1
|
Valerie Sia JE, Lai X, Mak WY, Wu X, Zhang F, Cui C, Liu D, Xiang X. Aging-Related CYP3A Functional Changes in Chinese Older Patients: New Findings from Model-Based Assessment of Amlodipine. Clin Pharmacol Ther 2024; 116:858-865. [PMID: 39164849 DOI: 10.1002/cpt.3347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/04/2024] [Indexed: 08/22/2024]
Abstract
Aging-related alterations in hepatic enzyme activity, particularly of the CYP3A, significantly impact drug efficacy and safety in older adults, making it essential to understand how aging affects CYP function for optimal drug therapy. The exogenous probe substrate method, a minimally invasive approach to assess liver metabolic enzyme activity in vivo, is effective in studying these changes. Amlodipine being extensively metabolized (> 90%) in the liver, primarily via cytochrome P450 enzyme CYP3A was selected as a probe to investigate and quantify the factors affecting the aging-related changes of CYP3A in the Chinese older population. Amlodipine concentration data were collected from an ongoing noninterventional clinical study conducted at Peking University Third Hospital. A physiologically-based pharmacokinetic modeling approach, grounded in population pharmacokinetic (PPK) analysis, was employed to physiologically quantify the aging-related changes in CYP3A function. A total of 132 amlodipine concentrations from 69 patients were obtained from the clinical study. PPK analysis shows that frailty phenotype but not age is a significant influence and frail patients have 37% greater plasma amlodipine exposure than nonfrail patients. This difference in CYP3A function may be attributed to a 63.2% lower CYP3A relative abundance in the frail patients, compared with that in the nonfrail patients. In the context of dose selection for older adults, focusing on frailty rather than chronological age should be recognized as a more relevant approach, because frailty might more accurately reflect the individual's biological age. Our study suggested a need to shift the research focus from chronological age to biological age.
Collapse
Affiliation(s)
- Jie En Valerie Sia
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
- Geriatrics Department, Peking University Third Hospital, Beijing, China
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Xuan Lai
- Geriatrics Department, Peking University Third Hospital, Beijing, China
| | - Wen Yao Mak
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinyi Wu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Fan Zhang
- Geriatrics Department, Peking University Third Hospital, Beijing, China
| | - Cheng Cui
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Davis M. Fentanyl Pharmacokinetic Paradoxical in Cancer Cachexia. J Pain Symptom Manage 2024; 68:e78. [PMID: 38570173 DOI: 10.1016/j.jpainsymman.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Affiliation(s)
- Mellar Davis
- Geisinger Medical Center, Danville, Pennsylvania.
| |
Collapse
|
3
|
Klomp SD, Veringa A, Alffenaar JC, de Boer MGJ, Span LFR, Guchelaar H, Swen JJ. Inflammation altered correlation between CYP2C19 genotype and CYP2C19 activity in patients receiving voriconazole. Clin Transl Sci 2024; 17:e13887. [PMID: 39010708 PMCID: PMC11250525 DOI: 10.1111/cts.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Voriconazole is the cornerstone of the treatment and prevention of fungal infections. While there is a good correlation between CYP2C19 genotype and voriconazole exposure during prophylactic treatment, no correlation was found in patients with invasive aspergillosis. Proinflammatory cytokines result in inhibition of CYP2C19 enzyme activity (and may result in phenoconversion). Here we investigated the relationship between inflammation, CYP2C19 genotype-predicted-phenotype, and CYP2C19 activity in patients receiving voriconazole. Data were obtained from two prospective studies investigating voriconazole treatment (NCT02074462 and NCT00893555). Dose-corrected voriconazole plasma concentration and C-reactive protein (CRP) were used as proxies for CYP2C19 activity and inflammation, respectively. After data extraction and synthesis, data from 39 patients with paired voriconazole and CRP measurements were available. The distribution of CYP2C19 genotype-predicted metabolizer phenotypes was 31% intermediate (IM), 41% normal (NM), and 28% rapid metabolizer (RM). During inflammation, dose-corrected voriconazole levels were increased by 245%, 278%, and 486% for CYP2C19 NMs IMs and RMs, respectively. Patients with moderate or high CRP levels (>50 mg/L) were phenoconverted to a lower metabolizer phenotype irrespective of their CYP2C19 genotype. In a subgroup analysis of eight patients with longitudinal data available with and without inflammation, the pattern of the dose-corrected voriconazole and CRP measurements were similar, with CYP2C19 activity following decreasing or increasing CRP levels. In conclusion, voriconazole plasma concentrations increase during inflammation due to downregulation of CYP2C19 activity. While this effect appears largest for CYP2C19 RMs, no clinically relevant differences were observed between the CYP2C19 genotypes.
Collapse
Affiliation(s)
- Sylvia D. Klomp
- Department of Clinical Pharmacy & ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Anette Veringa
- Department of Clinical Pharmacy and PharmacologyUniversity Medical Center GroningenGroningenThe Netherlands
- Apotheek, OLVGAmsterdamThe Netherlands
| | - Jan‐Willem C. Alffenaar
- Department of Clinical Pharmacy and PharmacologyUniversity Medical Center GroningenGroningenThe Netherlands
- Faculty of Medicine and HealthSydney School of PharmacySydneyNew South WalesAustralia
- The University of Sydney Institute for Infectious DiseasesSydneyNew South WalesAustralia
- Westmead HospitalSydneyNew South WalesAustralia
| | - Mark G. J. de Boer
- Department of Infectious DiseasesLeiden University Medical CenterLeidenThe Netherlands
| | - Lambert F. R. Span
- Department of HematologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Henk‐Jan Guchelaar
- Department of Clinical Pharmacy & ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jesse J. Swen
- Department of Clinical Pharmacy & ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
4
|
Lusiki Z, Blom D, Soko ND, Malema S, Jones E, Rayner B, Blackburn J, Sinxadi P, Dandara MT, Dandara C. Major Genetic Drivers of Statin Treatment Response in African Populations and Pharmacogenetics of Dyslipidemia Through a One Health Lens. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:261-279. [PMID: 37956269 DOI: 10.1089/omi.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A One Health lens is increasingly significant to address the intertwined challenges in planetary health concerned with the health of humans, nonhuman animals, plants, and ecosystems. A One Health approach can benefit the public health systems in Africa that are overburdened by noncommunicable, infectious, and environmental diseases. Notably, the COVID-19 pandemic revealed the previously overlooked two-fold importance of pharmacogenetics (PGx), for individually tailored treatment of noncommunicable diseases and environmental pathogens. For example, dyslipidemia, a common cardiometabolic risk factor, has been identified as an independent COVID-19 severity risk factor. Observational data suggest that patients with COVID-19 infection receiving lipid-lowering therapy may have better outcomes. However, among African patients, the response to these drugs varies from patient to patient, pointing to the possible contribution of genetic variation in important pharmacogenes. The PGx of lipid-lowering therapies may underlie differences in treatment responses observed among dyslipidemia patients as well as patients comorbid with COVID-19 and dyslipidemia. Genetic variations in APOE, ABCB1, CETP, CYP2C9, CYP3A4, CYP3A5, HMGCR, LDLR, NPC1L1, and SLCO1B1 genes affect the pharmacogenomics of statins, and they have individually been linked to differential responses to dyslipidemia and COVID-19 treatment. African populations are underrepresented in PGx research. This leads to poor accounting of additional diverse genetic variants that could be important in understanding interindividual and between-population variations in therapeutic responses to dyslipidemia and COVID-19. This expert review examines and synthesizes the salient and priority PGx variations, as seen through a One Health lens in Africa, to improve and inform personalized medicine in both dyslipidemia and COVID-19.
Collapse
Affiliation(s)
- Zizo Lusiki
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Dirk Blom
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Lipidology and Cape Heart Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nyarai D Soko
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Smangele Malema
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Erika Jones
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Nephrology and Hypertension, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Brian Rayner
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Nephrology and Hypertension, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jonathan Blackburn
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Phumla Sinxadi
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Michelle T Dandara
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| |
Collapse
|
5
|
Peter JU, Dieudonné P, Zolk O. Pharmacokinetics, Pharmacodynamics, and Side Effects of Midazolam: A Review and Case Example. Pharmaceuticals (Basel) 2024; 17:473. [PMID: 38675433 PMCID: PMC11054797 DOI: 10.3390/ph17040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Midazolam, a short-acting benzodiazepine, is widely used to alleviate patient anxiety, enhance compliance, and aid in anesthesia. While its side effects are typically dose-dependent and manageable with vigilant perioperative monitoring, serious cardiorespiratory complications, including fatalities and permanent neurological impairment, have been documented. Prolonged exposure to benzodiazepines, such as midazolam, has been associated with neurological changes in infants. Despite attempts to employ therapeutic drug monitoring for optimal sedation dosing, its efficacy has been limited. Consequently, efforts are underway to identify alternative predictive markers to guide individualized dosing and mitigate adverse effects. Understanding these factors is crucial for determining midazolam's suitability for future administration, particularly after a severe adverse reaction. This article aims to elucidate the factors influencing midazolam's pharmacokinetics and pharmacodynamics, potentially leading to adverse events. Finally, a case study is presented to exemplify the complex investigation into the causative factors of midazolam-related adverse events.
Collapse
Affiliation(s)
- Jens-Uwe Peter
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School, 15562 Rüdersdorf, Germany;
| | - Peter Dieudonné
- Department of Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Oliver Zolk
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School, 15562 Rüdersdorf, Germany;
| |
Collapse
|
6
|
Hanif N, Sari S. Discovery of novel IDO1/TDO2 dual inhibitors: a consensus Virtual screening approach with molecular dynamics simulations, and binding free energy analysis. J Biomol Struct Dyn 2024:1-17. [PMID: 38498355 DOI: 10.1080/07391102.2024.2329302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
The pursuit of effective cancer immunotherapy drugs remains challenging, with overexpression of indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO2) allowing cancer cells to evade immune attacks. While several IDO1 inhibitors have undergone clinical testing, only three dual IDO1/TDO2 inhibitors have reached human trials. Hence, this study focuses on identifying novel IDO1/TDO2 dual inhibitors through consensus structure-based virtual screening (SBVS). ZINC15 natural products library was refined based on molecular descriptors, and the selected compounds were docked to the holo form IDO1 and TDO2 using two different software programs and ranked according to their consensus docking scores. The top-scoring compounds underwent in silico evaluations for pharmacokinetics, toxicity, CYP3A4 affinity, molecular dynamics (MD) simulations, and MM-GBSA binding free energy calculations. Five compounds (ZINC00000079405/10, ZINC00004028612/11, ZINC00013380497/12, ZINC00014613023/13, and ZINC00103579819/14) were identified as potential IDO1/TDO2 dual inhibitors due to their high consensus docking scores, key residue interactions with the enzymes, favorable pharmacokinetics, and avoidance of CYP3A4 binding. MD simulations of the top three hits with IDO1 indicated conformational changes and compactness, while MM-GBSA analysis revealed strong binding free energy for compounds 10 (ΔG: -20.13 kcal/mol) and 11 (ΔG: -16.22 kcal/mol). These virtual hits signify a promising initial step in identifying candidates as supplementary therapeutics to immune checkpoint inhibitors in cancer treatment. Their potential to deliver potent dual inhibition of IDO1/TDO2, along with safety and favorable pharmacokinetics, makes them compelling. Validation through in vitro and in vivo assays should be conducted to confirm their activity, selectivity, and preclinical potential as holo IDO1/TDO2 dual inhibitors.
