1
|
Cottey L, Smith JE, Watts S. Optimisation of mitochondrial function as a novel target for resuscitation in haemorrhagic shock: a systematic review. BMJ Mil Health 2025; 171:269-274. [PMID: 37491136 DOI: 10.1136/military-2023-002427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/10/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Traumatic injury is one of the leading causes of death worldwide, and despite significant improvements in patient care, survival in the most severely injured patients remains unchanged. There is a crucial need for innovative approaches to improve trauma patient outcomes; this is particularly pertinent in remote or austere environments with prolonged evacuation times to definitive care. Studies suggest that maintenance of cellular homeostasis is a critical component of optimal trauma patient management, and as the cell powerhouse, it is likely that mitochondria play a pivotal role. As a result, therapies that optimise mitochondrial function could be an important future target for the treatment of critically ill trauma patients. METHODS A systematic review of the literature was undertaken in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol to determine the potential role of mitochondria in traumatic injury and haemorrhagic shock (HS) and to identify current evidence for mitochondrial optimisation therapies in trauma. Articles were included if they assessed a mitochondrial targeted therapy in comparison to a control group, used a model of traumatic injury and HS and reported a method to assess mitochondrial function. RESULTS The search returned 918 articles with 37 relevant studies relating to mitochondrial optimisation identified. Included studies exploring a range of therapies with potential utility in traumatic injury and HS. Therapies were categorised into the key mitochondrial pathways impacted following traumatic injury and HS: ATP levels, cell death, oxidative stress and reactive oxygen species. CONCLUSION This systematic review provides an overview of the key cellular functions of the mitochondria following traumatic injury and HS and identifies why mitochondrial optimisation could be a viable and valuable target in optimising outcome in severely injured patients in the future.
Collapse
Affiliation(s)
- Laura Cottey
- Academic Department of Military Emergency Medicine, Royal Centre for Defence Medicine, Birmingham, UK
| | - J E Smith
- Academic Department of Military Emergency Medicine, Royal Centre for Defence Medicine, Birmingham, UK
- Emergency Department, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - S Watts
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory, Salisbury, UK
| |
Collapse
|
2
|
Prudovsky I, Kacer D, Zucco VV, Palmeri M, Falank C, Kramer R, Carter D, Rappold J. Tranexamic acid: Beyond antifibrinolysis. Transfusion 2022; 62 Suppl 1:S301-S312. [PMID: 35834488 DOI: 10.1111/trf.16976] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
Tranexamic acid (TXA) is a popular antifibrinolytic drug widely used in hemorrhagic trauma patients and cardiovascular, orthopedic, and gynecological surgical patients. TXA binds plasminogen and prevents its maturation to the fibrinolytic enzyme plasmin. A number of studies have demonstrated the broad life-saving effects of TXA in trauma, superior to those of other antifibrinolytic agents. Besides preventing fibrinolysis and blood loss, TXA has been reported to suppress posttraumatic inflammation and edema. Although the efficiency of TXA transcends simple inhibition of fibrinolysis, little is known about its mechanisms of action besides the suppression of plasmin maturation. Understanding the broader effects of TXA at the cell, organ, and organism levels are required to elucidate its potential mechanisms of action transcending antifibrinolytic activity. In this article, we provide a brief review of the current clinical use of TXA and then focus on the effects of TXA beyond antifibrinolytics such as its anti-inflammatory activity, protection of the endothelial and epithelial monolayers, stimulation of mitochondrial respiration, and suppression of melanogenesis.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, USA
| | - Doreen Kacer
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, USA
| | - Victoria Vieira Zucco
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, USA
| | - Monica Palmeri
- Maine Medical Center Cardiovascular Institute, Maine Medical Center, Portland, Maine, USA
| | - Carolyne Falank
- Department of Trauma, Maine Medical Center, Maine Medical Center, Portland, Maine, USA
| | - Robert Kramer
- Maine Medical Center Cardiovascular Institute, Maine Medical Center, Portland, Maine, USA
| | - Damien Carter
- Department of Trauma, Maine Medical Center, Maine Medical Center, Portland, Maine, USA
| | - Joseph Rappold
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, USA.,Department of Trauma, Maine Medical Center, Maine Medical Center, Portland, Maine, USA
| |
Collapse
|
3
|
Lang E, Abdou H, Edwards J, Patel N, Morrison JJ. State-of-the-Art Review: Sex Hormone Therapy in Trauma-Hemorrhage. Shock 2022; 57:317-326. [PMID: 34618728 DOI: 10.1097/shk.0000000000001871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Trauma-hemorrhage is the leading cause of prehospital and early in-hospital deaths, while also significantly contributing to the later development of multisystem organ dysfunction/failure and sepsis. Common and advanced resuscitative methods would potentially demonstrate benefits in the prehospital setting; however, they face a variety of barriers to application and implementation. Thus, a dialogue around a novel adjunct has arisen, sex hormone therapy. Proposed candidates include estradiol and its derivatives, metoclopramide hydrochloride/prolactin, dehydroepiandrosterone, and flutamide; with each having demonstrated a range of salutary effects in several animal model studies. Several retrospective analyses have observed a gender-based dimorphism in mortality following trauma-hemorrhage, thus suggesting that estrogens contribute to this pattern. Trauma-hemorrhage animal models have shown estrogens offer protective effects to the cardiovascular, pulmonary, hepatic, gastrointestinal, and immune systems. Additionally, a series of survival studies utilizing 17α-ethinylestradiol-3-sulfate, a potent, water-soluble synthetic estrogen, have demonstrated a significant survival benefit and beneficial effects on cardiovascular function. This review presents the findings of retrospective clinical studies, preclinical animal studies, and discusses how and why 17α-ethinylestradiol-3-sulfate should be considered for investigation within a prospective clinical trial.
