranging from organ-specific autoimmune diseases to systemic lupus erythematosus. It now constitutes a paradigm in which remnant epitopes generate, maintain, and regulate autoimmunity; are dependent on genetic and epigenetic influences; are produced in a disease phase-specific manner; and have therapeutic implications when targeted.
Collapse
Affiliation(s)
- Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium.
| | - Ahmed Abu El-Asrar
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium; Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Catz SD, McLeish KR. Therapeutic targeting of neutrophil exocytosis. J Leukoc Biol 2020; 107:393-408. [PMID: 31990103 PMCID: PMC7044074 DOI: 10.1002/jlb.3ri0120-645r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of neutrophil activation causes disease in humans. Neither global inhibition of neutrophil functions nor neutrophil depletion provides safe and/or effective therapeutic approaches. The role of neutrophil granule exocytosis in multiple steps leading to recruitment and cell injury led each of our laboratories to develop molecular inhibitors that interfere with specific molecular regulators of secretion. This review summarizes neutrophil granule formation and contents, the role granule cargo plays in neutrophil functional responses and neutrophil-mediated diseases, and the mechanisms of granule release that provide the rationale for development of our exocytosis inhibitors. We present evidence for the inhibition of granule exocytosis in vitro and in vivo by those inhibitors and summarize animal data indicating that inhibition of neutrophil exocytosis is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Sergio D. Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
17
|
Ugarte-Berzal E, Boon L, Martens E, Rybakin V, Blockmans D, Vandooren J, Proost P, Opdenakker G. MMP-9/Gelatinase B Degrades Immune Complexes in Systemic Lupus Erythematosus. Front Immunol 2019; 10:538. [PMID: 30967870 PMCID: PMC6440319 DOI: 10.3389/fimmu.2019.00538] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a common and devastating autoimmune disease, characterized by a dysregulated adaptive immune response against intracellular antigens, which involves both autoreactive T and B cells. In SLE, mainly intracellular autoantigens generate autoantibodies and these assemble into immune complexes and activate the classical pathway of the complement system enhancing inflammation. Matrix metalloproteinase-9 (MMP-9) levels have been investigated in the serum of SLE patients and in control subjects. On the basis of specific studies, it has been suggested to treat SLE patients with MMP inhibitors. However, some of these inhibitors induce SLE. Analysis of LPR−/−MMP-9−/− double knockout mice suggested that MMP-9 plays a protective role in autoantigen clearance in SLE, but the effects of MMP-9 on immune complexes remained elusive. Therefore, we studied the role of MMP-9 in the clearance of autoantigens, autoantibodies and immune complexes and demonstrated that the lack of MMP-9 increased the levels of immune complexes in plasma and local complement activation in spleen and kidney in the LPR−/− mouse model of SLE. In addition, we showed that MMP-9 dissolved immune complexes from plasma of lupus-prone LPR−/−/MMP-9−/− mice and from blood samples of SLE patients. Surprisingly, autoantigens incorporated into immune complexes, but not immunoglobulin heavy or light chains, were cleaved by MMP-9. We discovered Apolipoprotein-B 100 as a new substrate of MMP-9 by analyzing the degradation of immune complexes from human plasma samples. These data are relevant to understand lupus immunopathology and side-effects observed with the use of known drugs. Moreover, we caution against the use of MMP inhibitors for the treatment of SLE.
Collapse
Affiliation(s)
- Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lise Boon
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vasily Rybakin
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Daniel Blockmans
- Department of General Internal Medicine, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
O'Neil LJ, Kaplan MJ. Neutrophils in Rheumatoid Arthritis: Breaking Immune Tolerance and Fueling Disease. Trends Mol Med 2019; 25:215-227. [PMID: 30709614 DOI: 10.1016/j.molmed.2018.12.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RA), a common autoimmune disease, is characterized by a highly coordinated inflammatory response that involves innate and adaptive immunity. One of the hallmarks of RA is an immune response directed at citrullinated peptides that are specifically targeted by anticitrullinated protein antibodies (ACPAs). Among the various mechanisms by which neutrophils may promote immune dysregulation in RA, their ability to extrude neutrophil extracellular traps has recently been implicated in the development of ACPAs. In the synovium, neutrophils interact with resident fibroblast-like synoviocytes to endow them with antigen-presenting cell capabilities and an inflammatory phenotype. Further understanding how neutrophils modulate autoimmunity and tissue damage in RA may lead to the development of novel effective therapies.
Collapse
Affiliation(s)
- Liam J O'Neil
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Gouwy M, De Buck M, Abouelasrar Salama S, Vandooren J, Knoops S, Pörtner N, Vanbrabant L, Berghmans N, Opdenakker G, Proost P, Van Damme J, Struyf S. Matrix Metalloproteinase-9-Generated COOH-, but Not NH 2-Terminal Fragments of Serum Amyloid A1 Retain Potentiating Activity in Neutrophil Migration to CXCL8, With Loss of Direct Chemotactic and Cytokine-Inducing Capacity. Front Immunol 2018; 9:1081. [PMID: 29915572 PMCID: PMC5994419 DOI: 10.3389/fimmu.2018.01081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A1 (SAA1) is a prototypic acute phase protein, induced to extremely high levels by physical insults, including inflammation and infection. Human SAA and its NH2-terminal part have been studied extensively in the context of amyloidosis. By contrast, little is known about COOH-terminal fragments of SAA. Intact SAA1 chemoattracts leukocytes via the G protein-coupled receptor formyl peptide receptor like 1/formyl peptide receptor 2 (FPR2). In addition to direct leukocyte activation, SAA1 induces chemokine production by signaling through toll-like receptor 2. We recently discovered that these induced chemokines synergize with intact SAA1 to chemoattract leukocytes in vitro and in vivo. Gelatinase B or matrix metalloproteinase-9 (MMP-9) is also induced by SAA1 during infection and inflammation and processes many substrates in the immune system. We demonstrate here that MMP-9 rapidly cleaves SAA1 at a known consensus sequence that is also present in gelatins. Processing of SAA1 by MMP-9 at an accessible loop between two alpha helices yielded predominantly three COOH-terminal fragments: SAA1(52–104), SAA1(57–104), and SAA1(58–104), with a relative molecular mass of 5,884.4, 5,327.3, and 5,256.3, respectively. To investigate the effect of proteolytic processing on the biological activity of SAA1, we chemically synthesized the COOH-terminal SAA fragments SAA1(52–104) and SAA1(58–104) and the complementary NH2-terminal peptide SAA1(1–51). In contrast to intact SAA1, the synthesized SAA1 peptides did not induce interleukin-8/CXCL8 in monocytes or fibroblasts. Moreover, these fragments possessed no direct chemotactic activity for neutrophils, as observed for intact SAA1. However, comparable to intact SAA1, SAA1(58–104) cooperated with CXCL8 in neutrophil activation and migration, whereas SAA1(1–51) lacked this potentiating activity. This cooperative interaction between the COOH-terminal SAA1 fragment and CXCL8 in neutrophil chemotaxis was mediated by FPR2. Hence, proteolytic cleavage of SAA1 by MMP-9 fine tunes the inflammatory capacity of this acute phase protein in that only the synergistic interactions with chemokines remain to prolong the duration of inflammation.