Collapse
Affiliation(s)
- Naufa Hanif
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, Yogyakarta, Indonesia
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Beaudoin JJ, Clemens L, Miedel MT, Gough A, Zaidi F, Ramamoorthy P, Wong KE, Sarangarajan R, Battista C, Shoda LKM, Siler SQ, Taylor DL, Howell BA, Vernetti LA, Yang K. The Combination of a Human Biomimetic Liver Microphysiology System with BIOLOGXsym, a Quantitative Systems Toxicology (QST) Modeling Platform for Macromolecules, Provides Mechanistic Understanding of Tocilizumab- and GGF2-Induced Liver Injury. Int J Mol Sci 2023; 24:9692. [PMID: 37298645 PMCID: PMC10253699 DOI: 10.3390/ijms24119692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Biologics address a range of unmet clinical needs, but the occurrence of biologics-induced liver injury remains a major challenge. Development of cimaglermin alfa (GGF2) was terminated due to transient elevations in serum aminotransferases and total bilirubin. Tocilizumab has been reported to induce transient aminotransferase elevations, requiring frequent monitoring. To evaluate the clinical risk of biologics-induced liver injury, a novel quantitative systems toxicology modeling platform, BIOLOGXsym™, representing relevant liver biochemistry and the mechanistic effects of biologics on liver pathophysiology, was developed in conjunction with clinically relevant data from a human biomimetic liver microphysiology system. Phenotypic and mechanistic toxicity data and metabolomics analysis from the Liver Acinus Microphysiology System showed that tocilizumab and GGF2 increased high mobility group box 1, indicating hepatic injury and stress. Tocilizumab exposure was associated with increased oxidative stress and extracellular/tissue remodeling, and GGF2 decreased bile acid secretion. BIOLOGXsym simulations, leveraging the in vivo exposure predicted by physiologically-based pharmacokinetic modeling and mechanistic toxicity data from the Liver Acinus Microphysiology System, reproduced the clinically observed liver signals of tocilizumab and GGF2, demonstrating that mechanistic toxicity data from microphysiology systems can be successfully integrated into a quantitative systems toxicology model to identify liabilities of biologics-induced liver injury and provide mechanistic insights into observed liver safety signals.
Collapse
Affiliation(s)
- James J. Beaudoin
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Lara Clemens
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Mark T. Miedel
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Albert Gough
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Fatima Zaidi
- Metabolon Inc., Durham, NC 27713, USA (P.R.); (K.E.W.); (R.S.)
| | | | - Kari E. Wong
- Metabolon Inc., Durham, NC 27713, USA (P.R.); (K.E.W.); (R.S.)
| | | | - Christina Battista
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Lisl K. M. Shoda
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Scott Q. Siler
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - D. Lansing Taylor
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Brett A. Howell
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Lawrence A. Vernetti
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Kyunghee Yang
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| |
Collapse
|
8
|
Konstandi M, Johnson EO. Age-related modifications in CYP-dependent drug metabolism: role of stress. Front Endocrinol (Lausanne) 2023; 14:1143835. [PMID: 37293497 PMCID: PMC10244505 DOI: 10.3389/fendo.2023.1143835] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 06/10/2023] Open
Abstract
Accumulating clinical evidence indicates extensive inter-individual variations in the effectiveness and adverse effects of standard treatment protocols, which are largely attributed to the multifactorial regulation of the hepatic CYP-dependent drug metabolism that is connected with either transcriptional or post-translational modifications. Age and stress belong to the most important factors in CYP gene regulation. Alterations in neuroendocrine responses to stress, which are associated with modified hypothalamo-pituitary-adrenal axis function, usually accompany ageing. In this light, ageing followed by a decline of the functional integrity of organs, including liver, a failure in preserving homeostasis under stress, increased morbidity and susceptibility to stress, among others, holds a determinant role in the CYP-catalyzed drug metabolism and thus, in the outcome and toxicity of pharmacotherapy. Modifications in the drug metabolizing capacity of the liver with age have been reported and in particular, a decline in the activity of the main CYP isoforms in male senescent rats, indicating decreased metabolism and higher levels of the drug-substrates in their blood. These factors along with the restricted experience in the use of the most medicines in childhood and elderly, could explain at an extent the inter-individual variability in drug efficacy and toxicity outcomes, and underscore the necessity of designing the treatment protocols, accordingly.
Collapse
Affiliation(s)
- Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Elizabeth O. Johnson
- Department of Anatomy, School of Medicine, European University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
9
|
Baalbaki N, Duijvelaar E, Said MM, Schippers J, Bet PM, Twisk J, Fritchley S, Longo C, Mahmoud K, Maitland-van der Zee AH, Bogaard HJ, Swart EL, Aman J, Bartelink IH. Pharmacokinetics and pharmacodynamics of imatinib for optimal drug repurposing from cancer to COVID-19. Eur J Pharm Sci 2023; 184:106418. [PMID: 36870577 PMCID: PMC9979628 DOI: 10.1016/j.ejps.2023.106418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
INTRODUCTION In the randomized double-blind placebo-controlled CounterCOVID study, oral imatinib treatment conferred a positive clinical outcome and a signal for reduced mortality in COVID-19 patients. High concentrations of alpha-1 acid glycoprotein (AAG) were observed in these patients and were associated with increased total imatinib concentrations. AIMS This post-hoc study aimed to compare the difference in exposure following oral imatinib administration in COVID-19 patients to cancer patients and assess assocations between pharmacokinetic (PK) parameters and pharmacodynamic (PD) outcomes of imatinib in COVID-19 patients. We hypothesize that a relatively higher drug exposure of imatinib in severe COVID-19 patients leads to improved pharmacodynamic outcome parameters. METHODS 648 total concentration plasma samples obtained from 168 COVID-19 patients were compared to 475 samples of 105 cancer patients, using an AAG-binding model. Total trough concentration at steady state (Cttrough) and total average area under the concentration-time curve (AUCtave) were associated with ratio between partial oxygen pressure and fraction of inspired oxygen (P/F), WHO ordinal scale (WHO-score) and liberation of oxygen supplementation (O2lib). Linear regression, linear mixed effects models and time-to-event analysis were adjusted for possible confounders. RESULTS AUCtave and Cttrough were respectively 2.21-fold (95%CI 2.07-2.37) and 1.53-fold (95%CI 1.44-1.63) lower for cancer compared to COVID-19 patients. Cttrough, not AUCtave, associated significantly with P/F (β=-19,64; p-value=0.014) and O2lib (HR 0.78; p-value= 0.032), after adjusting for sex, age, neutrophil-lymphocyte ratio, dexamethasone concomitant treatment, AAG and baseline P/F-and WHO-score. Cttrough, but not AUCtave associated significantly with WHO-score. These results suggest an inverse relationship between PK-parameters, Cttrough and AUCtave, and PD outcomes. CONCLUSION COVID-19 patients exhibit higher total imatinib exposure compared to cancer patients, attributed to differences in plasma protein concentrations. Higher imatinib exposure in COVID-19 patients did not associate with improved clinical outcomes. Cttrough and AUCtave inversely associated with some PD-outcomes, which may be biased by disease course, variability in metabolic rate and protein binding. Therefore, additional PKPD analyses into unbound imatinib and its main metabolite may better explain exposure-response.
Collapse
Affiliation(s)
- Nadia Baalbaki
- Department of Pulmonary Medicine, Amsterdam UMC, location AMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands.
| | - Erik Duijvelaar
- Department of Pulmonary Medicine, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Medhat M Said
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Job Schippers
- Department of Pulmonary Medicine, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Pierre M Bet
- Amsterdam Public Health, Amsterdam, the Netherlands; Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jos Twisk
- Amsterdam Public Health, Amsterdam, the Netherlands; Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | | | - Cristina Longo
- Department of Pulmonary Medicine, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
| | - Kazien Mahmoud
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Anke H Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC, location AMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Eleonora L Swart
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Imke H Bartelink
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Diclofenac Disrupts the Circadian Clock and through Complex Cross-Talks Aggravates Immune-Mediated Liver Injury-A Repeated Dose Study in Minipigs for 28 Days. Int J Mol Sci 2023; 24:ijms24021445. [PMID: 36674967 PMCID: PMC9863319 DOI: 10.3390/ijms24021445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
Diclofenac effectively reduces pain and inflammation; however, its use is associated with hepato- and nephrotoxicity. To delineate mechanisms of injury, we investigated a clinically relevant (3 mg/kg) and high-dose (15 mg/kg) in minipigs for 4 weeks. Initially, serum biochemistries and blood-smears indicated an inflammatory response but returned to normal after 4 weeks of treatment. Notwithstanding, histopathology revealed drug-induced hepatitis, marked glycogen depletion, necrosis and steatosis. Strikingly, the genomic study revealed diclofenac to desynchronize the liver clock with manifest inductions of its components CLOCK, NPAS2 and BMAL1. The > 4-fold induced CRY1 expression underscored an activated core-loop, and the dose dependent > 60% reduction in PER2mRNA repressed the negative feedback loop; however, it exacerbated hepatotoxicity. Bioinformatics enabled the construction of gene-regulatory networks, and we linked the disruption of the liver-clock to impaired glycogenesis, lipid metabolism and the control of immune responses, as shown by the 3-, 6- and 8-fold induced expression of pro-inflammatory CXCL2, lysozyme and ß-defensin. Additionally, diclofenac treatment caused adrenocortical hypertrophy and thymic atrophy, and we evidenced induced glucocorticoid receptor (GR) activity by immunohistochemistry. Given that REV-ERB connects the circadian clock with hepatic GR, its > 80% repression alleviated immune responses as manifested by repressed expressions of CXCL9(90%), CCL8(60%) and RSAD2(70%). Together, we propose a circuitry, whereby diclofenac desynchronizes the liver clock in the control of the hepatic metabolism and immune response.
Collapse
|
11
|
Manóchio C, Torres-Loureiro S, Scudeler MM, Miwa B, Souza-Santos FC, Rodrigues-Soares F. Theranostics for COVID-19 Antiviral Drugs: Prospects and Challenges for Worldwide Precision/Personalized Medicine. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:6-14. [PMID: 36602768 DOI: 10.1089/omi.2022.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a systemic disease that impacts multiple organ systems with a complex clinical presentation and outcomes that can vary from person to person and between populations. To optimize COVID-19 treatment outcomes, and in light of the availability of antiviral drugs, there is a need for greater attention to the field of theranostics, the fusion of therapeutics and diagnostics. Theranostics tests would be invaluable, we suggest in this expert review, so as to optimize the efficacy and safety of current and future antiviral drugs against COVID-19. Theranostics would also assist in the design and implementation of clinical trials with antiviral drug candidates. We discuss here theranostics considering drugs such as remdesivir, Paxlovid™, and molnupiravir. All in all, we underscore that theranostics as a concept and practice is essential for efficient and safe health interventions against COVID-19 and other ecological crises in the 21st century.
Collapse
Affiliation(s)
- Caíque Manóchio
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Sabrina Torres-Loureiro
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Mariana M Scudeler
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Bruno Miwa
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.,Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda C Souza-Santos
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Fernanda Rodrigues-Soares
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
12
|
Abdallah YEH, Chahal S, Jamali F, Mahmoud SH. Drug-disease interaction: Clinical consequences of inflammation on drugs action and disposition. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2023; 26:11137. [PMID: 36942294 PMCID: PMC9990632 DOI: 10.3389/jpps.2023.11137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023]
Abstract
Inflammation is a culprit in many conditions affecting millions of people worldwide. A plethora of studies has revealed that inflammation and inflammatory mediators such as cytokines and chemokines are associated with altered expression and activity of various proteins such as those involved in drug metabolism, specifically cytochrome P450 enzymes (CYPs). Emphasis of most available reports is on the inflammation-induced downregulation of CYPs, subsequently an increase in their substrate concentrations, and the link between the condition and the inflammatory mediators such as interleukin-6 and tumor necrosis factor alpha. However, reports also suggest that inflammation influences expression and/or activity of other proteins such as those involved in the drug-receptor interaction. These multifaced involvements render the clinical consequence of the inflammation unexpected. Such changes are shown in many inflammatory conditions including rheumatoid arthritis, Crohn's disease, acute respiratory illnesses as well as natural processes such as aging, among others. For example, some commonly used cardiovascular drugs lose their efficacy when patients get afflicted with inflammatory conditions such as rheumatoid arthritis and Crohn's disease. Interestingly, this is despite increased concentration subsequent to reduced clearance. The observation is attributed to a simultaneous reduction in the expression of target receptor proteins such as the calcium and potassium channel and β-adrenergic receptor as well as the metabolic enzymes. This narrative review summarizes the current understanding and clinical implications of the inflammatory effects on both CYPs and drug-receptor target proteins.