Collapse
Affiliation(s)
- Eric Lang
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
4
|
Obert DP, Wolpert AK, Grimm NL, Korff S. ER stress preconditioning ameliorates liver damage after hemorrhagic shock and reperfusion. Exp Ther Med 2021; 21:248. [PMID: 33603856 PMCID: PMC7851603 DOI: 10.3892/etm.2021.9679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
The mismatch of oxygen supply and demand during hemorrhagic shock disturbs endoplasmic reticulum (ER) homeostasis. The resulting accumulation of unfolded proteins in the ER lumen, which is a condition that is defined as ER stress, triggers the unfolded protein response (UPR). Since the UPR influences the extent of organ damage following hemorrhagic shock/reperfusion (HS/R) and mediates the protective effects of stress preconditioning before ischemia-reperfusion injury, the current study investigated the mechanisms of ER stress preconditioning and its impact on post-hemorrhagic liver damage. Male C56BL/6-mice were injected intraperitoneally with the ER stress inductor tunicamycin (TM) or its drug vehicle 48 h prior to being subjected to a 90 min pressure-controlled hemorrhagic shock (30±5 mmHg). A period of 14 h after hemorrhagic shock induction, mice were sacrificed. Hepatocellular damage was quantified by analyzing hepatic transaminases and hematoxylin-eosin stained liver tissue sections. Additionally, the topographic expression patterns of the ER stress marker binding immunoglobulin protein (BiP), UPR signaling pathways, and the autophagy marker Beclin1 were evaluated. TM injection significantly increased BiP expression and modified the topographic expression patterns of the UPR signaling proteins. In addition, immunohistochemical analysis of Beclin1 revealed an increased pericentral staining intensity following TM pretreatment. The histologic analysis of hepatocellular damage demonstrated a significant reduction in cell death areas in HS/R+TM (P=0.024). ER stress preconditioning influences the UPR and alleviates post-hemorrhagic liver damage. The beneficial effects were, at least partially, mediated by the upregulation of BiP and autophagy induction. These results underscore the importance of the UPR in the context of HS/R and may help identify novel therapeutic targets.
Collapse
Affiliation(s)
- David Peter Obert
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Department of Trauma Surgery, University of Heidelberg, 69118 Heidelberg, Germany
| | - Alexander Karl Wolpert
- Department of Trauma Surgery, University of Heidelberg, 69118 Heidelberg, Germany
- Department of Trauma Surgery, Paracelsus Medical University, 90471 Nuremberg, Germany
| | - Nathan Lewis Grimm
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27708, USA
| | - Sebastian Korff
- Department of Trauma Surgery, University of Heidelberg, 69118 Heidelberg, Germany
- Department of Orthopaedic Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
5
|
Omar AS, Taha A, Al-Khulaifi A. High Transaminases Following Cardiac Surgery: A Narrative Review. JOURNAL OF CARDIAC CRITICAL CARE TSS 2020. [DOI: 10.1055/s-0040-1715931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
AbstractElevation of liver enzymes after cardiac surgery is encountered infrequently. Acute heart failure during and after surgery may be the culprit responsible for liver dysfunction. However, it may create clinical confusion whether acute liver dysfunction could induce some sort of cardiac dysfunction through mechanisms similar to those encountered in chronic liver disease. We searched through the Medline, Cochrane, and Embase databases up to January 2018. We included review articles, meta-analyses, and original trials on the elevation of liver enzymes after cardiac surgery, and combined the following MESH terms: “intensive care, “cardiac surgery,” “high liver enzymes,” “ischemia,” “left ventricular dysfunction,” and “critical illness.” Case reports were excluded. Language restrictions were not applied. References were examined for other potentially useful articles. We did not find any articles that supported the cardiac decompensation phenomenon after acute liver injury. In contrast, low-hepatic flow, hypoxemia, or pump-induced inflammation could induce hepatic dysfunction in acute settings after cardiac surgery. In conclusion, a rise in the transaminases following cardiac surgery would favor an ischemic etiology for the condition.