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Singh K, Goyal P, Singh M, Deshmukh S, Upadhyay D, Kant S, Agrawal NK, Gupta SK, Singh K. Association of functional SNP-1562C>T in MMP9 promoter with proliferative diabetic retinopathy in north Indian type 2 diabetes mellitus patients. J Diabetes Complications 2017; 31:1648-1651. [PMID: 28964682 DOI: 10.1016/j.jdiacomp.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/04/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Retinal angiogenesis is a hallmark of diabetic retinopathy. Matrix Metalloproteinases (MMPs) are involved in degradation of extracellular matrix (ECM). Functional SNP-1562C>T in the promoter of the MMP-9 gene results increase in transcriptional activity. The present work was designed to evaluate the contribution of functional SNP-1562C>T of MMP-9 gene to the risk of proliferative diabetic retinopathy (PDR) in type 2 diabetes mellitus (T2DM) patients in north Indian Population. METHODS This Case control study comprised of a total of 645 individuals in which 320 were T2DM patients out of which 73 had PDR, 98 had non- proliferative diabetic retinopathy (NPDR), 149 T2DM cases without any eye related disease (DM) and 325 non diabetic healthy individuals as controls (non DM controls). Genotyping for SNP-1562C>T of MMP-9 was done by polymerase chain reactions followed by restriction analyses with specific endonucleases (PCR-RFLP). DNA sequencing was used to ascertain PCR-RFLP results. RESULTS T allele frequency in PDR patients was 32.1%, 20.4% in NPDR, 15.4% in DM and 13.7% in controls. Statistically significant difference was observed in both allele and genotype distribution between the PDR versus non-DM control group (p<0.0001 by T allele; p=0.002 by TT and p<0.0001 by CT genotype). CONCLUSIONS The present study suggests that the functional SNP-1562C>T in the promoter of the MMP-9 gene could be regarded as a major risk factor for PDR as increased MMP-9 production from high expressing T allele may promote retinal angiogenesis.
Collapse
MESH Headings
- Alleles
- Case-Control Studies
- Diabetes Mellitus, Type 2/complications
- Diabetic Retinopathy/genetics
- Diabetic Retinopathy/pathology
- Diabetic Retinopathy/physiopathology
- Female
- Gene Frequency
- Genetic Association Studies
- Genetic Predisposition to Disease
- Humans
- India
- Male
- Matrix Metalloproteinase 9/genetics
- Middle Aged
- Neovascularization, Pathologic/complications
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic
- Severity of Illness Index
- Vitreoretinopathy, Proliferative/complications
- Vitreoretinopathy, Proliferative/genetics
- Vitreoretinopathy, Proliferative/pathology
- Vitreoretinopathy, Proliferative/physiopathology
Collapse
Affiliation(s)
- Kanhaiya Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi 221005, India
| | - Prabhjot Goyal
- Department of Opthamology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Manju Singh
- Department of Opthamology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sujit Deshmukh
- Department of Opthamology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Divyesh Upadhyay
- Center for Genetic Disorders, Banaras Hindu University, Varanasi 221005, India
| | - Sri Kant
- Department of Opthamology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Neeraj K Agrawal
- Department of Endocrinology and Metabolism, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sanjeev K Gupta
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Kiran Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
21
|
Hemoglobin stimulates the expression of ADAMTS-5 and ADAMTS-9 by synovial cells: a possible cause of articular cartilage damage after intra-articular hemorrhage. BMC Musculoskelet Disord 2017; 18:449. [PMID: 29137610 PMCID: PMC5686793 DOI: 10.1186/s12891-017-1815-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/08/2017] [Indexed: 12/27/2022] Open
Abstract
Background ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) proteins play an important pathological role in matrix degeneration. Aggrecan degradation is a significant and critical event in early-stage osteoarthritis. To determine the effect of hemoglobin (Hb) on the ability of synovial tissues to produce ADAMTS family members, we examined the influence of Hb by synovial cells in an in vitro experimental system. Methods Synovial tissues were obtained from five young patients with meniscal injury under arthroscopic surgery. Primary cultures of human knee synovial cells were treated with different doses of human Hb (0, 25, 50, 100 μg/ml). The culture media were collected 24 h after Hb-treatment. In the time-course studies, cells were treated with and without 100 μg/ml Hb, and culture media were taken at 6, 12, and 24 h. To identify the proteins responsible for aggrecanase activity, Western blot analysis using antibodies against human ADAMTS-5, −8, −9, and −10; enzyme-linked immunosorbent assay (ELISA); and gene expression for ADAMTS-5 and -9 were examined. Statistical comparisons between each group were performed using paired t-tests. Results Western blot analysis revealed that Hb-treatment resulted in the expression of ADAMTS-5 and -9. Neither control group nor Hb-treated medium showed immunoreactivity against ADAMTS-8 or −10. In a dose-dependency study, the Hb-treated group showed significantly higher levels of ADAMTS-5 and -9 compared with the control (p < 0.05). There was no significant difference between 25, 50, and 100 μg/ml Hb-treated groups. In a time-course study, the ADAMTS-5 and -9 levels in the conditioned medium had significantly increased expression at 6, 12, and 24 h in the Hb-treated group (p < 0.05). Hb evoked significant expression of ADAMTS-9 mRNA at 12 and 24 h (p < 0.05). Conclusions These findings indicate that Hb induces the expression of ADAMTS-5 and -9 by synovial cells at low doses, even at an acute phase, and suggests a possible role for Hb in cartilage damage after intra-articular hemorrhage. The results also suggest a new potential therapeutic target by inhibiting the activities of ADAMTS-5 and -9 to prevent cartilage damage after intra-articular hemorrhage.