Collapse
|
13
|
Al-Taie A, Büyük AŞ, Sardas S. Considerations into pharmacogenomics of COVID-19 pharmacotherapy: Hope, hype and reality. Pulm Pharmacol Ther 2022; 77:102172. [PMID: 36265833 PMCID: PMC9576910 DOI: 10.1016/j.pupt.2022.102172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
COVID-19 medicines, such as molnupiravir are beginning to emerge for public health and clinical practice. On the other hand, drugs display marked variability in their efficacy and safety. Hence, COVID-19 medicines, as with all drugs, will be subject to the age-old maxim "one size prescription does not fit all". In this context, pharmacogenomics is the study of genome-by-drug interactions and offers insights on mechanisms of patient-to-patient and between-population variations in drug efficacy and safety. Pharmacogenomics information is crucial to tailoring the patients' prescriptions to achieve COVID-19 preventive and therapeutic interventions that take into account the host biology, patients' genome, and variable environmental exposures that collectively influence drug efficacy and safety. This expert review critically evaluates and summarizes the pharmacogenomics and personalized medicine aspects of the emerging COVID-19 drugs, and other selected drug interventions deployed to date. Here, we aim to sort out the hope, hype, and reality and suggest that there are veritable prospects to advance COVID-19 medicines for public health benefits, provided that pharmacogenomics is considered and implemented adequately. Pharmacogenomics is an integral part of rational and evidence-based medical practice. Scientists, health care professionals, pharmacists, pharmacovigilance practitioners, and importantly, patients stand to benefit by expanding the current pandemic response toolbox by the science of pharmacogenomics, and its applications in COVID-19 medicines and clinical trials.
Collapse
Affiliation(s)
- Anmar Al-Taie
- Clinical Pharmacy Department, Faculty of Pharmacy, Istinye University, Istanbul, Turkey.
| | - Ayşe Şeyma Büyük
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Semra Sardas
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| |
Collapse
|
14
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
15
|
Li M, Nawa Y, Ishida S, Kanda Y, Fujita S, Fujita K. Label-free chemical imaging of cytochrome P450 activity by Raman microscopy. Commun Biol 2022; 5:778. [PMID: 35995965 PMCID: PMC9395422 DOI: 10.1038/s42003-022-03713-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/13/2022] [Indexed: 12/27/2022] Open
Abstract
Although investigating drug modulation of cytochrome P450 (CYP) activity under physiological conditions is crucial in drug development to avoid severe adverse drug reactions, the current evaluation approaches that rely on the destructive and end-point analysis can be misleading due to invasive treatments and cellular heterogeneity. Here, we propose a non-destructive and high-content method for visualizing and quantifying intracellular CYP activity under drug administration by Raman microscopy. The redox-state and spin-state sensitive Raman measurement indicated that the induced CYPs in living hepatocytes were in oxidized and low-spin state, which is related to monooxygenase function of CYP. Moreover, glycogen depletion associated with CYP induction was simultaneously observed, indicating a relevant effect on glucose metabolism. By deciphering the overall changes in the biochemical fingerprints of hepatocytes, Raman microscopy offers a non-destructive and quantitative chemical imaging method to evaluate CYP activity at the single-cell level with the potential to facilitate future drug development schemes.
Collapse
Affiliation(s)
- Menglu Li
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasunori Nawa
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiichi Ishida
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yasunari Kanda
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Satoshi Fujita
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Katsumasa Fujita
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
16
|
Franczyk B, Rysz J, Miłoński J, Konecki T, Rysz-Górzyńska M, Gluba-Brzózka A. Will the Use of Pharmacogenetics Improve Treatment Efficiency in COVID-19? Pharmaceuticals (Basel) 2022; 15:739. [PMID: 35745658 PMCID: PMC9230944 DOI: 10.3390/ph15060739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic is associated with a global health crisis and the greatest challenge for scientists and doctors. The virus causes severe acute respiratory syndrome with an outcome that is fatal in more vulnerable populations. Due to the need to find an efficient treatment in a short time, there were several drugs that were repurposed or repositioned for COVID-19. There are many types of available COVID-19 therapies, including antiviral agents (remdesivir, lopinavir/ritonavir, oseltamivir), antibiotics (azithromycin), antiparasitics (chloroquine, hydroxychloroquine, ivermectin), and corticosteroids (dexamethasone). A combination of antivirals with various mechanisms of action may be more efficient. However, the use of some of these medicines can be related to the occurrence of adverse effects. Some promising drug candidates have been found to be ineffective in clinical trials. The knowledge of pharmacogenetic issues, which translate into variability in drug conversion from prodrug into drug, metabolism as well as transport, could help to predict treatment efficiency and the occurrence of adverse effects in patients. However, many drugs used for the treatment of COVID-19 have not undergone pharmacogenetic studies, perhaps as a result of the lack of time.
Collapse
Affiliation(s)
- Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| | - Jarosław Miłoński
- Department of Otolaryngology, Laryngological Oncology, Audiology and Phoniatrics, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Tomasz Konecki
- Department of Urology, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| |
Collapse
|
17
|
Eide Kvitne K, Hole K, Krogstad V, Wollmann BM, Wegler C, Johnson LK, Hertel JK, Artursson P, Karlsson C, Andersson S, Andersson TB, Sandbu R, Hjelmesæth J, Skovlund E, Christensen H, Jansson-Löfmark R, Åsberg A, Molden E, Robertsen I. Correlations between 4β-hydroxycholesterol and hepatic and intestinal CYP3A4: protein expression, microsomal ex vivo activity, and in vivo activity in patients with a wide body weight range. Eur J Clin Pharmacol 2022; 78:1289-1299. [PMID: 35648149 PMCID: PMC9283167 DOI: 10.1007/s00228-022-03336-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Variability in cytochrome P450 3A4 (CYP3A4) metabolism is mainly caused by non-genetic factors, hence providing a need for accurate phenotype biomarkers. Although 4β-hydroxycholesterol (4βOHC) is a promising endogenous CYP3A4 biomarker, additional investigations are required to evaluate its ability to predict CYP3A4 activity. This study investigated the correlations between 4βOHC concentrations and hepatic and intestinal CYP3A4 protein expression and ex vivo microsomal activity in paired liver and jejunum samples, as well as in vivo CYP3A4 phenotyping (midazolam) in patients with a wide body weight range. METHODS The patients (n = 96; 78 with obesity and 18 normal or overweight individuals) were included from the COCKTAIL-study (NCT02386917). Plasma samples for analysis of 4βOHC and midazolam concentrations, and liver (n = 56) and jejunal (n = 38) biopsies were obtained. The biopsies for determination of CYP3A4 protein concentration and microsomal activity were obtained during gastric bypass or cholecystectomy. In vivo CYP3A4 phenotyping was performed using semi-simultaneous oral (1.5 mg) and intravenous (1.0 mg) midazolam. RESULTS 4βOHC concentrations were positively correlated with hepatic microsomal CYP3A4 activity (ρ = 0.53, p < 0.001), and hepatic CYP3A4 concentrations (ρ = 0.30, p = 0.027), but not with intestinal CYP3A4 concentrations (ρ = 0.18, p = 0.28) or intestinal microsomal CYP3A4 activity (ρ = 0.15, p = 0.53). 4βOHC concentrations correlated weakly with midazolam absolute bioavailability (ρ = - 0.23, p = 0.027) and apparent oral clearance (ρ = 0.28, p = 0.008), but not with systemic clearance (ρ = - 0.03, p = 0.81). CONCLUSION These findings suggest that 4βOHC concentrations reflect hepatic, but not intestinal, CYP3A4 activity. Further studies should investigate the potential value of 4βOHC as an endogenous biomarker for individual dose requirements of intravenously administered CYP3A4 substrate drugs. TRIAL REGISTRATION Clinical. TRIALS gov identifier: NCT02386917.
Collapse
Affiliation(s)
- Kine Eide Kvitne
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Veronica Krogstad
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | | | - Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Line K Johnson
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jens K Hertel
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Cecilia Karlsson
- Clinical Metabolism, Cardiovascular, Renal and Metabolism (CVRM), Late-Stage Development, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Rune Sandbu
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway.,Deparment of Surgery, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jøran Hjelmesæth
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.,Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.,Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| |
Collapse
|
18
|
Romaldini A, Spanò R, Catalano F, Villa F, Poggi A, Sabella S. Sub-Lethal Concentrations of Graphene Oxide Trigger Acute-Phase Response and Impairment of Phase-I Xenobiotic Metabolism in Upcyte ® Hepatocytes. Front Bioeng Biotechnol 2022; 10:867728. [PMID: 35662849 PMCID: PMC9161028 DOI: 10.3389/fbioe.2022.867728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
The impact of graphene oxide on hepatic functional cells represents a crucial evaluation step for its potential application in nanomedicine. Primary human hepatocytes are the gold standard for studying drug toxicity and metabolism; however, current technical limitations may slow down the large-scale diffusion of this cellular tool for in vitro investigations. To assess the potential hepatotoxicity of graphene oxide, we propose an alternative cell model, the second-generation upcyte® hepatocytes, which show metabolic and functional profiles akin to primary human hepatocytes. Cells were acutely exposed to sub-lethal concentrations of graphene oxide (≤80 μg/ml) for 24 h and stress-related cell responses (such as apoptosis, oxidative stress, and inflammatory response) were evaluated, along with a broad investigation of graphene oxide impact on specialized hepatic functions. Results show a mild activation of early apoptosis but not oxidative stress or inflammatory response in our cell model. Notably, while graphene oxide clearly impacted phase-I drug-metabolism enzymes (e.g., CYP3A4, CYP2C9) through the inhibition of gene expression and metabolic activity, conversely, no effect was observed for phase-II enzyme GST and phase-III efflux transporter ABCG2. The GO-induced impairment of CYP3A4 occurs concomitantly with the activation of an early acute-phase response, characterized by altered levels of gene expression and protein production of relevant acute-phase proteins (i.e., CRP, Albumin, TFR, TTR). These data suggest that graphene oxide induces an acute phase response, which is in line with recent in vivo findings. In conclusion, upcyte® hepatocytes appear a reliable in vitro model for assessing nanomaterial-induced hepatotoxicity, specifically showing that sub-lethal doses of graphene oxide have a negative impact on the specialized hepatic functions of these cells. The impairment of the cytochrome P450 system, along with the activation of an acute-phase response, may suggest potential detrimental consequences for human health, as altered detoxification from xenobiotics and drugs.
Collapse
Affiliation(s)
- A. Romaldini
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genoa, Italy
| | - R. Spanò
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genoa, Italy
| | - F. Catalano
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | - F. Villa
- Unit of Molecular Oncology and Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - A. Poggi
- Unit of Molecular Oncology and Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - S. Sabella
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
19
|
Wang G, Xiao B, Deng J, Gong L, Li Y, Li J, Zhong Y. The Role of Cytochrome P450 Enzymes in COVID-19 Pathogenesis and Therapy. Front Pharmacol 2022; 13:791922. [PMID: 35185562 PMCID: PMC8847594 DOI: 10.3389/fphar.2022.791922] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has become a new public health crisis threatening the world. Dysregulated immune responses are the most striking pathophysiological features of patients with severe COVID-19, which can result in multiple-organ failure and death. The cytochrome P450 (CYP) system is the most important drug metabolizing enzyme family, which plays a significant role in the metabolism of endogenous or exogenous substances. Endogenous CYPs participate in the biosynthesis or catabolism of endogenous substances, including steroids, vitamins, eicosanoids, and fatty acids, whilst xenobiotic CYPs are associated with the metabolism of environmental toxins, drugs, and carcinogens. CYP expression and activity are greatly affected by immune response. However, changes in CYP expression and/or function in COVID-19 and their impact on COVID-19 pathophysiology and the metabolism of therapeutic agents in COVID-19, remain unclear. In this analysis, we review current evidence predominantly in the following areas: firstly, the possible changes in CYP expression and/or function in COVID-19; secondly, the effects of CYPs on the metabolism of arachidonic acid, vitamins, and steroid hormones in COVID-19; and thirdly, the effects of CYPs on the metabolism of therapeutic COVID-19 drugs.
Collapse
Affiliation(s)
- Guyi Wang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Xiao
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Linmei Gong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Abstract
Coronavirus disease 2019 (COVID-19) is a systemic disease that can be
life-threatening involving immune and inflammatory responses, and that can
result in potentially lethal complications, including venous thrombo-embolism
(VTE). Forming an integrative approach to thrombo-prophylaxis and coagulation
treatment for COVID-19 patients ensues. We aim at reviewing the literature for
anticoagulation in the setting of COVID-19 infection to provide a summary on
anticoagulation for this patient population. COVID-19 infection is associated
with a state of continuous inflammation, which results in macrophage activation
syndrome and an increased rate of thrombosis. Risk assessment models to predict
the risk of thrombosis in critically ill patients have not yet been validated.