Collapse
Affiliation(s)
- Amr S. Omar
- Department of Cardiothoracic Surgery/Cardiac Anesthesia and ICU, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
- Department of Critical Care Medicine, Beni Suef University, Beni Suef, Egypt
- Department of Clinical Medicine, Weill Cornell Medical College, Qatar
| | - Adel Taha
- Department of Critical Care Medicine, King Khaled Specialized Hospital, Dammam, KSA
| | - Abdulaziz Al-Khulaifi
- Department of Cardiothoracic Surgery/Cardiac Anesthesia and ICU, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
6
|
van Leeuwen ALI, Dekker NAM, Jansma EP, Boer C, van den Brom CE. Therapeutic interventions to restore microcirculatory perfusion following experimental hemorrhagic shock and fluid resuscitation: A systematic review. Microcirculation 2020; 27:e12650. [PMID: 32688443 PMCID: PMC7757213 DOI: 10.1111/micc.12650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Objective Microcirculatory perfusion disturbances following hemorrhagic shock and fluid resuscitation contribute to multiple organ dysfunction and mortality. Standard fluid resuscitation is insufficient to restore microcirculatory perfusion; however, additional therapies are lacking. We conducted a systematic search to provide an overview of potential non‐fluid‐based therapeutic interventions to restore microcirculatory perfusion following hemorrhagic shock. Methods A structured search of PubMed, EMBASE, and Cochrane Library was performed in March 2020. Animal studies needed to report at least one parameter of microcirculatory flow (perfusion, red blood cell velocity, functional capillary density). Results The search identified 1269 records of which 48 fulfilled all eligibility criteria. In total, 62 drugs were tested of which 29 were able to restore microcirculatory perfusion. Particularly, complement inhibitors (75% of drugs tested successfully restored blood flow), endothelial barrier modulators (100% successful), antioxidants (66% successful), drugs targeting cell metabolism (83% successful), and sex hormones (75% successful) restored microcirculatory perfusion. Other drugs consisted of attenuation of inflammation (100% not successful), vasoactive agents (68% not successful), and steroid hormones (75% not successful). Conclusion Improving mitochondrial function, inhibition of complement inhibition, and reducing microvascular leakage via restoration of endothelial barrier function seem beneficial to restore microcirculatory perfusion following hemorrhagic shock and fluid resuscitation.
Collapse
Affiliation(s)
- Anoek L I van Leeuwen
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Nicole A M Dekker
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Elise P Jansma
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health research institute, Amsterdam, The Netherlands.,Medical Library, Vrije Universiteit, Amsterdam, The Netherlands
| | - Christa Boer
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Modulation of Endoplasmic Reticulum Stress Influences Ischemia-Reperfusion Injury After Hemorrhagic Shock. Shock 2020; 52:e76-e84. [PMID: 30499877 DOI: 10.1097/shk.0000000000001298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Impaired function of the endoplasmic reticulum (ER) results in ER stress, an accumulation of proteins in the ER lumen. ER stress is a major contributor to inflammatory diseases and is part of the pathomechanism of ischemia-reperfusion injury (IRI). Since severe traumatic injury is often accompanied by remote organ damage and immune cell dysfunction, we investigated the influence of ER stress modulation on the systemic inflammatory response and liver damage after hemorrhagic shock and reperfusion (HS/R). MATERIAL AND METHODS Male C56BL/6-mice were subjected to hemorrhagic shock with a mean arterial pressure of 30 ± 5 mm Hg. After 90 min mice were resuscitated with Ringer solution. Either the ER stress inductor tunicamycin (TM), its drug vehicle (DV), or the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) were added to reperfusion solution. Animals were sacrificed 14 h after shock induction and plasma concentrations of liver transaminases as well as inflammatory cytokines were measured. In addition, liver tissue sections were embedded in paraffin. For the quantification of hepatocellular damage hematoxylin and eosin stained tissue sections were analyzed. Furthermore, the topographic patterns of ER stress marker proteins were evaluated using immunohistochemistry. RESULTS ER stress modulation influenced the topographic pattern of ER stress marker proteins. The alterations were particularly seen in the transition zone between vital liver parenchyma and cell death areas. Furthermore, the application of tunicamycin during reperfusion inhibited the secretion of pro-inflammatory cytokines and increased the hepatocellular damage significantly. However, the injection of TUDCA resulted in a significantly reduced liver damage, as seen by lower transaminases and smaller cell death areas. CONCLUSION ER stress modulation influences post-hemorrhagic IRI. Moreover, the ER stress inhibitor TUDCA diminished the hepatocellular damage following HS/R significantly. This may help to provide a therapeutic target to ameliorate the clinical outcome after trauma-hemorrhage.
Collapse
|
8
|
Malbrain MLNG, Langer T, Annane D, Gattinoni L, Elbers P, Hahn RG, De laet I, Minini A, Wong A, Ince C, Muckart D, Mythen M, Caironi P, Van Regenmortel N. Intravenous fluid therapy in the perioperative and critical care setting: Executive summary of the International Fluid Academy (IFA). Ann Intensive Care 2020; 10:64. [PMID: 32449147 PMCID: PMC7245999 DOI: 10.1186/s13613-020-00679-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Intravenous fluid administration should be considered as any other pharmacological prescription. There are three main indications: resuscitation, replacement, and maintenance. Moreover, the impact of fluid administration as drug diluent or to preserve catheter patency, i.e., fluid creep, should also be considered. As for antibiotics, intravenous fluid administration should follow the four Ds: drug, dosing, duration, de-escalation. Among crystalloids, balanced solutions limit acid-base alterations and chloride load and should be preferred, as this likely prevents renal dysfunction. Among colloids, albumin, the only available natural colloid, may have beneficial effects. The last decade has seen growing interest in the potential harms related to fluid overloading. In the perioperative setting, appropriate fluid management that maintains adequate organ perfusion while limiting fluid administration should represent the standard of care. Protocols including a restrictive continuous fluid administration alongside bolus administration to achieve hemodynamic targets have been proposed. A similar approach should be considered also for critically ill patients, in whom increased endothelial permeability makes this strategy more relevant. Active de-escalation protocols may be necessary in a later phase. The R.O.S.E. conceptual model (Resuscitation, Optimization, Stabilization, Evacuation) summarizes accurately a dynamic approach to fluid therapy, maximizing benefits and minimizing harms. Even in specific categories of critically ill patients, i.e., with trauma or burns, fluid therapy should be carefully applied, considering the importance of their specific aims; maintaining peripheral oxygen delivery, while avoiding the consequences of fluid overload.