Collapse
|
22
|
Karsdal MA, Nielsen SH, Leeming DJ, Langholm LL, Nielsen MJ, Manon-Jensen T, Siebuhr A, Gudmann NS, Rønnow S, Sand JM, Daniels SJ, Mortensen JH, Schuppan D. The good and the bad collagens of fibrosis - Their role in signaling and organ function. Adv Drug Deliv Rev 2017; 121:43-56. [PMID: 28736303 DOI: 10.1016/j.addr.2017.07.014] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
Usually the dense extracellular structure in fibrotic tissues is described as extracellular matrix (ECM) or simply as collagen. However, fibrosis is not just fibrosis, which is already exemplified by the variant morphological characteristics of fibrosis due to viral versus cholestatic, autoimmune or toxic liver injury, with reticular, chicken wire and bridging fibrosis. Importantly, the overall composition of the ECM, especially the relative amounts of the many types of collagens, which represent the most abundant ECM molecules and which centrally modulate cellular functions and physiological processes, changes dramatically during fibrosis progression. We hypothesize that there are good and bad collagens in fibrosis and that a change of location alone may change the function from good to bad. Whereas basement membrane collagen type IV anchors epithelial and other cells in a polarized manner, the interstitial fibroblast collagens type I and III do not provide directional information. In addition, feedback loops from biologically active degradation products of some collagens are examples of the importance of having the right collagen at the right place and at the right time controlling cell function, proliferation, matrix production and fate. Examples are the interstitial collagen type VI and basement membrane collagen type XVIII. Their carboxyterminal propeptides serve as an adipose tissue hormone, endotrophin, and as a regulator of angiogenesis, endostatin, respectively. We provide an overview of the 28 known collagen types and propose that the molecular composition of the ECM in fibrosis needs careful attention to assess its impact on organ function and its potential to progress or reverse. Consequently, to adequately assess fibrosis and to design optimal antifibrotic therapies, we need to dissect the molecular entity of fibrosis for the molecular composition and spatial distribution of collagens and the associated ECM.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark.
| | - S H Nielsen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - D J Leeming
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - L L Langholm
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - M J Nielsen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - T Manon-Jensen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - A Siebuhr
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - N S Gudmann
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - S Rønnow
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - J M Sand
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - S J Daniels
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - J H Mortensen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - D Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Potempa J, Mydel P, Koziel J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat Rev Rheumatol 2017; 13:606-620. [DOI: 10.1038/nrrheum.2017.132] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Luo T, David MA, Dunshee LC, Scott RA, Urello MA, Price C, Kiick KL. Thermoresponsive Elastin-b-Collagen-Like Peptide Bioconjugate Nanovesicles for Targeted Drug Delivery to Collagen-Containing Matrices. Biomacromolecules 2017; 18:2539-2551. [PMID: 28719196 PMCID: PMC5815509 DOI: 10.1021/acs.biomac.7b00686] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past few decades, (poly)peptide block copolymers have been widely employed in generating well-defined nanostructures as vehicles for targeted drug delivery applications. We previously reported the assembly of thermoresponsive nanoscale vesicles from an elastin-b-collagen-like peptide (ELP-CLP). The vesicles were observed to dissociate at elevated temperatures, despite the LCST-like behavior of the tethered ELP domain, which is suggested to be triggered by the unfolding of the CLP domain. Here, the potential of using the vesicles as drug delivery vehicles for targeting collagen-containing matrices is evaluated. The sustained release of an encapsulated model drug was achieved over a period of 3 weeks, following which complete release could be triggered via heating. The ELP-CLP vesicles show strong retention on a collagen substrate, presumably through collagen triple helix interactions. Cell viability and proliferation studies using fibroblasts and chondrocytes suggest that the vesicles are highly cytocompatible. Additionally, essentially no activation of a macrophage-like cell line is observed, suggesting that the vesicles do not initiate an inflammatory response. Endowed with thermally controlled delivery, the ability to bind collagen, and excellent cytocompatibility, these ELP-CLP nanovesicles are suggested to have significant potential in the controlled delivery of drugs to collagen-containing matrices and tissues.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Michael A. David
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Lucas C. Dunshee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| | - Morgan A. Urello
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| |
Collapse
|
25
|
Verhoeven J, Lambrecht A, Verbrugghe P, Herijgers P, Fourneau I. Remnant Epitope Autoimmunity in Human Abdominal Aortic Aneurysm: A Pilot Study with Elastin Peptides. Ann Vasc Surg 2017; 44:408-413. [PMID: 28602894 DOI: 10.1016/j.avsg.2017.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/28/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a prevalent disease affecting around 5% of the population aged more than 65 years. The exact etiology and physiopathology of AAA still raises questions, and elective surgery is currently the only treatment option for this often progressive disease. In this study, we hypothesized and tested a pathophysiological model that depicts AAA as an inflammation-triggered autoimmune disease with remnant vessel wall peptide fragments as the antigen. METHODS A pilot study with male AAA patients (n = 14) and male controls (n = 8) was conducted. In both study groups, peripheral blood monocytes and plasma were separated from whole blood by centrifugation. An ELISpot test was performed on cultured white blood cells for the presence of elastin-specific T-lymphocytes. An Enzyme-linked immuno sorbent assay (ELISA) was performed on plasma for the presence of elastin-specific IgG molecules. RESULTS ELISpot interferon-gamma secretion in AAA (7.7 ± 9.5%) and control (4.6 ± 3.5%) and ELISA anti-elastin IgG titer in AAA (77.5 ± 17.8%) and control (78.2 ± 31.5%) were not significantly different (P = 0.94 and P = 0.55, respectively). Both results are expressed as a percentage relative to the respective positive and negative control. CONCLUSIONS The results of our pilot study did not indicate a clear and invariable autoimmune process directed against remnant elastin peptide fragments. Further research into the model mechanics and a possible antigen is still necessary. In the mean time, the model as presented here already offers a pathophysiological framework to further research into the possible remnant epitope-driven AAA etiology.
Collapse
Affiliation(s)
- Jelle Verhoeven
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, Leuven, Belgium.