Currently published guidelines suggest the use of prophylactic intensity over
intermediate intensity or therapeutic intensity anticoagulant for patients with
critical illness or acute illness related to COVID-19 infection. Critically ill
COVID-19 patients who are diagnosed with acute VTE are considered to have a
provoking factor, and, therefore, treatment duration should be at least 3
months. Patients with proximal deep venous thrombosis or pulmonary embolism
should receive parenteral over oral anticoagulants with low-molecular-weight
heparin or fondaparinux preferred over unfractionated heparin. In patients with
impending hemodynamic compromise due to PE, and who are not at increased risk
for bleeding, reperfusion may be necessary. Internists should remain updated on
new emerging evidence regarding anticoagulation for COVID-19 patients. Awaiting
these findings, we invite internists to perform individualized decisions that
are unique for every patient and to base them on clinical judgment for risk
assessment.
Collapse
Affiliation(s)
- Firas Kreidieh
- 66984American University of Beirut Medical Center, Beirut, Lebanon
| | - Sally Temraz
- 66984American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
21
|
Li M, Lan L, Zhang S, Xu Y, He W, Xiang D, Liu D, Ren X, Zhang C. IL-6 downregulates hepatic carboxylesterases via NF-κB activation in dextran sulfate sodium-induced colitis. Int Immunopharmacol 2021; 99:107920. [PMID: 34217990 DOI: 10.1016/j.intimp.2021.107920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Ulcerative colitis (UC) is associated with increased levels of inflammatory factors, which is attributed to the abnormal expression and activity of enzymes and transporters in the liver, affecting drug disposition in vivo. This study aimed to examine the impact of intestinal inflammation on the expression of hepatic carboxylesterases (CESs) in a mouse model of dextran sulfate sodium (DSS)-induced colitis. Two major CESs isoforms, CES1 and CES2, were down-regulated, accompanied by decreases in hepatic microsomal metabolism of clopidogrel and irinotecan. Meanwhile, IL-6 levels significantly increased compared with other inflammatory factors in the livers of UC mice. In contrast, using IL-6 antibody simultaneously reversed the down-regulation of CES1, CES2, pregnane X receptor (PXR), and constitutive androstane receptor (CAR), as well as the nuclear translocation of NF-κB in the liver. We further confirmed that treatment with NF-κB inhibitor abolished IL-6-induced down-regulation of CES1, CES2, PXR, and CAR in vitro. Thus, it was concluded that IL-6 represses hepatic CESs via the NF-κB pathway in DSS-induced colitis. These findings indicate that caution should be exercised concerning the proper and safe use of therapeutic drugs in patients with UC.
Collapse
Affiliation(s)
- Min Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Lulu Lan
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Si Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Yanjiao Xu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Wenxi He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China.
| | - Xiuhua Ren
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China.
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China.
| |
Collapse
|
22
|
Kvitne KE, Robertsen I, Skovlund E, Christensen H, Krogstad V, Wegler C, Angeles PC, Wollmann BM, Hole K, Johnson LK, Sandbu R, Artursson P, Karlsson C, Andersson S, Andersson TB, Hjelmesaeth J, Jansson-Löfmark R, Åsberg A. Short- and long-term effects of body weight loss following calorie restriction and gastric bypass on CYP3A-activity - a non-randomized three-armed controlled trial. Clin Transl Sci 2021; 15:221-233. [PMID: 34435745 PMCID: PMC8742654 DOI: 10.1111/cts.13142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 11/29/2022] Open
Abstract
It remains uncertain whether pharmacokinetic changes following Roux-en-Y gastric bypass (RYGB) can be attributed to surgery-induced gastrointestinal alterations per se and/or the subsequent weight loss. The aim was to compare short- and long-term effects of RYGB and calorie restriction on CYP3A-activity, and cross-sectionally compare CYP3A-activity with normal weight to overweight controls using midazolam as probe drug. This three-armed controlled trial included patients with severe obesity preparing for RYGB (n = 41) or diet-induced (n = 41) weight-loss, and controls (n = 18). Both weight-loss groups underwent a 3-week low-energy-diet (<1200 kcal/day) followed by a 6-week very-low-energy-diet or RYGB (both <800 kcal/day). Patients were followed for 2 years, with four pharmacokinetic investigations using semisimultaneous oral and intravenous dosing to determine changes in midazolam absolute bioavailability and clearance, within and between groups. The RYGB and diet groups showed similar weight-loss at week 9 (13 ± 2.4% vs. 11 ± 3.6%), but differed substantially after 2 years (-30 ± 7.0% vs. -3.1 ± 6.3%). At baseline, mean absolute bioavailability and clearance of midazolam were similar in the RYGB and diet groups, but higher compared with controls. On average, absolute bioavailability was unaltered at week 9, but decreased by 40 ± 7.5% in the RYGB group and 32 ± 6.1% in the diet group at year 2 compared with baseline, with no between-group difference. No difference in clearance was observed over time, nor between groups. In conclusion, neither RYGB per se nor weight loss impacted absolute bioavailability or clearance of midazolam short term. Long term, absolute bioavailability was similarly decreased in both groups despite different weight loss, suggesting that the recovered CYP3A-activity is not only dependent on weight-loss through RYGB.
Collapse
Affiliation(s)
- Kine Eide Kvitne
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Veronica Krogstad
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Philip Carlo Angeles
- Vestfold Hospital Trust, The Morbid Obesity Center, Tønsberg, Norway.,Department of Surgery, Vestfold Hospital Trust, Tønsberg, Norway
| | | | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | | | - Rune Sandbu
- Vestfold Hospital Trust, The Morbid Obesity Center, Tønsberg, Norway.,Department of Surgery, Vestfold Hospital Trust, Tønsberg, Norway
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Cecilia Karlsson
- Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shalini Andersson
- Research and Early Development, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Jøran Hjelmesaeth
- Vestfold Hospital Trust, The Morbid Obesity Center, Tønsberg, Norway.,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
23
|
Bisceglia I, Gabrielli D, Canale ML, Gallucci G, Parrini I, Turazza FM, Russo G, Maurea N, Quagliariello V, Lestuzzi C, Oliva S, Di Fusco SA, Lucà F, Tarantini L, Trambaiolo P, Gulizia MM, Colivicchi F. ANMCO POSITION PAPER: cardio-oncology in the COVID era (CO and CO). Eur Heart J Suppl 2021; 23:C128-C153. [PMID: 34456641 PMCID: PMC8388610 DOI: 10.1093/eurheartj/suab067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic and its impact on patients with cancer and cardiovascular disease have confirmed the particular vulnerability of these populations. Indeed, not only a higher risk of contracting the infection has been reported but also an increased occurrence of a more severe course and unfavourable outcome. Beyond the direct consequences of COVID-19 infection, the pandemic has an enormous impact on global health systems. Screening programmes and non-urgent tests have been postponed; clinical trials have suffered a setback. Similarly, in the area of cardiology care, a significant decline in STEMI accesses and an increase in cases of late presenting heart attacks with increased mortality and complication rates have been reported. Health care systems must therefore get ready to tackle the 'rebound effect' that will likely show a relative increase in the short- and medium-term incidence of diseases such as heart failure, myocardial infarction, arrhythmias, and cardio- and cerebrovascular complications. Scientific societies are taking action to provide general guidance and recommendations aimed at mitigating the unfavourable outcomes of this pandemic emergency. Cardio-oncology, as an emerging discipline, is more flexible in modulating care pathways and represents a beacon of innovation in the development of multi-specialty patient management. In the era of the COVID-19 pandemic, cardio-oncology has rapidly modified its clinical care pathways and implemented flexible monitoring protocols that include targeted use of cardiac imaging, increased use of biomarkers, and telemedicine systems. The goal of these strategic adjustments is to minimize the risk of infection for providers and patients while maintaining standards of care for the treatment of oncologic and cardiovascular diseases. The aim of this document is to evaluate the impact of the pandemic on the management of cardio-oncologic patients with the-state-of-the-art knowledge about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19) in order to optimize medical strategies during and after the pandemic.
Collapse
Affiliation(s)
- Irma Bisceglia
- Integrated Cardiology Services, Cardio-Thoracic-Vascular Department, Azienda Ospedaliera San Camillo Forlanini, Roma, Italy
| | - Domenico Gabrielli
- Cardiology Unit, Cardio-Thoracic-Vascular Department, Azienda Ospedaliera San Camillo Forlanini, Roma, Italy
| | - Maria Laura Canale
- Cardiology Department, Nuovo Ospedale Versilia Lido Di Camaiore, LU, Italy
| | | | - Iris Parrini
- Cardiology Department, Ospedale Mauriziano Umberto I, Torino, Italy
| | | | - Giulia Russo
- Cardiovascular and Sports Medicine Department, ASUGI Trieste, Trieste, Italy
| | - Nicola Maurea
- Cardiology Department, Fondazione Pascale, Napoli, Italy
| | | | - Chiara Lestuzzi
- Cardiology Department, Centro di Riferimento Oncologico (CRO), Aviano, PN, Italy
| | - Stefano Oliva
- Cardio-Oncology Department, Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Stefania Angela Di Fusco
- Clinical and Rehabilitation Cardiology Department, Presidio Ospedaliero San Filippo Neri, ASL Roma 1, Roma, Italy
| | - Fabiana Lucà
- Cardiology Department, Grande Osp. Metropol-Bianchi Melacrino-Morelli, Reggio Calabria, Italy
| | - Luigi Tarantini
- Cardiology Department, Presidio Ospedaliero. Santa Maria Nuova—AUSL RE IRCCS, Reggio Emilia, Italy
| | | | - Michele Massimo Gulizia
- Cardiology Department, Azienda di Rilievo Nazionale e Alta Specializzazione “Garibaldi”, Catania, Italy
- Fondazione per il Tuo cuore—Heart Care Foundation, Firenze, Italy
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Department, Presidio Ospedaliero San Filippo Neri, ASL Roma 1, Roma, Italy
| |
Collapse
|
24
|
Kozaczek M, Bottje W, Albataineh D, Hakkak R. Effects of Short- and Long-Term Soy Protein Feeding on Hepatic Cytochrome P450 Expression in Obese Nonalcoholic Fatty Liver Disease Rat Model. Front Nutr 2021; 8:699620. [PMID: 34262928 PMCID: PMC8273275 DOI: 10.3389/fnut.2021.699620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity can lead to chronic health complications such as nonalcoholic fatty liver disease (NAFLD). NAFLD is characterized by lipid aggregation in the hepatocytes and inflammation of the liver tissue as a consequence that can contribute to the development of cirrhosis and hepatocellular carcinoma (HCC). Previously, we reported that feeding obese Zucker rats with soy protein isolate (SPI) can reduce liver steatosis when compared with a casein (CAS) diet as a control. However, the effects of SPI on cytochrome P450 (CYP) in an obese rat model are less known. In addition, there is a lack of information concerning the consumption of soy protein in adolescents and its effect in reducing the early onset of NAFLD in this group. Our main goal was to understand if the SPI diet had any impact on the hepatic CYP gene expression when compared with the CAS diet. For this purpose, we used the transcriptomic data obtained in a previous study in which liver samples were collected from obese rats after short-term (eight-week) and long-term (16-week) feeding of SPI (n = 8 per group). To analyze this RNAseq data, we used Ingenuity Pathway Analysis (IPA) software. Comparing short- vs long-term feeding revealed an increase in the number of downregulated CYP genes from three at 8 weeks of SPI diet to five at 16 weeks of the same diet (P ≤ 0.05). On the other hand, upregulated CYP gene numbers showed a small increase in the long-term SPI diet compared to the short-term SPI diet, from 14 genes at 8 weeks to 17 genes at 16 weeks (P ≤ 0.05). The observed changes may have an important role in the attenuation of liver steatosis.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Walter Bottje
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Diyana Albataineh
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, United States
| |
Collapse
|
25
|
Murtadha M, Raslan MA, Fahmy SF, Sabri NA. Changes in the Pharmacokinetics and Pharmacodynamics of Sildenafil in Cigarette and Cannabis Smokers. Pharmaceutics 2021; 13:pharmaceutics13060876. [PMID: 34199328 PMCID: PMC8231986 DOI: 10.3390/pharmaceutics13060876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023] Open
Abstract
Sildenafil citrate, a widely-used oral therapy for erectile dysfunction, is a cytochrome P3A4 (CYP3A4) enzyme substrate. Studies have reported that this substrate has an inhibitory effect on CYP3A4 enzymes in long-term cigarette and cannabis smokers, which predominantly mediate the hepatic elimination of sildenafil. Cigarette and/or cannabis smoking could therefore alter the exposure of sildenafil. The aim of this study was to examine the effect of smoking cigarettes and/or cannabis on the pharmacokinetics, pharmacodynamics, safety and tolerability of sildenafil. Thirty-six healthy human subjects were equally divided into three groups: non-smokers, cigarette smokers and cannabis smokers. Each group was administered a single dose of sildenafil (50 mg tablets). The primary outcome measures included the maximum concentration of sildenafil in plasma (Cmax), the elimination half-life (t1/2) and the area under the plasma concentration time curve from zero to time (AUC0-t). The pharmacodynamics were assessed by the International Index of Erectile Function (IIEF-5). The exposure of sildenafil (AUC0-t) showed a statistically significant increase in cigarette smokers (1156 ± 542 ng·h/mL) of 61% (p < 0.05) while in cannabis smokers (967 ± 262 ng·h/mL), a non-significant increase in AUC0-t of 35% (p > 0.05) was observed relative to non-smokers (717 ± 311 ng·h/mL). Moreover, the Cmax of sildenafil increased by 63% (p < 0.05) and 22% (p > 0.05) in cigarette smokers and cannabis smokers, respectively. Cigarette smoking increases the exposure of sildenafil to a statistically significant level with no effect on its pharmacodynamics, safety and tolerability.