Collapse
Affiliation(s)
- Manu L. N. G. Malbrain
- Department of Intensive Care Medicine, University Hospital Brussels (UZB), Laarbeeklaan 101, 1090 Jette, Belgium
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, 1090 Belgium
- International Fluid Academy, Lovenjoel, Belgium
| | - Thomas Langer
- School of Medicine and Surgery, Milano-Bicocca University, Milan, Italy
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Djillali Annane
- General Intensive Care Unit, Raymond Poincaré Hospital (GHU APHP Université Paris Saclay), U1173 Inflammation & Infection, School of Medicine Simone Veil, UVSQ-University Paris Saclay, 104 Boulevard Raymond Poincaré, 92380 Garches, France
| | - Luciano Gattinoni
- Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Paul Elbers
- Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Robert G. Hahn
- Karolinska Institutet at Danderyds Hospital (KIDS), Stockholm, Sweden
| | - Inneke De laet
- Department of Intensive Care Medicine, Ziekenhuis Netwerk Antwerpen, ZNA Stuivenberg, Antwerp, Belgium
| | - Andrea Minini
- Department of Intensive Care Medicine, University Hospital Brussels (UZB), Laarbeeklaan 101, 1090 Jette, Belgium
| | - Adrian Wong
- Department of Intensive Care Medicine and Anaesthesia, King’s College Hospital, Denmark Hill, London, UK
| | - Can Ince
- Department of Intensive Care Medicine, Laboratory of Translational Intensive Care Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - David Muckart
- Department of Surgery, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Level I Trauma Unit and Trauma Intensive Care Unit, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Monty Mythen
- University College London Hospitals, National Institute of Health Research Biomedical Research Centre, London, UK
| | - Pietro Caironi
- SCDU Anestesia e Rianimazione, Azienda Ospedaliero-Universitaria S. Luigi Gonzaga, Orbassano, Italy
- Dipartimento di Oncologia, Università degli Studi di Torino, Turin, Italy
| | - Niels Van Regenmortel
- Department of Intensive Care Medicine, Ziekenhuis Netwerk Antwerpen, ZNA Stuivenberg, Antwerp, Belgium
- Department of Intensive Care Medicine, Ziekenhuis Netwerk Antwerpen, ZNA Stuivenberg, Antwerp, Belgium
| |
Collapse
|
9
|
Muckart DJJ. Damage Control Resuscitation: Restarting the Machinery of Life. CURRENT TRAUMA REPORTS 2018. [DOI: 10.1007/s40719-018-0129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Effects of Hyperoxia During Resuscitation From Hemorrhagic Shock in Swine With Preexisting Coronary Artery Disease. Crit Care Med 2017; 45:e1270-e1279. [PMID: 29028763 DOI: 10.1097/ccm.0000000000002767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Investigation of the effects of hyperoxia during resuscitation from hemorrhagic shock in swine with preexisting coronary artery disease. DESIGN Prospective, controlled, randomized trial. SETTING University animal research laboratory. SUBJECTS Nineteen hypercholesterolemic pigs with preexisting coronary artery disease. INTERVENTIONS Anesthetized, mechanically ventilated, and surgically instrumented pigs underwent 3 hours of hemorrhagic shock (removal of 30% of the calculated blood volume and subsequent titration of mean arterial blood pressure ≈40 mm Hg). Postshock resuscitation (48 hr) comprised retransfusion of shed blood, crystalloids (balanced electrolyte solution), and norepinephrine support. Pigs were randomly assigned to "control" (FIO2 0.3, adjusted for arterial oxygen saturation ≥ 90%) and "hyperoxia" (FIO2 1.0 for 24 hr) groups. MEASUREMENTS AND MAIN RESULTS Before, at the end of shock and every 12 hours of resuscitation, datasets comprising hemodynamics, calorimetry, blood gases, cytokines, and cardiac and renal function were recorded. Postmortem, organs were sampled for immunohistochemistry, western blotting, and mitochondrial high-resolution respirometry. Survival rates were 50% and 89% in the control and hyperoxia groups, respectively (p = 0.077). Apart from higher relaxation constant τ at 24 hours, hyperoxia did not affect cardiac function. However, troponin values were lower (2.2 [0.9-6.2] vs 6.9 [4.8-9.8] ng/mL; p < 0.05) at the end of the experiment. Furthermore, hyperoxia decreased cardiac 3-nitrotyrosine formation and increased inducible nitric oxide synthase expression. Plasma creatinine values were lower in the hyperoxia group during resuscitation coinciding with significantly improved renal mitochondrial respiratory capacity and lower 3-nitrotyrosine formation. CONCLUSIONS Hyperoxia during resuscitation from hemorrhagic shock in swine with preexisting coronary artery disease reduced renal dysfunction and cardiac injury, potentially resulting in improved survival, most likely due to increased mitochondrial respiratory capacity and decreased oxidative and nitrosative stress. Compared with our previous study, the present results suggest a higher benefit of hyperoxia in comorbid swine due to an increased susceptibility to hemorrhagic shock.