| | - Alix Lambrecht
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| | - Peter Verbrugghe
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| | - Paul Herijgers
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| | - Inge Fourneau
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
26
|
|
27
|
Scalzo-Inguanti K, Monaghan K, Edwards K, Herzog E, Mirosa D, Hardy M, Sorto V, Huynh H, Rakar S, Kurtov D, Braley H, Wilson N, Busfield S, Nash A, Andrews A. A neutralizing anti-G-CSFR antibody blocks G-CSF-induced neutrophilia without inducing neutropenia in nonhuman primates. J Leukoc Biol 2017; 102:537-549. [PMID: 28515226 DOI: 10.1189/jlb.5a1116-489r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/03/2017] [Accepted: 04/23/2017] [Indexed: 11/24/2022] Open
Abstract
Neutrophils are the most abundant WBCs and have an essential role in the clearance of pathogens. Tight regulation of neutrophil numbers and their recruitment to sites of inflammation is critical in maintaining a balanced immune response. In various inflammatory conditions, such as rheumatoid arthritis, vasculitis, cystic fibrosis, and inflammatory bowel disease, increased serum G-CSF correlates with neutrophilia and enhanced neutrophil infiltration into inflamed tissues. We describe a fully human therapeutic anti-G-CSFR antibody (CSL324) that is safe and well tolerated when administered via i.v. infusion to cynomolgus macaques. CSL324 was effective in controlling G-CSF-mediated neutrophilia when administered either before or after G-CSF. A single ascending-dose study showed CSL324 did not alter steady-state neutrophil numbers, even at doses sufficient to completely prevent G-CSF-mediated neutrophilia. Weekly infusions of CSL324 (≤10 mg/kg) for 3 wk completely neutralized G-CSF-mediated pSTAT3 phosphorylation without neutropenia. Moreover, repeat dosing up to 100 mg/kg for 12 wk did not result in neutropenia at any point, including the 12-wk follow-up after the last infusion. In addition, CSL324 had no observable effect on basic neutrophil functions, such as phagocytosis and oxidative burst. These data suggest that targeting G-CSFR may provide a safe and effective means of controlling G-CSF-mediated neutrophilia as observed in various inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huy Huynh
- CSL Limited, Parkville, Australia; and
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities. Biochem J 2017; 473:1471-82. [PMID: 27234584 PMCID: PMC4888457 DOI: 10.1042/bj20151154] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/15/2016] [Indexed: 12/15/2022]
Abstract
Current knowledge about the glycosylation of matrix metalloproteinases (MMPs) and the inhibitors of metalloproteinases (TIMPs) is reviewed. Whereas structural and functional aspects of the glycobiology of many MMPs is unknown, research on MMP-9 and MMP-14 glycosylation reveals important functional implications, such as altered inhibitor binding and cellular localization. This, together with the fact that MMPs contain conserved and many potential attachment sites for N-linked and O-linked oligosaccharides, proves the need for further studies on MMP glycobiology. Matrix metalloproteases (MMPs) are crucial components of a complex and dynamic network of proteases. With a wide range of potential substrates, their production and activity are tightly controlled by a combination of signalling events, zymogen activation, post-translational modifications and extracellular inhibition. Slight imbalances may result in the initiation or progression of specific disease states, such as cancer and pathological inflammation. As glycosylation modifies the structures and functions of glycoproteins and many MMPs contain N- or O-linked oligosaccharides, we examine, compare and evaluate the evidence for whether glycosylation affects MMP catalytic activity and other functions. It is interesting that the catalytic sites of MMPs do not contain O-linked glycans, but instead possess a conserved N-linked glycosylation site. Both N- and O-linked oligosaccharides, attached to specific protein domains, endow these domains with novel functions such as the binding to lectins, cell-surface receptors and tissue inhibitors of metalloproteases (TIMPs). Validated glycobiological data on N- and O-linked oligosaccharides of gelatinase B/MMP-9 and on O-linked structures of membrane-type 1 MMP/MMP-14 indicate that in-depth research of other MMPs may yield important insights, e.g. about subcellular localizations and functions within macromolecular complexes.
Collapse
|
29
|
Abstract
Collagen-like peptides (CLPs), also known as collagen-mimetic peptides (CMPs), are short synthetic peptides that mimic the triple helical conformation of native collagens. Traditionally, CLPs have been widely used in deciphering the chemical basis for collagen triple helix stabilization, mimicking collagen fibril formation and fabricating other higher-order supramolecular self-assemblies. While CLPs have been used extensively for elucidation of the assembly of native collagens, less work has been reported on the use of CLP-polymer and CLP-peptide conjugates in the production of responsive assemblies. CLP triple helices have been used as physical cross-links in CLP-polymer hydrogels with predesigned thermoresponsiveness. The more recently reported ability of CLP to target native collagens via triple helix hybridization has further inspired the production of CLP-polymer and CLP-peptide bioconjugates and the employment of these conjugates in generating well-defined nanostructures for targeting collagen substrates. This review summarizes the current progress and potential of using CLPs in biomedical arenas and is intended to serve as a general guide for designing CLP-containing biomaterials.
Collapse
Affiliation(s)
| | - Kristi L Kiick
- Delaware Biotechnology Institute , Newark, Delaware 19711, United States
| |
Collapse
|
30
|
Francis A, Bosio E, Stone SF, Fatovich DM, Arendts G, Nagree Y, Macdonald SPJ, Mitenko H, Rajee M, Burrows S, Brown SGA. Neutrophil activation during acute human anaphylaxis: analysis of MPO and sCD62L. Clin Exp Allergy 2017; 47:361-370. [DOI: 10.1111/cea.12868] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/14/2016] [Accepted: 11/18/2016] [Indexed: 12/01/2022]
Affiliation(s)
- A. Francis
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
| | - E. Bosio
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
| | - S. F. Stone
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
| | - D. M. Fatovich
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
- Emergency Department; Royal Perth Hospital; Perth WA Australia
| | - G. Arendts
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
- Emergency Department; Royal Perth Hospital; Perth WA Australia
- Emergency Department, Fiona Stanley Hospital; Murdoch WA Australia
| | - Y. Nagree
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Emergency Department, Fiona Stanley Hospital; Murdoch WA Australia
- Emergency Department; Fremantle Hospital; Fremantle WA Australia
| | - S. P. J. Macdonald
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
- Emergency Department; Royal Perth Hospital; Perth WA Australia
- Emergency Department; Armadale Kelmscott Memorial Hospital; Mount Nasura WA Australia
| | - H. Mitenko
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Emergency Department; South West Health Campus; Bunbury WA Australia
| | - M. Rajee
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Emergency Department; Austin Hospital; Heidelberg VIC Australia
| | - S. Burrows
- School of Medicine & Pharmacology; University of Western Australia; Perth WA Australia
| | - S. G. A. Brown
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
- Emergency Department; Royal Perth Hospital; Perth WA Australia
- Emergency Department; Royal Hobart Hospital; Hobart TAS Australia
| |
Collapse
|
31
|
Zhuang Y, Fang F, Lan X, Wang F, Huang J, Zhang Q, Zhao L, Guo W, Zheng H, Xu J. The vascular evolution of an extended flap on the dorsum of rats and the potential involvement of MMP-2 and MMP-9. Microvasc Res 2016; 112:20-29. [PMID: 27902934 DOI: 10.1016/j.mvr.2016.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Yuehong Zhuang
- Fujian Provincial Key Laboratory of Neuroscience, Anatomic Department of human anatomy, histology and embryology, Fujian medical university, 1 Xue Yuan Road, University Town, 350108 FuZhou, Fujian, China
| | - Fang Fang
- Pharmacological Department, Fujian Medical University, Fuzhou 350108, Fujian, China.
| | - Xue Lan
- Fujian Provincial Key Laboratory of Neuroscience, Anatomic Department of human anatomy, histology and embryology, Fujian medical university, 1 Xue Yuan Road, University Town, 350108 FuZhou, Fujian, China
| | - Feng Wang
- Fujian Provincial Key Laboratory of Neuroscience, Anatomic Department of human anatomy, histology and embryology, Fujian medical university, 1 Xue Yuan Road, University Town, 350108 FuZhou, Fujian, China
| | - Junying Huang
- Fujian Provincial Key Laboratory of Neuroscience, Anatomic Department of human anatomy, histology and embryology, Fujian medical university, 1 Xue Yuan Road, University Town, 350108 FuZhou, Fujian, China
| | - Qi Zhang
- Fujian Provincial Key Laboratory of Neuroscience, Anatomic Department of human anatomy, histology and embryology, Fujian medical university, 1 Xue Yuan Road, University Town, 350108 FuZhou, Fujian, China
| | - Li Zhao
- Fujian Provincial Key Laboratory of Neuroscience, Anatomic Department of human anatomy, histology and embryology, Fujian medical university, 1 Xue Yuan Road, University Town, 350108 FuZhou, Fujian, China
| | - Wei Guo
- Fujian Provincial Key Laboratory of Neuroscience, Anatomic Department of human anatomy, histology and embryology, Fujian medical university, 1 Xue Yuan Road, University Town, 350108 FuZhou, Fujian, China
| | - Heping Zheng
- Department Of Comparative Medicine, Fuzhou General Hospital of People's Liberation Army Nanjing District, Fuzhou 350108, China.