Collapse
Affiliation(s)
- Mohammed Murtadha
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11865, Egypt; (M.M.); (M.A.R.); (S.F.F.)
| | - Mohamed Ahmed Raslan
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11865, Egypt; (M.M.); (M.A.R.); (S.F.F.)
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt
| | - Sarah Farid Fahmy
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11865, Egypt; (M.M.); (M.A.R.); (S.F.F.)
| | - Nagwa Ali Sabri
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11865, Egypt; (M.M.); (M.A.R.); (S.F.F.)
- Correspondence:
| |
Collapse
|
26
|
Theile D, Wagner L, Bay C, Haefeli WE, Weiss J. Time-Resolved Effect of Interferon-Alpha 2a on Activities of Nuclear Factor Kappa B, Pregnane X Receptor and on Drug Disposition Genes. Pharmaceutics 2021; 13:808. [PMID: 34071580 PMCID: PMC8229072 DOI: 10.3390/pharmaceutics13060808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Interferon-alpha (IFN-α) is suggested to cause pharmacokinetic drug interactions by lowering expression of drug disposition genes through affecting the activities of nuclear factor kappa B (NF-ĸB) and pregnane X receptor (PXR). The time-resolved impact of IFN-α 2a (1000 U/mL; 5000 U/mL; 2 h to 30 h) on the activities of NF-ĸB and PXR and mRNA expression (5000 U/mL; 24 h, 48 h) of selected drug disposition genes and on cytochrome P450 (CYP3A4) activity in LS180 cells (5000 U/mL; 24 h, 48 h) was evaluated using luciferase-based reporter gene assays, reverse transcription polymerase chain reaction, and luminescence-based CYP3A4 activity assays. The cross-talk between NF-ĸB activation and PXR suppression was evaluated by NF-ĸB blockage (10 µM parthenolide). IFN-α 2a initially (2 h, 6 h) enhanced NF-ĸB activity 2-fold and suppressed PXR activity by 30%. mRNA of CYP3A4 was halved, whereas UGT1A1 was increased (1.35-fold) after 24 h. After 48 h, ABCB1 expression was increased (1.76-fold). CYP3A4 activity remained unchanged after 24 h, but was enhanced after 48 h (1.35-fold). IFN-α 2a demonstrated short-term suppressive effects on PXR activity and CYP3A4 mRNA expression, likely mediated by activated NF-ĸB. Longer exposure enhanced CYP3A4 activity. Clinical trials should evaluate the relevance by investigating the temporal effects of IFN-α on CYP3A4 using a sensitive marker substrate.
Collapse
Affiliation(s)
| | | | | | | | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (D.T.); (L.W.); (C.B.); (W.E.H.)
| |
Collapse
|
27
|
Influence of serum inflammatory cytokines on cytochrome P450 drug metabolising activity during breast cancer chemotherapy: a patient feasibility study. Sci Rep 2021; 11:5648. [PMID: 33707475 PMCID: PMC7952716 DOI: 10.1038/s41598-021-85048-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
Individual response to chemotherapy in patients with breast cancer is variable. Obesity and exercise are associated with better and worse outcomes, respectively, and it is known that both impact the systemic cytokine milieu. Cytochrome P450 (CYP) enzymes are responsible for the metabolism of many chemotherapy agents, and CYP enzyme activity has been shown to be modified by inflammatory cytokines in vitro and in vivo. Cytokine-associated changes in CYP metabolism may alter chemotherapy exposure, potentially affecting treatment response and patient survival. Therefore, better understanding of these biological relationships is required. This exploratory single arm open label trial investigated changes in in vivo CYP activity in twelve women treated for stage II or III breast cancer, and demonstrated for the first time the feasibility and safety of utilising the Inje phenotyping cocktail to measure CYP activity in cancer patients receiving chemotherapy. Relative CYP activity varied between participants, particularly for CYP2C9 and CYP2D6, and changes in serum concentrations of the inflammatory cytokine monocyte chemoattractant protein 1 inversely correlated to CYP3A4 activity during chemotherapy. Future use of phenotyping cocktails in a clinical oncology setting may help guide drug dosing and improve chemotherapy outcomes. Clinical Trial Registration: Trial was retrospectively registered to the Australia New Zealand Clinical Trial Registry (ANZCTR). ACTRN12620000832976, 21 Aug 2020, https://www.anzctr.org.au/ACTRN12620000832976.aspx.
Collapse
|
28
|
Fricke-Galindo I, Falfán-Valencia R. Pharmacogenetics Approach for the Improvement of COVID-19 Treatment. Viruses 2021; 13:413. [PMID: 33807592 PMCID: PMC7998786 DOI: 10.3390/v13030413] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The treatment of coronavirus disease 2019 (COVID-19) has been a challenge. The efficacy of several drugs has been evaluated and variability in drug response has been observed. Pharmacogenetics could explain this variation and improve patients' outcomes with this complex disease; nevertheless, several disease-related issues must be carefully reviewed in the pharmacogenetic study of COVID-19 treatment. We aimed to describe the pharmacogenetic variants reported for drugs used for COVID-19 treatment (remdesivir, oseltamivir, lopinavir, ritonavir, azithromycin, chloroquine, hydroxychloroquine, ivermectin, and dexamethasone). In addition, other factors relevant to the design of pharmacogenetic studies were mentioned. Variants in CYP3A4, CYP3A5, CYP2C8, CY2D6, ABCB1, ABCC2, and SLCO1B1, among other variants, could be included in pharmacogenetic studies of COVID-19 treatment. Besides, nongenetic factors such as drug-drug interactions and inflammation should be considered in the search for personalized therapy of COVID-19.
Collapse
Affiliation(s)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| |
Collapse
|
29
|
Effect of Pregnane X Receptor on CYP3A29 Expression in Porcine Alveolar Macrophages during Mycoplasma hyopneumoniae Infection. Animals (Basel) 2021; 11:ani11020349. [PMID: 33573311 PMCID: PMC7911243 DOI: 10.3390/ani11020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In the currently intense production process, infection of swine with Mycoplasma pneumonia is common in pig farms around the world, and reduction in the feeding efficiency and the growth rate of sick pigs causes considerable economic losses to the pig-rearing industry. Our study aimed to determine the molecular mechanism by which Mycoplasma hyopneumoniae induces inflammation in pigs. Our study showed that Mycoplasma hyopneumoniae can regulate the expression of CYP3A29 by upregulating PXR during the inflammatory response induced in porcine alveolar macrophages. These findings may provide useful information for breeding pigs that are resistant to disease. Abstract Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) is the causative agent of mycoplasma pneumonia of swine (MPS). M. hyopneumoniae infection causes inflammation in pigs and leads to considerable economic losses in the pig industry. Pregnane X receptor (PXR) is a pluripotent gene regulatory protein that plays an important role in regulating cytochrome P-450 (CYP) in pigs in the context of inflammatory responses, drug metabolism, homeostasis, etc. We previously reported that cytochrome P450 3A29 (CYP3A29) expression was significantly upregulated in pigs infected with M. hyopneumoniae compared with healthy control pigs. This experiment mainly focused on identifying the role of PXR in the regulation of CYP3A29 and inflammatory factors after M. hyopneumoniae infection by establishing pig alveolar macrophage (PAM) cells in which PXR was overexpressed or silenced. Our results showed that the overexpression of PXR could significantly improve the protein and the mRNA expression levels of CYP3A29 with and without M. hyopneumoniae infection in PAM cells. After the expression of PXR was inhibited, protein and mRNA expression levels of CYP3A29 were significantly reduced with and without M. hyopneumoniae infection in PAM cells. Moreover, PXR can regulate the mRNA expression levels of IL-6 and IL-8 during M. hyopneumoniae infection of PAM cells. In conclusion, these results suggest that PXR positively regulates CYP3A29 expression during the inflammatory response caused by M. hyopneumoniae infection.
Collapse
|
30
|
de Jong LM, Jiskoot W, Swen JJ, Manson ML. Distinct Effects of Inflammation on Cytochrome P450 Regulation and Drug Metabolism: Lessons from Experimental Models and a Potential Role for Pharmacogenetics. Genes (Basel) 2020; 11:genes11121509. [PMID: 33339226 PMCID: PMC7766585 DOI: 10.3390/genes11121509] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Personalized medicine strives to optimize drug treatment for the individual patient by taking into account both genetic and non-genetic factors for drug response. Inflammation is one of the non-genetic factors that has been shown to greatly affect the metabolism of drugs—primarily through inhibition of cytochrome P450 (CYP450) drug-metabolizing enzymes—and hence contribute to the mismatch between the genotype predicted drug response and the actual phenotype, a phenomenon called phenoconversion. This review focuses on inflammation-induced drug metabolism alterations. In particular, we discuss the evidence assembled through human in-vitro models on the effect of inflammatory mediators on clinically relevant CYP450 isoform levels and their metabolizing capacity. We also present an overview of the current understanding of the mechanistic pathways via which inflammation in hepatocytes may modulate hepatic functions that are critical for drug metabolism. Furthermore, since large inter-individual variability in response to inflammation is observed in human in-vitro models and clinical studies, we evaluate the potential role of pharmacogenetic variability in the inflammatory signaling cascade and how this can modulate the outcome of inflammation on drug metabolism and response.
Collapse
Affiliation(s)
- Laura M. de Jong
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
| | - Jesse J. Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands;
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martijn L. Manson
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
31
|
Enokiya T, Nishikawa K, Hamada Y, Ikemura K, Sugimura Y, Okuda M. Temporary decrease in tacrolimus clearance in cytochrome P450 3A5 non-expressors early after living donor kidney transplantation: Effect of interleukin 6-induced suppression of the cytochrome P450 3A gene. Basic Clin Pharmacol Toxicol 2020; 128:525-533. [PMID: 33248001 DOI: 10.1111/bcpt.13539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 11/28/2022]
Abstract
Tacrolimus is important for immunosuppression in kidney transplantation. In this historical cohort and in vitro study, we evaluated the changes in tacrolimus pharmacokinetics early after living donor kidney transplantation and the effects of interleukin (IL)-6 on cytochrome P450 3A4 (CYP3A4) and cytochrome P450 3A5 (CYP3A5) expression. In the historical cohort study, 22 patients who met the inclusion criteria were classified into CYP3A5 expressors and non-expressors (n = 16 and 6, respectively). The blood tacrolimus concentration per dose ratio (C/D) temporarily increased post-kidney transplantation on days 3-4 only in CYP3A5 non-expressors. The effects of IL-6 on CYP3A4 and CYP3A5 expression were also investigated in vitro using HepG2 and Caco-2 cells. IL-6 induced a significant concentration- and time-dependent decrease in CYP3A4 and CYP3A5 expression in both cells. The mean CYP3A4 expression level at 12 hours after IL-6 exposure (% of 0 hour) was 44.0 and 62.6 in HepG2 and Caco-2 cells, respectively, whereas the CYP3A5 expression level was 30.7 and 52.4, respectively. We hypothesize that CYP3A5 non-expressors might exhibit a temporary decrease in the oral clearance of tacrolimus via an increase in serum IL-6 concentrations early after kidney transplantation. These results may help develop strategies to improve kidney transplant outcome.