Collapse
|
11
|
Abstract
The microvasculature plays a central role in the pathophysiology of hemorrhagic shock and is also involved in arguably all therapeutic attempts to reverse or minimize the adverse consequences of shock. Microvascular studies specific to hemorrhagic shock were reviewed and broadly grouped depending on whether data were obtained on animal or human subjects. Dedicated sections were assigned to microcirculatory changes in specific organs, and major categories of pathophysiological alterations and mechanisms such as oxygen distribution, ischemia, inflammation, glycocalyx changes, vasomotion, endothelial dysfunction, and coagulopathy as well as biomarkers and some therapeutic strategies. Innovative experimental methods were also reviewed for quantitative microcirculatory assessment as it pertains to changes during hemorrhagic shock. The text and figures include representative quantitative microvascular data obtained in various organs and tissues such as skin, muscle, lung, liver, brain, heart, kidney, pancreas, intestines, and mesentery from various species including mice, rats, hamsters, sheep, swine, bats, and humans. Based on reviewed findings, a new integrative conceptual model is presented that includes about 100 systemic and local factors linked to microvessels in hemorrhagic shock. The combination of systemic measures with the understanding of these processes at the microvascular level is fundamental to further develop targeted and personalized interventions that will reduce tissue injury, organ dysfunction, and ultimately mortality due to hemorrhagic shock. Published 2018. Compr Physiol 8:61-101, 2018.
Collapse
Affiliation(s)
- Ivo Torres Filho
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| |
Collapse
|
12
|
Abstract
PURPOSE The aim of this study is to assess the efficacy of the combination of N-acetylcysteine (NAC) and deferoxamine (DFO) in the resuscitation from hemorrhagic shock in a porcine model of bleeding during hepatectomy. METHODS Twenty-one pigs were divided randomly to three groups: Sham (S) group, n = 5; fluid (F) resuscitation group, n = 8; and fluid plus NAC plus DFO (NAC&DFO) resuscitation group, n = 8. The animals of groups F and NAC&DFO were subjected to left hepatectomy and controlled hemorrhage from the traumatic liver surface. Shock was established within 10 minutes and maintained for 30 minutes at mean arterial pressure (MAP) of 30 to 40 mm Hg. Resuscitation followed the shock period with crystalloids and colloids. Group NAC&DFO received additionally NAC and DFO in doses of 200 mg/kg and 65 mg/kg, respectively. The total time of the experiment was 6 hours. RESULTS Animal weight, blood loss, excised liver mass, and MAP at the end of the shock period were comparable between experimental groups. Group NAC&DFO received significantly lower volume of both crystalloids and colloids (35% and 42% less, respectively) compared to group F. Hepatocellular proliferation (proliferating cell nuclear antigen) was higher in the antioxidant group. Apoptosis, measured by caspase-3, was restored to sham group levels when NAC and DFO were administered. CONCLUSIONS Our experimental study showed that coadministration of NAC and DFO during liver hemorrhage can decrease the amounts of fluids needed for resuscitation. Moreover, the antioxidant combination restores the energy dependent apoptosis and proliferation of the hepatocytes.
Collapse
|
13
|
Thangavel S, Yoshitomi T, Sakharkar MK, Nagasaki Y. Redox nanoparticle increases the chemotherapeutic efficiency of pioglitazone and suppresses its toxic side effects. Biomaterials 2016; 99:109-23. [PMID: 27235996 DOI: 10.1016/j.biomaterials.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 02/03/2023]
Abstract
Pioglitazone is a widely used anti-diabetic drug that induces cytotoxicity in cancer cells; however, its clinical use is questioned due to its associated liver toxicity caused by increased oxidative stress. We therefore employed nitroxide-radical containing nanoparticle, termed redox nanoparticle (RNP(N)) which is an effective scavenger of reactive oxygen species (ROS) as a drug carrier. RNP(N) encapsulation increased pioglitazone solubility, thus increasing cellular uptake of encapsulated pioglitazone which reduced the dose required to induce toxicity in prostate cancer cell lines. Investigation of in vitro molecular mechanism of pioglitazone revealed that both apoptosis and cell cycle arrest were involved in tumor cell death. In addition, intravenously administered pioglitazone-loaded RNP(N) produced significant tumor volume reduction in vivo due to enhanced permeation and retention effect. Most importantly, oxidative damage caused by pioglitazone in the liver was significantly suppressed by pioglitazone-loaded RNP(N) due to the presence of nitroxide radicals. It is interesting to note that oral administration of encapsulated pioglitazone, and co-administration of RNP(N) and pioglitazone, i.e., no encapsulation of pioglitazone in RNP(N) also significantly contributed to suppression of the liver injury. Therefore, use of RNP(N) either as an adjuvant or as a carrier for drugs with severe side effects is a promising chemotherapeutic strategy.