| | - Jianwen Xu
- Fujian Provincial Key Laboratory of Neuroscience, Anatomic Department of human anatomy, histology and embryology, Fujian medical university, 1 Xue Yuan Road, University Town, 350108 FuZhou, Fujian, China.
| |
Collapse
|
32
|
Microbiomic and Posttranslational Modifications as Preludes to Autoimmune Diseases. Trends Mol Med 2016; 22:746-757. [DOI: 10.1016/j.molmed.2016.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/08/2023]
|
33
|
Grünwald B, Vandooren J, Locatelli E, Fiten P, Opdenakker G, Proost P, Krüger A, Lellouche JP, Israel LL, Shenkman L, Comes Franchini M. Matrix metalloproteinase-9 (MMP-9) as an activator of nanosystems for targeted drug delivery in pancreatic cancer. J Control Release 2016; 239:39-48. [PMID: 27545397 DOI: 10.1016/j.jconrel.2016.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/25/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
Specific cancer cell targeting is a pre-requisite for efficient drug delivery as well as for high-resolution imaging and still represents a major technical challenge. Tumor-associated enzyme-assisted targeting is a new concept that takes advantage of the presence of a specific activity in the tumor entity. MMP-9 is a protease found to be upregulated in virtually all malignant tumors. Consequently, we hypothesized that its presence can provide a de-shielding activity for targeted delivery of drugs by nanoparticles (NPs) in pancreatic cancer. Here, we describe synthesis and characterization of an optimized MMP-9-cleavable linker mediating specific removal of a PEG shield from a PLGA-b-PEG-based polymeric nanocarrier (Magh@PNPs-PEG-RegaCP-PEG) leading to specific uptake of the smaller PNPs with their cargo into cells. The specific MMP-9-cleavable linker was designed based on the degradation efficiency of peptides derived from the collagen type II sequence. MMP-9-dependent uptake of the Magh@PNPs-PEG-RegaCP-PEG was demonstrated in pancreatic cancer cells in vitro. Accumulation of the Magh@PNPs-PEG-RegaCP-PEG in pancreatic tissues in the clinically relevant KPC mouse model of pancreatic cancer, as a proof-of-concept, was tumor-specific and MMP-9-dependent, indicating that MMP-9 has a strong potential as a specific mediator of PNP de-shielding for tumor-specific uptake. Pre-treatment of mice with Magh@PNPs-PEG-RegaCP-PEG led to reduction of liver metastasis and drastically decreased average colony size. In conclusion, the increased tumor-specific presence and activity of MMP-9 can be exploited to deliver an MMP-9-activatable NP to pancreatic tumors specifically, effectively, and safely.
Collapse
Affiliation(s)
- Barbara Grünwald
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Belgium
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Pierre Fiten
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Belgium
| | - Paul Proost
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Belgium
| | - Achim Krüger
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Jean Paul Lellouche
- Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Liron Limor Israel
- Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Louis Shenkman
- Department of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| |
Collapse
|
34
|
Early cathepsin K degradation of type II collagen in vitro and in vivo in articular cartilage. Osteoarthritis Cartilage 2016; 24:1461-9. [PMID: 27049030 DOI: 10.1016/j.joca.2016.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 01/09/2016] [Accepted: 03/25/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To characterize the initial events in the cleavage of type II collagen mediated by cathepsin K and demonstrate the presence of the resulting products in human and equine articular osteoarthritic cartilage. DESIGN Equine type II collagen was digested with cathepsin K and the cleavage products characterized by mass spectrometry. Anti-neoepitope antibodies were raised against the most N-terminal cleavage products and used to investigate the progress of collagen cleavage, in vitro, and the presence of cathepsin K-derived products in equine and human osteoarthritic cartilage. RESULTS Six cathepsin K cleavage sites distributed throughout the triple helical region were identified in equine type II collagen. Most of the cleavages occurred following a hydroxyproline residue. The most N-terminal site was within three residues of the previously identified site in bovine type II collagen. Western blotting using anti-neoepitope antibodies showed that the initial cleavages occurred at the N-terminal sites and this was followed by more extensive degradation resulting in products too small to be resolved by SDS gel electrophoresis. Immunohistochemical staining of cartilage sections from equine or human osteoarthritic joints showed staining in lesional areas which was not observed in non-arthritic sites. CONCLUSIONS Cathepsin K cleaves triple helical collagen by erosion from the N-terminus and with subsequent progressive cleavages. The liberated fragments can be detected in osteoarthritic cartilage and may represent useful biomarkers for disease activity.
Collapse
|
35
|
Thieblemont N, Wright HL, Edwards SW, Witko-Sarsat V. Human neutrophils in auto-immunity. Semin Immunol 2016; 28:159-73. [DOI: 10.1016/j.smim.2016.03.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/08/2016] [Accepted: 03/12/2016] [Indexed: 01/06/2023]
|
36
|
Falconer J, Mahida R, Venkatesh D, Pearson J, Robinson JH. Unconventional T-cell recognition of an arthritogenic epitope of proteoglycan aggrecan released from degrading cartilage. Immunology 2015; 147:389-98. [PMID: 26581676 DOI: 10.1111/imm.12557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 11/29/2022] Open
Abstract
It has been proposed that peptide epitopes bind to MHC class II molecules to form distinct structural conformers of the same MHC II-peptide complex termed type A and type B, and that the two conformers of the same peptide-MHC II complex are recognized by distinct CD4 T cells, termed type A and type B T cells. Both types recognize short synthetic peptides but only type A recognize endosomally processed intact antigen. Type B T cells that recognize self peptides from exogenously degraded proteins have been shown to escape negative selection during thymic development and so have the potential to contribute to the pathogenesis of autoimmunity. We generated and characterized mouse CD4 T cells specific for an arthritogenic epitope of the candidate joint autoantigen proteoglycan aggrecan. Cloned T-cell hybridomas specific for a synthetic peptide containing the aggrecan epitope showed two distinct response patterns based on whether they could recognize processed intact aggrecan. Fine mapping demonstrated that both types of T-cell recognized the same core epitope. The results are consistent with the generation of aggrecan-specific type A and type B T cells. Type B T cells were activated by supernatants released from degrading cartilage, indicating the presence of antigenic extracellular peptides or fragments of aggrecan. Type B T cells could play a role in the pathogenesis of proteoglycan-induced arthritis in mice, a model for rheumatoid arthritis, by recognizing extracellular peptides or protein fragments of joint autoantigens released by inflamed cartilage.