Collapse
Affiliation(s)
- Tomoyuki Enokiya
- Laboratory of Pharmacoinformatics, Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Kohei Nishikawa
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yugo Hamada
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kenji Ikemura
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshiki Sugimura
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masahiro Okuda
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pharmacy, Osaka University Hospital, Suita, Japan
| |
Collapse
|
32
|
Gatti M, Raschi E, Poluzzi E, Martignani C, Salvagni S, Ardizzoni A, Diemberger I. The Complex Management of Atrial Fibrillation and Cancer in the COVID-19 Era: Drug Interactions, Thromboembolic Risk, and Proarrhythmia. Curr Heart Fail Rep 2020; 17:365-383. [PMID: 33025463 PMCID: PMC7537958 DOI: 10.1007/s11897-020-00485-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Cardiotoxicity by anticancer agents has emerged as a multifaceted issue and is expected to affect both mortality and morbidity. This review summarizes clinical challenges in the management of oncological patients requiring anticoagulants for atrial fibrillation (AF) also considering the current outbreak of the COVID-19 (coronavirus disease 2019) pandemic, since this infection can add challenges to the management of both conditions. Specifically, the aims are manyfold: (1) describe the evolving use of direct oral anticoagulants (DOACs) in AF patients with cancer; (2) critically appraise the risk of clinically important drug-drug interactions (DDIs) between DOACs and oral targeted anticancer agents; (3) address expected DDIs between DOACs and candidate anti-COVID drugs, with implications on management of the underlying thrombotic risk; and (4) characterize the proarrhythmic liability in cardio-oncology in the setting of COVID-19, focusing on QT prolongation. RECENT FINDINGS AF in cardio-oncology poses diagnostic and management challenges, also due to the number of anticancer drugs recently associated with AF onset/worsening. Oral targeted drugs can potentially interact with DOACs, with increased bleeding risk mainly due to pharmacokinetic DDIs. Moreover, the vast majority of oral anticancer agents cause QT prolongation with direct and indirect mechanisms, potentially resulting in the occurrence of torsade de pointes, especially in susceptible patients with COVID-19 receiving additional drugs with QT liability. Oncologists and cardiologists must be aware of the increased bleeding risk and arrhythmic susceptibility of patients with AF and cancer due to DDIs. High-risk individuals with COVID-19 should be prioritized to target preventive strategies, including optimal antithrombotic management, medication review, and stringent monitoring.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Emanuel Raschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elisabetta Poluzzi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Cristian Martignani
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | - Andrea Ardizzoni
- Medical Oncology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Igor Diemberger
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| |
Collapse
|
33
|
Sharma S, Suresh Ahire D, Prasad B. Utility of Quantitative Proteomics for Enhancing the Predictive Ability of Physiologically Based Pharmacokinetic Models Across Disease States. J Clin Pharmacol 2020; 60 Suppl 1:S17-S35. [DOI: 10.1002/jcph.1709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Sheena Sharma
- Department of Pharmaceutical Sciences Washington State University Spokane Washington USA
| | - Deepak Suresh Ahire
- Department of Pharmaceutical Sciences Washington State University Spokane Washington USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences Washington State University Spokane Washington USA
| |
Collapse
|
34
|
Chavant A, Gautier-Veyret E, Chhun S, Guilhaumou R, Stanke-Labesque F. [Pharmacokinetic changes related to acute infection. Examples from the SARS-CoV-2 pandemic]. Therapie 2020; 76:319-333. [PMID: 33129512 PMCID: PMC7833468 DOI: 10.1016/j.therap.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
The knowledge of factors of pharmacokinetic variability is important in order to personalize pharmacological treatment, particularly for drugs with a narrow therapeutic range for which pharmacological therapeutic monitoring is recommended. Inflammation is a protective response against acute infections and injuries that contributes to intra- and inter-individual variability in drug exposure by modulating the activity of enzymes involved in drug metabolism, and by altering the binding of drugs to plasma proteins. The understanding of the impact of inflammation on drug metabolism and the related clinical consequences allow to better take into consideration the effect of inflammation on the variability of drug exposure. We first summarized the molecular mechanisms by which inflammation contributes to the inhibition of drug metabolism enzymes. We then presented an updated overview of the consequences of the outcome of acute infectious event on pharmacokinetic exposure of drugs with a narrow therapeutic range and that are substrates of cytochrome P450, and the related clinical consequences. Finally, in the context of the COVID-19 pandemic, we reported examples of drug overexposures in COVID- 19 infected patients.
Collapse
Affiliation(s)
- Anaëlle Chavant
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Elodie Gautier-Veyret
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France; University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38043 Grenoble, France
| | - Stéphanie Chhun
- UFR de médecine Paris centre, 75015 Paris, France; Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, 75015 Paris, France; Laboratoire d'immunologie biologique, département médico universitaire BioPhyGen, hôpital universitaire Necker-enfants malades, AP-HP, 75015 Paris, France
| | - Romain Guilhaumou
- Unité de pharmacologie clinique et pharmacovigilance AP-HM, 13354 Marseille, France; Aix Marseille Univ, Inserm, INS Inst Neurosci Syst, 13354 Marseille, France
| | - Françoise Stanke-Labesque
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France; University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38043 Grenoble, France.
| |
Collapse
|
35
|
El-Kehdy H, Najar M, De Kock J, Agha DM, Rogiers V, Merimi M, Lagneaux L, Sokal EM, Najimi M. Inflammation Differentially Modulates the Biological Features of Adult Derived Human Liver Stem/Progenitor Cells. Cells 2020; 9:cells9071640. [PMID: 32650454 PMCID: PMC7408415 DOI: 10.3390/cells9071640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
The progression of mesenchymal stem cell-based therapy from concept to cure closely depends on the optimization of conditions that allow a better survival and favor the cells to achieve efficient liver regeneration. We have previously demonstrated that adult-derived human liver stem/progenitor cells (ADHLSC) display significant features that support their clinical development. The current work aims at studying the impact of a sustained pro-inflammatory environment on the principal biological features of ADHLSC in vitro. METHODS: ADHLSC from passages 4–7 were exposed to a cocktail of inflammatory cytokines for 24 h and 9 days and subsequently analyzed for their viability, expression, and secretion profiles by using flow cytometry, RT-qPCR, and antibody array assay. The impact of inflammation on the hepatocytic differentiation potential of ADHLSC was also evaluated. RESULTS: ADHLSC treated with a pro-inflammatory cocktail displayed significant decrease of cell yield at both times of treatment while cell mortality was observed at 9 days post-priming. After 24 h, no significant changes in the immuno-phenotype of ADHLSC expression profile could be noticed while after 9 days, the expression profile of relevant markers has changed both in the basal conditions and after inflammation treatment. Inflammation cocktail enhanced the release of IL-6, IL-8, CCL5, monocyte-chemo-attractant protein-2 and 3, CXCL1/GRO, and CXCL5/ENA78. Furthermore, while IP-10 secretion was increased after 24 h priming, granulocyte macrophage colony-stimulating factor enhanced secretion was noticed after 9 days treatment. Finally, priming of ADHLSC did not affect their potential to differentiate into hepatocyte-like cells. CONCLUSION: These results indicate that ADHLSCs are highly sensitive to inflammation and respond to such signals by adjusting their gene and protein expression. Accordingly, monitoring the inflammatory status of patients at the time of cell transplantation, will certainly help in enhancing ADHLSC safety and efficiency.
Collapse
Affiliation(s)
- Hoda El-Kehdy
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (H.E.-K.); (E.M.S.)
| | - Mehdi Najar
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada;
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.D.K.); (V.R.)
| | - Douaa Moussa Agha
- Laboratory of Experimental Hematology (HEMEXP), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium; (D.M.A.); (M.M.)
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.D.K.); (V.R.)
| | - Makram Merimi
- Laboratory of Experimental Hematology (HEMEXP), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium; (D.M.A.); (M.M.)
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy (LCCT), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Etienne M. Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (H.E.-K.); (E.M.S.)
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (H.E.-K.); (E.M.S.)
- Correspondence:
| |
Collapse
|
36
|
Relationship Between Change Rate of Tacrolimus Clearance During Continuous Intravenous Infusion and Recipient Recovery at an Early Stage After Living Donor Liver Transplantation. Eur J Drug Metab Pharmacokinet 2020; 45:619-626. [PMID: 32514937 DOI: 10.1007/s13318-020-00628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Tacrolimus clearance (CL) is significantly altered according to recovery of liver function at an early stage after living donor liver transplantation (LDLT). In this study, we aimed to examine the impact of the change rate from postoperative day (POD) 1 in CL (ΔCL) of tacrolimus during continuous intravenous infusion (CIVI) on recipient recovery. METHODS A tacrolimus population pharmacokinetic model on POD1 after LDLT was developed using Phoenix NLME 1.3. The CLPOD1 was calculated using the final model. The CLPOD4-7 was calculated by dividing total daily tacrolimus dose by the area under the concentration-time curve from 0 to 24 h. RESULTS Data were obtained from 57 LDLT recipients, along with 540 points (177 points on POD1, 363 points on POD4-7) of tacrolimus whole blood concentrations at CIVI. The median tacrolimus CL decreased from POD1 to POD4 (from 2.73 to 1.40 L/h) and was then stable until POD7. Stepwise Cox proportional hazards regression analyses showed that the graft volume (GV)/standard liver volume (SLV) ratio (GV/SLV) and the tacrolimus ΔCLPOD6 were independent factors predicting early discharge (within 64 days median value) of recipients after LDLT [hazard ratio (HR) = 1.041, P = 0.001 and HR = 1.023, P = 0.004]. CONCLUSIONS The tacrolimus ΔCL during CIVI immediately after LDLT in each recipient was a useful indicator for evaluation of recovery at an early stage after LDLT.
Collapse
|
37
|
Li ZH, Xie ZY, Ouyang XX, Huang KZ, Yu XP, Zhao YL, Zhang YH, Zhu DH, Yu J, Li LJ. Assessment of biological functions for C3A cells interacting with adverse environments of liver failure plasma. Hepatobiliary Pancreat Dis Int 2020; 19:129-137. [PMID: 31704080 DOI: 10.1016/j.hbpd.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND For its better differentiated hepatocyte phenotype, C3A cell line has been utilized in bioartificial liver system. However, up to now, there are only a few of studies working at the metabolic alternations of C3A cells under the culture conditions with liver failure plasma, which mainly focus on carbohydrate metabolism, total protein synthesis and ureagenesis. In this study, we investigated the effects of acute liver failure plasma on the growth and biological functions of C3A cells, especially on CYP450 enzymes. METHODS C3A cells were treated with fresh DMEM medium containing 10% FBS, fresh DMEM medium containing 10% normal plasma and acute liver failure plasma, respectively. After incubation, the C3A cells were assessed for cell viabilities, lactate dehydrogenase leakage, gene transcription, protein levels, albumin secretion, ammonia metabolism and CYP450 enzyme activities. RESULTS Cell viabilities decreased 15%, and lactate dehydrogenase leakage had 1.3-fold elevation in acute liver failure plasma group. Gene transcription exhibited up-regulation, down-regulation or stability for different hepatic genes. In contrast, protein expression levels for several CYP450 enzymes kept constant, while the CYP450 enzyme activities decreased or remained stable. Albumin secretion reduced about 48%, and ammonia accumulation increased approximately 41%. CONCLUSIONS C3A cells cultured with acute liver failure plasma showed mild inhibition of cell viabilities, reduction of albumin secretion, and increase of ammonia accumulation. Furthermore, CYP450 enzymes demonstrated various alterations on gene transcription, protein expression and enzyme activities.