Collapse
Affiliation(s)
- Sindhu Thangavel
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Toru Yoshitomi
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Meena Kishore Sakharkar
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Tennodai 1-1-1, Ibaraki 305-8572, Japan
| | - Yukio Nagasaki
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Satellite Laboratory, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
14
|
Remote Ischemic Conditioning Prevents Lung and Liver Injury After Hemorrhagic Shock/Resuscitation: Potential Role of a Humoral Plasma Factor. Ann Surg 2016; 261:1215-25. [PMID: 25185480 DOI: 10.1097/sla.0000000000000877] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To evaluate the efficacy of remote ischemic conditioning (RIC) on organ protection after hemorrhagic shock/resuscitation (S/R) in a murine model. BACKGROUND Ischemia/reperfusion resulting from S/R contributes to multiple organ dysfunction in trauma patients. We hypothesized that RIC before shock (remote ischemic preconditioning), during shock (remote ischemic "PER"conditioning), or during resuscitation (remote ischemic "POST"conditioning) could confer organ protection. We also tested the effect of ischemic conditioned plasma on neutrophil migration in vivo using transgenic zebrafish models. METHODS C57Bl/6 mice were subjected to S/R with or without hindlimb RIC. Serum levels of alanine aminotransferase and tumor necrosis factor-alpha, and liver tumor necrosis factor-alpha and interleukin 1β mRNA were evaluated. In some experiments, lung protein leakage, cytokines, and myeloperoxidase activity were investigated. Plasma from mice subjected to RIC was microinjected into zebrafish, and neutrophil migration was assessed after tailfin transection or copper sulfate treatment. RESULTS In mice subjected to S/R, remote ischemic preconditioning, remote ischemic "PER"conditioning, and remote ischemic "POST"conditioning each significantly reduced serum alanine aminotransferase and liver mRNA expression of tumor necrosis factor-alpha and interleukin 1β and improved liver histology compared with control S/R mice. Lung injury and inflammation were also significantly reduced in mice treated with remote ischemic preconditioning. Zebrafish injected with plasma or dialyzed plasma (fraction >14 kDa) from ischemic conditioned mice had reduced neutrophil migration toward sites of injury compared with zebrafish injected with control plasma. CONCLUSIONS RIC protects against S/R-induced organ injury, in part, through a humoral factor(s), which alters neutrophil function. The beneficial effects of RIC, performed during the S/R phase of care, suggest a role for its application early in the posttrauma period.
Collapse
|
15
|
Minocycline and doxycycline, but not tetracycline, mitigate liver and kidney injury after hemorrhagic shock/resuscitation. Shock 2015; 42:256-63. [PMID: 24978888 DOI: 10.1097/shk.0000000000000213] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Despite recovery of hemodynamics by fluid resuscitation after hemorrhage, development of the systemic inflammatory response and multiple organ dysfunction syndromes can nonetheless lead to death. Minocycline and doxycycline are tetracycline derivatives that are protective in models of hypoxic, ischemic, and oxidative stress. Our aim was to determine whether minocycline and doxycycline protect liver and kidney and improve survival in a mouse model of hemorrhagic shock and resuscitation. METHODS Mice were hemorrhaged to 30 mmHg for 3 h and then resuscitated with shed blood followed by half the shed volume of lactated Ringer's solution containing tetracycline (10 mg/kg), minocycline (10 mg/kg), doxycycline (5 mg/kg), or vehicle. For pretreatment plus posttreatment, drugs were administered intraperitoneally prior to hemorrhage followed by second equal dose in Ringer's solution after blood resuscitation. Blood and tissue were harvested after 6 h. RESULTS Serum alanine aminotransferase (ALT) increased to 1,988 and 1,878 U/L after posttreatment with vehicle and tetracycline, respectively, whereas minocycline and doxycycline posttreatment decreased ALT to 857 and 863 U/L. Pretreatment plus posttreatment with minocycline and doxycycline also decreased ALT to 849 and 834 U/L. After vehicle, blood creatinine increased to 134 µM, which minocycline and doxycycline posttreatment decreased to 59 and 56 µM. Minocycline and doxycycline pretreatment plus posttreatment decreased creatinine similarly. Minocycline and doxycycline also decreased necrosis and apoptosis in liver and apoptosis in both liver and kidney, the latter assessed by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) and caspase 3 activation. Lastly after 4.5 h of hemorrhage followed by resuscitation, minocycline and doxycycline (but not tetracycline) posttreatment improved 1-week survival from 38% (vehicle) to 69% and 67%, respectively. CONCLUSION Minocycline and doxycycline were similarly protective when given before as after blood resuscitation and might therefore have clinical efficacy to mitigate liver and kidney injury after resuscitated hemorrhage.
Collapse
|
16
|
Abouzied MM, Eltahir HM, Taye A, Abdelrahman MS. Experimental evidence for the therapeutic potential of tempol in the treatment of acute liver injury. Mol Cell Biochem 2015; 411:107-15. [DOI: 10.1007/s11010-015-2572-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/26/2015] [Indexed: 01/04/2023]
|
17
|
Yadav VR, Hussain A, Xie J, Kosanke S, Awasthi V. The salutary effects of diphenyldifluoroketone EF24 in liver of a rat hemorrhagic shock model. Scand J Trauma Resusc Emerg Med 2015; 23:8. [PMID: 25645333 PMCID: PMC4324433 DOI: 10.1186/s13049-015-0098-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background Liver is a target for injury in low flow states and it plays a central role in the progression of systemic failure associated with hemorrhagic shock. Pharmacologic support can help recover liver function even after it has suffered extensive damage during ischemia and reperfusion phases. In this work we assessed the efficacy of a diphenyldifluoroketone EF24, an IKKβ inhibitor, in controlling hepatic inflammatory signaling caused by hemorrhagic shock in a rat model. Methods Sprague Dawley rats were bled to about 50% of blood volume. The hemorrhaged rats were treated with vehicle control or EF24 (0.4 mg/kg) after 1 h of hemorrhage without any accompanying resuscitation. The study was terminated after additional 5 h to excise liver tissue for biochemical analyses and histology. Results EF24 treatment alleviated hemorrhagic shock-induced histologic injury in the liver and restored serum transaminases to normal levels. Hemorrhagic shock induced the circulating levels of CD163 (a marker for macrophage activation) and CINC (an IL-8 analog), as well as myeloperoxidase activity in liver tissue. These markers of inflammatory injury were reduced by EF24 treatment. EF24 treatment also suppressed the expression of the Toll-like receptor 4, phospho-p65/Rel A, and cyclooxygenase-2 in liver tissues, indicating that it suppressed inflammatory pathway. Moreover, it reduced the hemorrhagic shock-induced increase in the expression of high mobility group box-1 protein. The evidence for apoptosis after hemorrhagic shock was inconclusive. Conclusion Even in the absence of volume support, EF24 treatment suppresses pro-inflammatory signaling in liver tissue and improves liver functional markers in hemorrhagic shock.