Collapse
Affiliation(s)
- Jane Falconer
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Rahul Mahida
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Divya Venkatesh
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jeffrey Pearson
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - John H Robinson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
LeBert DC, Squirrell JM, Rindy J, Broadbridge E, Lui Y, Zakrzewska A, Eliceiri KW, Meijer AH, Huttenlocher A. Matrix metalloproteinase 9 modulates collagen matrices and wound repair. Development 2015; 142:2136-46. [PMID: 26015541 DOI: 10.1242/dev.121160] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/01/2015] [Indexed: 12/15/2022]
Abstract
Acute and chronic injuries are characterized by leukocyte infiltration into tissues. Although matrix metalloproteinase 9 (Mmp9) has been implicated in both conditions, its role in wound repair remains unclear. We previously reported a zebrafish chronic inflammation mutant caused by an insertion in the hepatocyte growth factor activator inhibitor gene 1 (hai1; also known as spint1) that is characterized by epithelial extrusions and neutrophil infiltration into the fin. Here, we performed a microarray analysis and found increased inflammatory gene expression in the mutant larvae, including a marked increase in mmp9 expression. Depletion of mmp9 partially rescued the chronic inflammation and epithelial phenotypes, in addition to restoring collagen fiber organization, as detected by second-harmonic generation imaging. Additionally, we found that acute wounding induces epithelial cell mmp9 expression and is associated with a thickening of collagen fibers. Interestingly, depletion of mmp9 impaired this collagen fiber reorganization. Moreover, mmp9 depletion impaired tissue regeneration after tail transection, implicating Mmp9 in acute wound repair. Thus, Mmp9 regulates both acute and chronic tissue damage and plays an essential role in collagen reorganization during wound repair.
Collapse
Affiliation(s)
- Danny C LeBert
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jayne M Squirrell
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Julie Rindy
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth Broadbridge
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuming Lui
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna Zakrzewska
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
38
|
Chen S, Meng F, Chen Z, Tomlinson BN, Wesley JM, Sun GY, Whaley-Connell AT, Sowers JR, Cui J, Gu Z. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries. PLoS One 2015; 10:e0123852. [PMID: 25859655 PMCID: PMC4393235 DOI: 10.1371/journal.pone.0123852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 02/22/2015] [Indexed: 12/24/2022] Open
Abstract
Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.
Collapse
Affiliation(s)
- Shanyan Chen
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, United States of America
| | - Fanjun Meng
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Zhenzhou Chen
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Brittany N. Tomlinson
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- MS in Pathology program, University of Missouri Graduate School, Columbia, Missouri, United States of America
| | - Jennifer M. Wesley
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Grace Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Adam T. Whaley-Connell
- Department of Internal Medicine Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, United States of America
| | - James R. Sowers
- Department of Internal Medicine Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, United States of America
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, United States of America
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
39
|
Lord MS, Farrugia BL, Rnjak-Kovacina J, Whitelock JM. Current serological possibilities for the diagnosis of arthritis with special focus on proteins and proteoglycans from the extracellular matrix. Expert Rev Mol Diagn 2015; 15:77-95. [PMID: 25382274 DOI: 10.1586/14737159.2015.979158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
This review discusses our current understanding of how the expression and turnover of components of the cartilage extracellular matrix (ECM) have been investigated, both as molecular markers of arthritis and as indicators of disease progression. The cartilage ECM proteome is well studied; it contains proteoglycans (aggrecan, perlecan and inter-α-trypsin inhibitor), collagens and glycoproteins (cartilage oligomeric matrix protein, fibronectin and lubricin) that provide the structural and functional changes in arthritis. However, the changes that occur in the carbohydrate structures, including glycosaminoglycans, with disease are less well studied. Investigations of the cartilage ECM proteome have revealed many potential biomarkers of arthritis. However, a clinical diagnostic or multiplex assay is yet to be realized due to issues with specificity to the pathology of arthritis. The future search for clinical biomarkers of arthritis is likely to involve both protein and carbohydrate markers of the ECM through the application of glycoproteomics.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
40
|
Sbardella D, Sciandra F, Gioia M, Marini S, Gori A, Giardina B, Tarantino U, Coletta M, Brancaccio A, Bozzi M. α-dystroglycan is a potential target of matrix metalloproteinase MMP-2. Matrix Biol 2014; 41:2-7. [PMID: 25483986 DOI: 10.1016/j.matbio.2014.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/28/2014] [Accepted: 11/30/2014] [Indexed: 11/28/2022]
Abstract
Dystroglycan (DG) is a member of the glycoprotein complex associated to dystrophin and composed by two subunits, the β-DG, a transmembrane protein, and the α-DG, an extensively glycosylated extracellular protein. The β-DG ectodomain degradation by the matrix metallo-proteinases (i.e., MMP-2 and MMP-9) in both, pathological and physiological conditions, has been characterized in detail in previous publications. Since the amounts of α-DG and β-DG at the cell surface decrease when gelatinases are up-regulated, we investigated the degradation of α-DG subunit by MMP-2. Present data show, for the first time, that the proteolysis of α-DG indeed occurs on a native glycosylated molecule enriched from rabbit skeletal muscle. In order to characterize the α-DG portion, which is more prone to cleavage by MMP-2, we performed different degradations on tailored recombinant domains of α-DG spanning the whole subunit. The overall bulk of results casts light on a relevant susceptibility of the α-DG to MMP-2 degradation with particular reference to its C-terminal domain, thus opening a new scenario on the role of gelatinases (in particular of MMP-2) in the degradation of this glycoprotein complex, taking place in the course of pathological processes.
Collapse
Affiliation(s)
- Diego Sbardella
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare (CNR) c/c Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Magda Gioia
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Stefano Marini
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare (CNR), Milan, Italy
| | - Bruno Giardina
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Tarantino
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Massimo Coletta
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare (CNR) c/c Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Manuela Bozzi
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
41
|
Warnecke A, Sandalova T, Achour A, Harris RA. PyTMs: a useful PyMOL plugin for modeling common post-translational modifications. BMC Bioinformatics 2014; 15:370. [PMID: 25431162 PMCID: PMC4256751 DOI: 10.1186/s12859-014-0370-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/30/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Post-translational modifications (PTMs) constitute a major aspect of protein biology, particularly signaling events. Conversely, several different pathophysiological PTMs are hallmarks of oxidative imbalance or inflammatory states and are strongly associated with pathogenesis of autoimmune diseases or cancers. Accordingly, it is of interest to assess both the biological and structural effects of modification. For the latter, computer-based modeling offers an attractive option. We thus identified the need for easily applicable modeling options for PTMs. RESULTS We developed PyTMs, a plugin implemented with the commonly used visualization software PyMOL. PyTMs enables users to introduce a set of common PTMs into protein/peptide models and can be used to address research questions related to PTMs. Ten types of modification are currently supported, including acetylation, carbamylation, citrullination, cysteine oxidation, malondialdehyde adducts, methionine oxidation, methylation, nitration, proline hydroxylation and phosphorylation. Furthermore, advanced settings integrate the pre-selection of surface-exposed atoms, define stereochemical alternatives and allow for basic structure optimization of the newly modified residues. CONCLUSION PyTMs is a useful, user-friendly modelling plugin for PyMOL. Advantages of PyTMs include standardized generation of PTMs, rapid time-to-result and facilitated user control. Although modeling cannot substitute for conventional structure determination it constitutes a convenient tool that allows uncomplicated exploration of potential implications prior to experimental investments and basic explanation of experimental data. PyTMs is freely available as part of the PyMOL script repository project on GitHub and will further evolve. Graphical Abstract PyTMs is a useful PyMOL plugin for modeling common post-translational modifications.