Collapse
Affiliation(s)
- Zu-Hong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhong-Yang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiao-Xi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kai-Zhou Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiao-Peng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ya-Lei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yan-Hong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dan-Hua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
38
|
Liu J, Jin X, Zhou F, Chen H, Wang W, Liu Y, Wang G, Hao K, Zhang J. Disrupted hepatic pentose phosphate pathway directly participates in and indirectly promotes CYP3A reduction: A new strategy for CYP3A-mediated drug hepatotoxicity. Br J Pharmacol 2020; 177:1538-1555. [PMID: 31670839 DOI: 10.1111/bph.14916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/17/2019] [Accepted: 10/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Hepatic CYP450s play an important role in drug-induced hepatotoxicity. They are altered in liver diseases and in many non-liver diseases, such as extra-hepatic tumours. Consequently, CYP450-mediated abnormal drug exposure increases the incidence and extent of hepatotoxicity. This risk is often underestimated because the mechanisms underlying decreases in hepatic CYP450s in extra-hepatic tumours remain unclear. EXPERIMENTAL APPROACH We used Balb/c nude mice with s.c. transplanted 4T1, LoVo and HepG2 tumours to model extra-hepatic tumours. Decreased levels of CYP3A were evaluated by qPCR, western blotting, and metabolic activity. LC-Q/TOF-MS and GC-MS were used in combination for analysing liver metabolomics. The contribution of the pentose phosphate pathway (PPP) to decreased CYP3A was assessed using menadione and silencing of glucose-6-phosphate dehydrogenase. KEY RESULTS CYP3A activity was inhibited at early stages of tumour growth when no significant inflammatory response was observed. The PPP was predominately disrupted at this non-inflammatory stage. Disruption of the PPP directly inhibited CYP3A through the chk2/p53/p65 pathway at the non-inflammatory stage, but at the later inflammatory stage, it indirectly potentiated the subsequent IL-6-mediated CYP3A decrease. Recovery of the PPP with menadione at the non-inflammatory stage, reversed the decreased CYP3A. Similar reversal was obtained with the IL-6 inhibitor, tocilizumab. Such modulation of the PPP to alleviate CYP3A-mediated drug hepatotoxicity was validated with dasatinib in vivo. CONCLUSIONS AND IMPLICATIONS PPP modulation at early, non-inflammatory stages might provide a novel and distinctive approach to manage drug hepatotoxicity mediated by decreased CYP3A.
Collapse
Affiliation(s)
- Jiali Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoliang Jin
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hongzhu Chen
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenjie Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yan Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Kun Hao
- Department of Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jingwei Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
39
|
Effects of inflammation on irinotecan pharmacokinetics and development of a best-fit PK model. Chem Biol Interact 2020; 316:108933. [DOI: 10.1016/j.cbi.2019.108933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/29/2019] [Accepted: 12/19/2019] [Indexed: 01/11/2023]
|
40
|
Khidkhan K, Mizukawa H, Ikenaka Y, Nakayama SMM, Nomiyama K, Yokoyama N, Ichii O, Darwish WS, Takiguchi M, Tanabe S, Ishizuka M. Tissue distribution and characterization of feline cytochrome P450 genes related to polychlorinated biphenyl exposure. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108613. [PMID: 31487551 DOI: 10.1016/j.cbpc.2019.108613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
Cats have been known to be extremely sensitive to chemical exposures. To understand these model species' sensitivity to chemicals and their toxicities, the expression profiles of xenobiotic-metabolizing enzymes should be studied. Unfortunately, the characterization of cytochrome P450 (CYP), the dominant enzyme in phase I metabolism, in cats has not extensively been studied. Polychlorinated biphenyls (PCBs) are known as CYP inducers in animals, but the information regarding the PCB-induced CYP expression in cats is limited. Therefore, in the present study, we aimed to elucidate the mRNA expression of the CYP1-CYP3 families in the cat tissues and to investigate the CYP mRNA expression related to PCB exposure. In cats, the greatest abundance of CYP1-CYP3 (CYP1A2, CYP2A13, CYP2C41, CYP2D6, CYP2E1, CYP2E2, CYP2F2, CYP2F5, CYP2J2, CYP2U1, and CYP3A132) was expressed in the liver, but some extrahepatic isozymes were found in the kidney (CYP1A1), heart (CYP1B1), lung (CYP2B11 and CYP2S1) and small intestine (CYP3A131). In cats, CYP1A1, CYP1A2 and CYP1B1 were significantly upregulated in the liver as well as in several tissues exposed to PCBs, indicating that these CYPs were distinctly induced by PCBs. The strong correlations between 3,3',4,4'-tetrachlorobiphenyl (CB77) and CYP1A1 and CYP1B1 mRNA expressions were noted, demonstrating that CB77 could be a potent CYP1 inducer. In addition, these CYP isoforms could play an essential role in the PCBs biotransformation, particularly 3-4 Cl-PCBs, because a high hydroxylated metabolite level of 3-4 Cl-OH-PCBs was observed in the liver.
Collapse
Affiliation(s)
- Kraisiri Khidkhan
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Hazuki Mizukawa
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime, 790-8577, Japan
| | - Yoshinori Ikenaka
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Shouta M M Nakayama
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Nozomu Yokoyama
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Osamu Ichii
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Wageh Sobhy Darwish
- Department of Health Sciences and Technology, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0818, Japan; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mitsuyoshi Takiguchi
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| |
Collapse
|
41
|
Changes in Radixin Expression and Interaction with Efflux Transporters in the Liver of Adjuvant-Induced Arthritic Rats. Inflammation 2019; 43:85-94. [PMID: 31654296 DOI: 10.1007/s10753-019-01097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Scaffold proteins such as radixin help to modulate the plasma membrane localization and transport activity of the multidrug resistance-associated protein 2 (MRP2/ABCC2) and P-glycoprotein (P-gp/ABCB1) efflux transporters in the liver. We examined changes in radixin expression and interaction with efflux transporters in adjuvant-induced arthritic (AA) rats, an animal model of rheumatoid arthritis, as well as in human liver cancer (HepG2) cells because inflammation affects drug pharmacokinetics via the efflux transporters. The expression levels of radixin and phosphorylated radixin (p-radixin) were measured 24 h after treatment with inflammatory cytokines comprising tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 or sodium nitroprusside (SNP; a nitric oxide donor). The protein levels of radixin, MRP2, and P-gp in the rat liver were next examined. We also investigated whether inflammation affected the formation of complexes between radixin and MRP2 or P-gp. The mRNA and protein levels of radixin in HepG2 cells were significantly decreased by TNF-α treatment, while minimal changes were observed after treatment with IL-1β, IL-6 or SNP. TNF-α also significantly decreased the protein levels of p-radixin, suggesting that TNF-α inhibited the activation of radixin and thereby reduced the activity of the efflux transporters. Complex formation of radixin with MRP2 and P-gp was significantly decreased in AA rats but this was reversed by prednisolone and dexamethasone treatment, indicating that decreased interactions of radixin with MRP2 and P-gp likely occur during liver inflammation. These data suggest that liver inflammation reduces radixin function by decreasing its interactions with MRP2 and P-gp.
Collapse
|
42
|
Li Q, Sun M, Li G, Qiu L, Huang Z, Gong J, Huang J, Li G, Si L. The sub-chronic impact of mPEG2k-PCLx polymeric nanocarriers on cytochrome P450 enzymes after intravenous administration in rats. Eur J Pharm Biopharm 2019; 142:101-113. [DOI: 10.1016/j.ejpb.2019.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 01/21/2023]
|
43
|
Zhu Y, Mordaunt CE, Yasui DH, Marathe R, Coulson RL, Dunaway KW, Jianu JM, Walker CK, Ozonoff S, Hertz-Picciotto I, Schmidt RJ, LaSalle JM. Placental DNA methylation levels at CYP2E1 and IRS2 are associated with child outcome in a prospective autism study. Hum Mol Genet 2019; 28:2659-2674. [PMID: 31009952 PMCID: PMC6687952 DOI: 10.1093/hmg/ddz084] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/25/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
DNA methylation acts at the interface of genetic and environmental factors relevant for autism spectrum disorder (ASD). Placenta, normally discarded at birth, is a potentially rich source of DNA methylation patterns predictive of ASD in the child. Here, we performed whole methylome analyses of placentas from a prospective study MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) of high-risk pregnancies. A total of 400 differentially methylated regions (DMRs) discriminated placentas stored from children later diagnosed with ASD compared to typically developing controls. These ASD DMRs were significantly enriched at promoters, mapped to 596 genes functionally enriched in neuronal development, and overlapped genetic ASD risk. ASD DMRs at CYP2E1 and IRS2 reached genome-wide significance, replicated by pyrosequencing and correlated with expression differences in brain. Methylation at CYP2E1 associated with both ASD diagnosis and genotype within the DMR. In contrast, methylation at IRS2 was unaffected by within DMR genotype but modified by preconceptional maternal prenatal vitamin use. This study therefore identified two potentially useful early epigenetic markers for ASD in placenta.
Collapse
Affiliation(s)
- Yihui Zhu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Ria Marathe
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Rochelle L Coulson
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Keith W Dunaway
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Julia M Jianu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Cheryl K Walker
- Department of Obstetrics & Gynecology, School of Medicine, MIND Institute, University of California, Davis, 95616, USA
| | - Sally Ozonoff
- MIND Institute, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, CA, USA
| | - Irva Hertz-Picciotto
- MIND Institute, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- MIND Institute, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
44
|
Klünder B, Mittapalli RK, Mohamed MEF, Friedel A, Noertersheuser P, Othman AA. Population Pharmacokinetics of Upadacitinib Using the Immediate-Release and Extended-Release Formulations in Healthy Subjects and Subjects with Rheumatoid Arthritis: Analyses of Phase I-III Clinical Trials. Clin Pharmacokinet 2019; 58:1045-1058. [PMID: 30945116 PMCID: PMC6614152 DOI: 10.1007/s40262-019-00739-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND OBJECTIVES Upadacitinib is a selective Janus kinase (JAK) 1 inhibitor being developed as an orally administered treatment for patients with moderate to severe rheumatoid arthritis (RA) and other autoimmune disorders. These analyses characterized the population pharmacokinetics of upadacitinib across phase I-III clinical trials using data for immediate-release (IR) and extended-release (ER) formulations. METHODS Pharmacokinetic data from 4170 subjects taking IR doses of 1-48 mg and ER doses of 7.5-30 mg across 12 studies spanning phase I-III clinical trials, with a total of 29,372 upadacitinib plasma concentrations, were analyzed using non-linear mixed-effects modeling. The model was evaluated using bootstrap analyses and visual predictive checks. RESULTS A two-compartment model with first-order absorption with lag time for the IR formulation, mixed zero- and first-order absorption with lag time for the ER formulation, and linear elimination, adequately described upadacitinib plasma concentration-time profiles. Population estimates of upadacitinib apparent oral clearance and steady-state volume of distribution in healthy volunteers for the ER formulation were 53.7 L/h and 294 L, respectively. The relative bioavailability of the ER formulation compared with the IR formulation was estimated to be 76.2%. Statistically significant covariates were patient population (RA subjects vs. healthy subjects), creatinine clearance, and baseline bodyweight on apparent clearance (CL/F) and bodyweight on volume of distribution of the central compartment (Vc/F). The intersubject variability for upadacitinib CL/F and Vc/F were estimated to be 21% and 24%, respectively, in the phase I studies, and 37% and 53%, respectively, in the phase II/III studies. Upadacitinib area under the concentration-time curve (AUC) was estimated to be only 5% higher or lower for RA patients who were < 60 or > 100 kg, respectively, relative to subjects with a bodyweight of 60-100 kg. RA subjects with mild or moderate renal impairment had 13% and 26% higher AUC, respectively, compared with RA subjects with normal renal function. Sex, race, concomitant use of pH-modifying drugs, moderate cytochrome P450 3A inhibitors, or methotrexate use had no effect on upadacitinib exposure. CONCLUSIONS A robust population pharmacokinetic model was developed for upadacitinib using a large dataset from phase I-III clinical trials in healthy volunteers and subjects with RA. None of the identified covariates had a clinically meaningful effect on upadacitinib exposures. The model is appropriate to use for simulations and to evaluate the exposure-response relationship of upadacitinib.