Collapse
Affiliation(s)
- Vivek R Yadav
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Alamdar Hussain
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Jun Xie
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Stanley Kosanke
- Department of Comparative Medicine, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, USA.
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
18
|
Kubilay NZ, Sengel BE, Wood KE, Layon AJ. Biomarkers in Hepatic Disease: A Review Focused on Critically Ill Patients. J Intensive Care Med 2014; 31:104-12. [PMID: 25324195 DOI: 10.1177/0885066614554897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/17/2014] [Indexed: 11/15/2022]
Abstract
The ability to make a diagnosis early and appropriately is paramount for the survival of the critically ill ICU patient. Along with the myriad physical examination and imaging modalities available, biomarkers provide a window on the disease process. Herein we review hepatic biomarkers in the context of the critical care patient.
Collapse
Affiliation(s)
- Nejla Zeynep Kubilay
- The Department of Critical Care Medicine, The Geisinger Health System, Danville, PA, USA Department of Medicine, The Marmara University Teaching and Education Hospital, Istanbul, Turkey
| | - Buket Erturk Sengel
- The Department of Critical Care Medicine, The Geisinger Health System, Danville, PA, USA Department of Medicine, The Marmara University Teaching and Education Hospital, Istanbul, Turkey
| | - Kenneth E Wood
- The Department of Critical Care Medicine, The Geisinger Health System, Danville, PA, USA The Geisinger Medical Center, Danville, PA, USA
| | - A Joseph Layon
- The Department of Critical Care Medicine, The Geisinger Health System, Danville, PA, USA
| |
Collapse
|
19
|
Maraslioglu M, Weber R, Korff S, Blattner C, Nauck C, Henrich D, Jobin C, Marzi I, Lehnert M. Activation of NF-κB after chronic ethanol intake and haemorrhagic shock/resuscitation in mice. Br J Pharmacol 2014; 170:506-18. [PMID: 23646923 DOI: 10.1111/bph.12224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/23/2013] [Accepted: 04/18/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic ethanol abuse and haemorrhagic shock are major causes of global mortality and, separately, induce profound hepato- and immune-toxic effects via activation of NF-κB. Here, we assessed the effects of chronic ethanol intake upon the pathophysiological derangements after haemorrhagic shock with subsequent resuscitation (H/R), with particular attention to the contribution of NF-κB. EXPERIMENTAL APPROACH Transgenic NF-κB(EGFP) mice, expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-κB cis-elements were fed a Lieber-DeCarli diet containing ethanol (EtOH-diet) or an isocaloric control diet for 4 weeks and were then pairwise subjected to H/R. Liver tissues and peripheral blood were sampled at 2 or 24 h after H/R. Cytokines in blood and tissue and leukocyte activation (as CD11b expression) were measured, along with EGFP as a marker of NF-κB activation. KEY RESULTS The EtOH-diet increased mortality at 24 h after H/R and elevated liver injury, associated with an up-regulation of NF-κB-dependent genes and IL-6 release; it also increased production of NF-κB-driven intercellular adhesion molecule 1 (ICAM-1) and EGFP in liver tissue. At 2h after the H/R procedure in ethanol-fed mice we observed the highest proportion of NF-κB activated non-parenchymal cells and an NF-κB-dependent increase in polymorphonuclear leukocyte CD11b expression. CONCLUSIONS AND IMPLICATIONS The EtOH-diet exacerbated liver injury after H/R, accompanying an overwhelming hepatic and systemic immune response. Our findings contribute to evidence implicating NF-κB as a key player in the orchestration of the immune response in haemorrhagic shock patients with a history of chronic ethanol abuse.
Collapse
Affiliation(s)
- M Maraslioglu
- Department of Trauma Surgery, Johann Wolfgang Goethe-University, Frankfurt (Main), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zager RA, Johnson ACM, Frostad KB. Acute hepatic ischemic-reperfusion injury induces a renal cortical "stress response," renal "cytoresistance," and an endotoxin hyperresponsive state. Am J Physiol Renal Physiol 2014; 307:F856-68. [PMID: 25080526 DOI: 10.1152/ajprenal.00378.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatic ischemic-reperfusion injury (HIRI) is considered a risk factor for clinical acute kidney injury (AKI). However, HIRI's impact on renal tubular cell homeostasis and subsequent injury responses remain ill-defined. To explore this issue, 30-45 min of partial HIRI was induced in CD-1 mice. Sham-operated or normal mice served as controls. Renal changes and superimposed injury responses (glycerol-induced AKI; endotoxemia) were assessed 2-18 h later. HIRI induced mild azotemia (blood urea nitrogen ∼45 mg/dl) in the absence of renal histologic injury or proteinuria, implying a "prerenal" state. However, marked renal cortical, and isolated proximal tubule, cytoprotective "stress protein" gene induction (neutrophil gelatinase-associated lipocalin, heme oxygenase-1, hemopexin, hepcidin), and increased Toll-like receptor 4 (TLR4) expression resulted (protein/mRNA levels). Ischemia caused release of hepatic heme-based proteins (e.g., cytochrome c) into the circulation. This corresponded with renal cortical oxidant stress (malondialdehyde increases). That hepatic derived factors can evoke redox-sensitive "stress protein" induction was implied by the following: peritoneal dialysate from HIRI mice, soluble hepatic extract, or exogenous cytochrome c each induced the above stress protein(s) either in vivo or in cultured tubule cells. Functional significance of HIRI-induced renal "preconditioning" was indicated by the following: 1) HIRI conferred virtually complete morphologic protection against glycerol-induced AKI (in the absence of hyperbilirubinemia) and 2) HIRI-induced TLR4 upregulation led to a renal endotoxin hyperresponsive state (excess TNF-α/MCP-1 gene induction). In conclusion, HIRI can evoke "renal preconditioning," likely due, in part, to hepatic release of pro-oxidant factors (e.g., cytochrome c) into the systemic circulation. The resulting renal changes can impact subsequent AKI susceptibility and TLR4 pathway-mediated stress.