Collapse
Affiliation(s)
- Andreas Warnecke
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Applied Immunology & Immunotherapy, L8:04, Karolinska Hospital, SE-171 76, Stockholm, Sweden.
| | - Tatyana Sandalova
- Department of Medicine Solna, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
| | - Adnane Achour
- Department of Medicine Solna, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Applied Immunology & Immunotherapy, L8:04, Karolinska Hospital, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
42
|
Wright HL, Moots RJ, Edwards SW. The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol 2014; 10:593-601. [PMID: 24914698 DOI: 10.1038/nrrheum.2014.80] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Of all cells implicated in the pathology of rheumatoid arthritis (RA), neutrophils possess the greatest cytotoxic potential, owing to their ability to release degradative enzymes and reactive oxygen species. Neutrophils also contribute to the cytokine and chemokine cascades that accompany inflammation, and regulate immune responses via cell-cell interactions. Emerging evidence suggests that neutrophils also have a previously unrecognised role in autoimmune diseases: neutrophils can release neutrophil extracellular traps (NETs) containing chromatin associated with granule enzymes, which not only kill extracellular microorganisms but also provide a source of autoantigens. For example, citrullinated proteins that can act as neoepitopes in loss of immune tolerance are generated by peptidylarginine deiminases, which replace arginine with citrulline residues, within neutrophils. Indeed, antibodies to citrullinated proteins can be detected before the onset of symptoms in patients with RA, and are predictive of erosive disease. Neutrophils from patients with RA have an increased tendency to form NETs containing citrullinated proteins, and sera from such patients contain autoantibodies that recognize these proteins. Thus, in addition to their cytotoxic and immunoregulatory role in RA, neutrophils may be a source of the autoantigens that drive the autoimmune processes underlying this disease.
Collapse
Affiliation(s)
- Helen L Wright
- Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
| | - Robert J Moots
- Institute of Ageing and Chronic Disease, University Hospital Aintree, University of Liverpool, Longmoor Lane, Liverpool L9 7AL, UK
| | - Steven W Edwards
- Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
43
|
Singh K, Agrawal NK, Gupta SK, Mohan G, Chaturvedi S, Singh K. Differential Expression of Matrix Metalloproteinase-9 Gene in Wounds of Type 2 Diabetes Mellitus Cases With Susceptible -1562C>T Genotypes and Wound Severity. INT J LOW EXTR WOUND 2014; 13:94-102. [DOI: 10.1177/1534734614534980] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coordinated extracellular matrix deposition is a prerequisite for proper wound healing which is mainly orchestrated by matrix metalloproteinases (MMPs). Diabetic wounds generally show compromised wound healing cascade and abnormal MMP9 concentration is one of the cause. Our group have recently shown that the polymorphism -1562 C>T in the promoter region of MMP9 gene is associated with pathogenesis of wound healing impairment in T2DM patients. In present study we have done expression profiling of MMP9 gene in the wound biopsy of DFU cases. Expression level of MMP9 mRNA was then compared with susceptible -1562 C>T genotypes (TT and CT) as well as with different grades of wounds. We also screened the promoter region of MMP9 gene to see the methylation state of CpGs present there. Our study suggests that levels of MMP9 mRNA increase significantly with the wound grades. Moreover, the MMP9 levels in diabetic wounds were also dependent on -1562 C>T polymorphism in the promoter region of MMP9. Diabetic wounds also showed a significant unmethylated status of MMP9 promoter compared to control wounds. In conclusion, The risk genotypes of -1562 C>T polymorphism along with lack of methylation of CpG sites in MMP9 gene promoter may result in altered expression of MMP9 in wounds of T2DM cases resulting into nonhealing chronic ulcers in them.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| | - Neeraj K. Agrawal
- Department of Endocrinology and Metabolism, IMS, Banaras Hindu University, Varanasi, India
| | - Sanjeev K. Gupta
- Department of General Surgery, IMS, Banaras Hindu University, Varanasi, India
| | - Gyanendra Mohan
- Indian Railway Cancer Hospital and Research Centre, N.E.R., Varanasi, India
| | - Sunanda Chaturvedi
- Indian Railway Cancer Hospital and Research Centre, N.E.R., Varanasi, India
| | - Kiran Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| |
Collapse
|
44
|
Mirshafiey A, Asghari B, Ghalamfarsa G, Jadidi-Niaragh F, Azizi G. The significance of matrix metalloproteinases in the immunopathogenesis and treatment of multiple sclerosis. Sultan Qaboos Univ Med J 2014; 14:e13-25. [PMID: 24516744 DOI: 10.12816/0003332] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 06/28/2013] [Accepted: 09/19/2013] [Indexed: 11/27/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). The major pathological outcomes of the disease are the loss of blood-brain barrier (BBB) integrity and the development of reactive astrogliosis and MS plaque. For the disease to occur, the non-resident cells must enter into the immune-privileged CNS through a breach in the relatively impermeable BBB. It has been demonstrated that matrix metalloproteinases (MMPs) play an important role in the immunopathogenesis of MS, in part through the disruption of the BBB and the recruitment of inflammatory cells into the CNS. Moreover, MMPs can also enhance the cleavage of myelin basic protein (MBP) and the demyelination process. Regarding the growing data on the roles of MMPs and their tissue inhibitors (TIMPs) in the pathogenesis of MS, this review discusses the role of different types of MMPs, including MMP-2, -3, -7, -9, -12 and -25, in the immunopathogenesis and treatment of MS.