Collapse
Affiliation(s)
- Ben Klünder
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc, 1 North Waukegan Road, Bldg. AP31-3, North Chicago, IL, 60064, USA
| | - Rajendar K Mittapalli
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc, 1 North Waukegan Road, Bldg. AP31-3, North Chicago, IL, 60064, USA
| | - Mohamed-Eslam F Mohamed
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc, 1 North Waukegan Road, Bldg. AP31-3, North Chicago, IL, 60064, USA
| | - Anna Friedel
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc, 1 North Waukegan Road, Bldg. AP31-3, North Chicago, IL, 60064, USA
| | - Peter Noertersheuser
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc, 1 North Waukegan Road, Bldg. AP31-3, North Chicago, IL, 60064, USA
| | - Ahmed A Othman
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc, 1 North Waukegan Road, Bldg. AP31-3, North Chicago, IL, 60064, USA.
| |
Collapse
|
45
|
Sukkummee W, Jittisak P, Wonganan P, Wittayalertpanya S, Chariyavilaskul P, Leelahavanichkul A. The prominent impairment of liver/intestinal cytochrome P450 and intestinal drug transporters in sepsis-induced acute kidney injury over acute and chronic renal ischemia, a mouse model comparison. Ren Fail 2019; 41:314-325. [PMID: 30991873 PMCID: PMC6484470 DOI: 10.1080/0886022x.2019.1602054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Drug dosing adjustment in sepsis-induced acute kidney injury (sepsis-AKI) is currently adjusted based on renal function. Sepsis is a multiorgan injury, and thus, drug metabolism in sepsis-AKI might be interfered by non-renal factors such as changes in functions of drug-metabolizing enzymes in the liver and functions of intestinal drug transporters. We compared the defect on mouse CYP3A11 (human CYP3A4 representative) in liver and intestine along with several intestinal drug transporters (MDR1a, MRP2, and OATP3) in three mouse models; chronic ischemic reperfusion injury (Chr I/R; 4-week), acute ischemic reperfusion injury (Acute I/R; 24-h), and cecal ligation and puncture (CLP; 24-h) as representative of sepsis-AKI. Decreased expression of CYP3A11 and drug transporters was demonstrated in all models. Among these models, sepsis-AKI had the least severe renal injury (increased BUN and Scr) with the most severe liver injury (increased ALT and changes in liver histopathology), the most severe intestinal leakage (increased serum (1→3)-β-D-glucan) and the highest increase in serum IL-6. A reduced expression and activity of liver and intestinal CYP3A11 along with intestinal efflux-drug transporter expressions (MDR1a and MRP2), but not drug uptake transporter (OATP3), was predominant in sepsis-AKI compared with acute I/R. Additionally, a reduction of CYP3A4 expression with IL-6 was demonstrated on HepG2 cells implying a direct injury of IL-6 on human liver cells. Differences in drug metabolism were reported between sepsis-AKI and ischemic-AKI confirming that drug dosing adjustment in sepsis-AKI depends not just only on renal function but also on several non-renal factors. Further studies are warranted.
Collapse
Affiliation(s)
- Warumphon Sukkummee
- a Clinical Pharmacokinetics and Pharmacogenomics Research Unit , Chulalongkorn University , Bangkok , Thailand
| | - Patcharin Jittisak
- a Clinical Pharmacokinetics and Pharmacogenomics Research Unit , Chulalongkorn University , Bangkok , Thailand
| | - Piyanuch Wonganan
- b Department of Pharmacology, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| | - Supeecha Wittayalertpanya
- a Clinical Pharmacokinetics and Pharmacogenomics Research Unit , Chulalongkorn University , Bangkok , Thailand.,b Department of Pharmacology, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| | - Pajaree Chariyavilaskul
- a Clinical Pharmacokinetics and Pharmacogenomics Research Unit , Chulalongkorn University , Bangkok , Thailand.,b Department of Pharmacology, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand.,c Center of Excellence in Immunology and Immune-mediated Diseases , Chulalongkorn University , Bangkok , Thailand
| | - Asada Leelahavanichkul
- c Center of Excellence in Immunology and Immune-mediated Diseases , Chulalongkorn University , Bangkok , Thailand.,d Department of Microbiology, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|
46
|
Taneja G, Maity S, Jiang W, Moorthy B, Coarfa C, Ghose R. Transcriptomic profiling identifies novel mechanisms of transcriptional regulation of the cytochrome P450 (Cyp)3a11 gene. Sci Rep 2019; 9:6663. [PMID: 31040347 PMCID: PMC6491424 DOI: 10.1038/s41598-019-43248-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cytochrome P450 (CYP)3A is the most abundant CYP enzyme in the human liver, and a functional impairment of this enzyme leads to unanticipated adverse reactions and therapeutic failures; these reactions result in the early termination of drug development or the withdrawal of drugs from the market. The transcriptional regulation mechanism of the Cyp3a gene is not fully understood and requires a thorough investigation. We mapped the transcriptome of the Cyp3a gene in a mouse model. The Cyp3a gene was induced using the mPXR activator pregnenolone-16alpha-carbonitrile (PCN) and was subsequently downregulated using lipopolysaccharide (LPS). Our objective was to identify the transcription factors (TFs), epigenetic modulators and molecular pathways that are enriched or repressed by PCN and LPS based on a gene set enrichment analysis. Our analysis shows that 113 genes were significantly upregulated (by at least 1.5-fold) with PCN treatment, and that 834 genes were significantly downregulated (by at least 1.5-fold) with LPS treatment. Additionally, the targets of the 536 transcription factors were enriched by a combined treatment of PCN and LPS, and among these, 285 were found to have binding sites on Cyp3a11. Moreover, the repressed targets of the epigenetic markers HDAC1, HDAC3 and EZH2 were further suppressed by LPS treatment and were enhanced by PCN treatment. By identifying and contrasting the transcriptional regulators that are altered by PCN and LPS, our study provides novel insights into the transcriptional regulation of CYP3A in the liver.
Collapse
Affiliation(s)
- Guncha Taneja
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd., Houston, TX, 77204, USA
- DILIsym Services, A Simulations Plus Company, Research Triangle Park, North Carolina, 27709, USA
| | - Suman Maity
- Advanced Technology Cores, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, Suite 530, Houston, TX, 77030, USA
| | - Bhagavatula Moorthy
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, Suite 530, Houston, TX, 77030, USA.
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Center for Precision Environmental Health, Molecular and Cellular Biology Department, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd., Houston, TX, 77204, USA.
| |
Collapse
|
47
|
Docci L, Parrott N, Krähenbühl S, Fowler S. Application of New Cellular and Microphysiological Systems to Drug Metabolism Optimization and Their Positioning Respective to In Silico Tools. SLAS DISCOVERY 2019; 24:523-536. [PMID: 30817893 DOI: 10.1177/2472555219831407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New cellular model systems for drug metabolism applications, such as advanced 2D liver co-cultures, spheroids, and microphysiological systems (MPSs), offer exciting opportunities to reproduce human biology more closely in vitro with the aim of improving predictions of pharmacokinetics, drug-drug interactions, and efficacy. These advanced cellular systems have quickly become established for human intrinsic clearance determination and have been validated for several other absorption, distribution, metabolism, and excretion (ADME) applications. Adoption will be driven through the demonstration of clear added value, for instance, by more accurate and precise clearance predictions and by more reliable extrapolation of drug interaction potential leading to faster progression to pivotal proof-of-concept studies. New experimental systems are attractive when they can (1) increase experimental capacity, removing optimization bottlenecks; (2) improve measurement quality of ADME properties that impact pharmacokinetics; and (3) enable measurements to be made that were not previously possible, reducing risk in ADME prediction and candidate selection. As new systems become established, they will find their place in the repository of tools used at different stages of the research and development process, depending on the balance of value, throughput, and cost. In this article, we give a perspective on the integration of these new methodologies into ADME optimization during drug discovery, and the likely applications and impacts on drug development.
Collapse
Affiliation(s)
- Luca Docci
- 1 Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland.,2 Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Neil Parrott
- 1 Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | | | - Stephen Fowler
- 1 Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| |
Collapse
|
48
|
Mosedale M, Button D, Jackson JP, Freeman KM, Brouwer KR, Caggiano AO, Eisen A, Iaci JF, Parry TJ, Stanulis R, Srinivas M, Watkins PB. Transient Changes in Hepatic Physiology That Alter Bilirubin and Bile Acid Transport May Explain Elevations in Liver Chemistries Observed in Clinical Trials of GGF2 (Cimaglermin Alfa). Toxicol Sci 2019; 161:401-411. [PMID: 29069498 DOI: 10.1093/toxsci/kfx222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
GGF2 is a recombinant human neuregulin-1β in development for chronic heart failure. Phase 1 clinical trials of GGF2 were put on hold when transient elevations in serum aminotransferases and total bilirubin were observed in 2 of 43 subjects who received single doses of GGF2 at 1.5 or 0.378 mg/kg. However, aminotransferase elevations were modest and not typical of liver injury sufficient to result in elevated serum bilirubin. Cynomolgus monkeys administered a single 15 mg/kg dose of GGF2 had similar transient elevations in serum aminotransferases and bilirubin as well as transient elevations in serum bile acids. However, no hepatocellular necrosis was observed in liver biopsies obtained during peak elevations. When sandwich-cultured human hepatocytes were treated with GGF2 for up to 72 h at concentrations approximately 0.8-fold average plasma Cmax for the 0.378 mg/kg dose, no cytotoxicity was observed. Gene expression profiling identified approximately 50% reductions in mRNAs coding for bilirubin transporters and bile acid conjugating enzymes, as well as changes in expression of additional genes mimicking the interleukin-6-mediated acute phase response. Similar gene expression changes were observed in GGF2-treated HepG2 cells and primary monkey hepatocytes. Additional studies conducted in sandwich-cultured human hepatocytes revealed a transient and GGF2 concentration-dependent decrease in hepatocyte bile acid content and biliary clearance of taurocholate without affecting biliary taurocholate efflux. Taken together, these data suggest that GGF2 does not cause significant hepatocellular death, but transiently modifies hepatic handling of bilirubin and bile acids, effects that may account for the elevations in serum bilirubin observed in the clinical trial subjects.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | | | | | | | | | | | | | | | - Tom J Parry
- Acorda Therapeutics, Ardsley, New York 10502
| | | | | | - Paul B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| |
Collapse
|
49
|
Identification of genetic variants associated with tacrolimus metabolism in kidney transplant recipients by extreme phenotype sampling and next generation sequencing. THE PHARMACOGENOMICS JOURNAL 2018; 19:375-389. [PMID: 30442921 PMCID: PMC6522337 DOI: 10.1038/s41397-018-0063-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
An extreme phenotype sampling (EPS) model with targeted next-generation sequencing (NGS) identified genetic variants associated with tacrolimus (Tac) metabolism in subjects from the Deterioration of Kidney Allograft Function (DeKAF) Genomics cohort which included 1,442 European Americans (EA) and 345 African Americans (AA). This study included 48 subjects separated into 4 groups of 12 (AA high, AA low, EA high, EA low). Groups were selected by the extreme phenotype of dose-normalized Tac trough concentrations after adjusting for common genetic variants and clinical factors. NGS spanned >3 Mb of 28 genes and identified 18,661 genetic variants (3,961 previously unknown). A group of 125 deleterious variants, by SIFT analysis, were associated with Tac troughs in EAs (burden test, p=0.008), CYB5R2 was associated with Tac troughs in AAs (SKAT, p=0.00079). In CYB5R2, rs61733057 (increased allele frequency in AAs) was predicted to disrupt protein function by SIFT and PolyPhen2 analysis. The variants merit further validation.
Collapse
|
50
|
Impact of CYP genotype and inflammatory markers on the plasma concentrations of tramadol and its demethylated metabolites and drug tolerability in cancer patients. Eur J Clin Pharmacol 2018; 74:1461-1469. [PMID: 30051214 DOI: 10.1007/s00228-018-2527-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/16/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE Clinical responses to oral tramadol show a large variation in cancer patients. This study aimed to evaluate the impacts of cytochrome P450 (CYP) genotype and serum inflammatory markers on the plasma concentrations of tramadol and its demethylated metabolites and drug tolerability in cancer patients. METHODS The predose plasma concentrations of tramadol and its demethylated metabolites were determined at day 4 or later in 70 Japanese cancer patients treated with oral tramadol. The CYP genotypes, serum interleukin-6 (IL-6) and C-reactive protein (CRP) levels, and the duration of tramadol treatment were evaluated. RESULTS The CYP2D6 genotype did not affect the plasma tramadol concentration. The plasma concentration of O-desmethyltramadol and its ratio to tramadol were lower in the CYP2D6 intermediate and poor metabolizer (IM + PM) group than in the normal metabolizer (NM) group (P = 0.002 and P = 0.023). The plasma concentration of N-desmethyltramadol and its ratio to tramadol were higher in the CYP2D6 IM + PM group than in the NM group (P = 0.001 and P = 0.001). The CYP2B6*6 and CYP3A5*3 alleles had no effect on the plasma concentrations of tramadol and its demethylated metabolites. The serum IL-6 and CRP levels were inversely correlated with the plasma concentration ratios of N-desmethyltramadol to tramadol and of N,O-didesmethyltramadol to O-desmethyltramadol. The serum IL-6 level was associated with the treatment duration of oral tramadol. CONCLUSIONS The CYP2D6 genotype but not the CYP2B6 and CYP3A5 genotypes affected the plasma concentrations of O- and N-desmethyltramadol through alteration of the tramadol metabolic pathway. The serum IL-6 level was associated with N-demethylation activity and tramadol tolerability.
Collapse
|