Collapse
Affiliation(s)
- Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Asghari
- Antimicrobial Resistance Research Center, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ghasem Ghalamfarsa
- Cellular & Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
45
|
Yasuda T. Nuclear factor-κB activation by type II collagen peptide in articular chondrocytes: its inhibition by hyaluronan via the receptors. Mod Rheumatol 2014. [DOI: 10.3109/s10165-012-0804-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
|
47
|
YASUDA T. Type II collagen peptide stimulates Akt leading to nuclear factor-κB activation: Its inhibition by hyaluronan. Biomed Res 2014; 35:193-9. [DOI: 10.2220/biomedres.35.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Keller MR, Haynes LD, Jankowska-Gan E, Sullivan JA, Agashe VV, Burlingham SR, Burlingham WJ. Epitope analysis of the collagen type V-specific T cell response in lung transplantation reveals an HLA-DRB1*15 bias in both recipient and donor. PLoS One 2013; 8:e79601. [PMID: 24265781 PMCID: PMC3827168 DOI: 10.1371/journal.pone.0079601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/24/2013] [Indexed: 12/15/2022] Open
Abstract
Background IL-17-dependent cellular immune responses to the α1 chain of collagen type V are associated with development of bronchiolitis obliterans syndrome after lung transplantation, and with idiopathic pulmonary fibrosis and coronary artery disease, primary indications for lung or heart transplantation, respectively. Methodology/Principal Findings We found that 30% of the patients awaiting lung transplantation exhibited a strong cell-mediated immune response to col(V). Of these, 53% expressed HLA-DR15, compared to a 28% HLA-DR15 frequency in col(V) low-responders (p=0.02). After transplantation, patients with HLA-DR1 and -DR17, not -DR15, developed anti-col(V) responses most frequently (p=0.04 and 0.01 vs. controls, respectively). However, recipients of a lung from an HLA-DR15+donor were at significantly elevated risk of developing anti-col(V) responses (p=0.02) and BOS (p=0.03). To determine the molecular basis of this unusual pattern of DR allele bias, a peptide library comprising the collagenous region of the α1(V) protein was screened for binding to HLA-DR0101, -DR1501, -DR0301 (DR17) or to HLA-DQ2 (DQA1*0501: DQB1*0201; in linkage disequilibrium with -DR17) and -DQ6 (DQA1*0102: DQB1*0602; linked to -DR15). Eight 15-mer peptides, six DR-binding and two DQ-binding, were identified. HLA-DR15 binding to two peptides yielded the highest binding scores: 650 (where 100 = positive control) for p799 (GIRGLKGTKGEKGED), and 193 for p1439 (LRGIPGPVGEQGLPG). These peptides, which also bound weakly to HLA-DR1, elicited responses in both HLA-DR1+ and -DR15+ col(V) reactive hosts, whereas binding and immunoreactivity of p1049 (KDGPPGLRGFPGDRG) was DR15-specific. Remarkably, a col(V)-reactive HLA-DR1+DR15neg lung transplant patient, whose donor was HLA-DR15+, responded not only to p799 and p1439, but also to p1049. Conclusions/Significance HLA-DR15 and IPF disease were independently associated with pre-transplant col(V) autoimmunity. The increased risk of de novo immunity to col(V) and BOS, associated with receiving a lung transplant from an HLA-DR15+ donor, may result from presentation by donor-derived HLA- DR15, of novel self-peptides to recipient T cells.
Collapse
Affiliation(s)
- Melissa R. Keller
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Lynn D. Haynes
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ewa Jankowska-Gan
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jeremy A. Sullivan
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Vrushali V. Agashe
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Scott R. Burlingham
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - William J. Burlingham
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
49
|
Singh K, Agrawal NK, Gupta SK, Singh K. A functional single nucleotide polymorphism -1562C>T in the matrix metalloproteinase-9 promoter is associated with type 2 diabetes and diabetic foot ulcers. INT J LOW EXTR WOUND 2013; 12:199-204. [PMID: 24043671 DOI: 10.1177/1534734613493289] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Impaired neovascularization is the hallmark of type 2 diabetes, which results in various macro- and microvascular complications and the development of foot ulcerations later in life. Matrix metalloproteinases (MMPs) are the key enzymes which influence matrix remodeling. Here, we aim to investigate that whether single nucleotide polymorphism (SNP -1562C>T) (rs3918242) in the promoter region of MMP-9 gene, which alters the transcriptional activity of MMP-9 is associated with type 2 diabetes and diabetic foot ulcers (DFUs). This case-control study was composed of 730 individuals, out of which 463 patients were with type 2 diabetes mellitus (T2DM) and 267 were nondiabetic healthy controls (non-DM controls). T2DM patients were subclassified as 149 cases without any secondary complications (T2DMNSC), 110 with DFUs, 204 T2DM patients having one or the other secondary complications. Genotyping for -1562C>T SNP in MMP-9 gene was done by polymerase chain reaction-restriction fragment length polymorphism method and sequencing. SNP -1562C>T of MMP-9 gene showed a significant association with T2DM and DFU. The allele distribution differed significantly between patients and normal control group (odds ratio = 1.82, P = .00005, 95% confidence interval = 1.36-2.42 for T2DM vs control and odds ratio = 2.112, P = .00048, 95% confidence interval = 1.38-3.126 for DFU vs control) indicating strong association of SNP -1562C>T of MMP-9 gene with T2DM and DFU in an Indian population. SNP -1562C>T in the promoter of the MMP-9 gene results in increased expression at the level of the transcription. To the best of our knowledge, this is the first report that suggests that SNP -1562C>T in the promoter of the MMP-9 gene is associated with T2DM and DFU. An increased MMP-9 production from high expressing T allele may promote matrix degradation.
Collapse
Affiliation(s)
- Kanhaiya Singh
- 1Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| | | | | | | |
Collapse
|
50
|
Perdivara I, Yamauchi M, Tomer KB. Molecular Characterization of Collagen Hydroxylysine O-Glycosylation by Mass Spectrometry: Current Status. Aust J Chem 2013; 66:760-769. [PMID: 25414518 PMCID: PMC4235766 DOI: 10.1071/ch13174] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The most abundant proteins in vertebrates - the collagen family proteins - play structural and biological roles in the body. The predominant member, type I collagen, provides tissues and organs with structure and connectivity. This protein has several unique post-translational modifications that take place intra- and extra-cellularly. With growing evidence of the relevance of such post-translational modifications in health and disease, the biological significance of O-linked collagen glycosylation has recently drawn increased attention. However, several aspects of this unique modification - the requirement for prior lysyl hydroxylation as a substrate, involvement of at least two distinct glycosyl transferases, its involvement in intermolecular crosslinking - have made its molecular mapping and quantitative characterization challenging. Such characterization is obviously crucial for understanding its biological significance. Recent progress in mass spectrometry has provided an unprecedented opportunity for this type of analysis. This review summarizes recent advances in the area of O-glycosylation of fibrillar collagens and their characterization using state-of-the-art liquid chromatography-mass spectrometry-based methodologies, and perspectives on future research. The analytical characterization of collagen crosslinking and advanced glycation end-products are not addressed here.
Collapse
Affiliation(s)
- Irina Perdivara
- Mass Spectrometry Group, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, NC 27709, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC 27599, USA
| | - Kenneth B. Tomer
- Mass Spectrometry Group, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, NC 27709, USA
| |
Collapse
|