Collapse
Affiliation(s)
- Richard A Zager
- The Fred Hutchinson Cancer Research Center, Seattle, Washington; and University of Washington, Seattle, Washington
| | - Ali C M Johnson
- The Fred Hutchinson Cancer Research Center, Seattle, Washington; and University of Washington, Seattle, Washington
| | - Kirsten B Frostad
- The Fred Hutchinson Cancer Research Center, Seattle, Washington; and University of Washington, Seattle, Washington
| |
Collapse
|
21
|
Jellestad L, Fink T, Pradarutti S, Kubulus D, Wolf B, Bauer I, Thiemermann C, Rensing H. Inhibition of glycogen synthase kinase (GSK)-3-β improves liver microcirculation and hepatocellular function after hemorrhagic shock. Eur J Pharmacol 2014; 724:175-84. [PMID: 24389157 DOI: 10.1016/j.ejphar.2013.12.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
Ischemia and reperfusion may cause liver injury and are characterized by hepatic microperfusion failure and a decreased hepatocellular function. Inhibition of glycogen synthase kinase (GSK)-3β, a serine-threonine kinase that has recently emerged as a key regulator in the modulation of the inflammatory response after stress events, may be protective in conditions like sepsis, inflammation and shock. Therefore, aim of the study was to assess the role of GSK-3β in liver microcirculation and hepatocellular function after hemorrhagic shock and resuscitation (H/R). Anesthetized male Sprague-Dawley rats underwent pretreatment with Ringer´s solution, vehicle (DMSO) or TDZD-8 (1 mg/kg), a selective GSK-3β inhibitor, 30 min before induction of hemorrhagic shock (mean arterial pressure 35±5 mmHg for 90 min) and were resuscitated with shed blood and Ringer´s solution (2h). 5h after resuscitation hepatic microcirculation was assessed by intravital microscopy. Propidium iodide (PI) positive cells, liver enzymes and alpha-GST were measured as indicators of hepatic injury. Liver function was estimated by assessment of indocyanine green plasma disappearance rate. H/R led to a significant decrease in sinusoidal diameters and impairment of liver function compared to sham operation. Furthermore, the number of PI positive cells in the liver as well as serum activities of liver enzymes and alpha-GST increased significantly after H/R. Pretreatment with TDZD-8 prevented the changes in liver microcirculation, hepatocellular injury and liver function after H/R. A significant rise in the plasma level of IL-10 was observed. Thus, inhibition of GSK-3β before hemorrhagic shock modulates the inflammatory response and improves hepatic microcirculation and hepatocellular function.
Collapse
Affiliation(s)
- Lena Jellestad
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Saarland, Kirrberger Straße 1, D-66421 Homburg, Germany
| | - Tobias Fink
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Saarland, Kirrberger Straße 1, D-66421 Homburg, Germany
| | - Sascha Pradarutti
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Saarland, Kirrberger Straße 1, D-66421 Homburg, Germany
| | - Darius Kubulus
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Saarland, Kirrberger Straße 1, D-66421 Homburg, Germany
| | - Beate Wolf
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Saarland, Kirrberger Straße 1, D-66421 Homburg, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstraße 5, D-40225 Duesseldorf, Germany
| | - Chris Thiemermann
- St. Bartholomew's and Royal London, School of Medicine and Dentistry, William Harvey Research Institute, Centre for Experimental Medicine, Nephrology and Critical Care, Charterhouse Square, London EC1M 6BQ, UK
| | - Hauke Rensing
- Department of Anesthesiology and Critical Care Medicine, Leopoldina Hospital, Gustav-Adolf-Straße 6-8, D-97422 Schweinfurt, Germany.
| |
Collapse
|
22
|
Abstract
OBJECTIVES Accidental hypothermia increases mortality and morbidity after hemorrhage, but controversial data are available on the effects of therapeutic hypothermia. Therefore, we tested the hypothesis whether moderate pretreatment hypothermia would beneficially influence organ dysfunction during long-term, porcine hemorrhage and resuscitation. DESIGN Prospective, controlled, randomized study. SETTING University animal research laboratory. SUBJECTS Twenty domestic pigs of either gender. INTERVENTIONS Using an extracorporeal heat exchanger, anesthetized and instrumented animals were maintained at 38°C, 35°C, or 32°C core temperature and underwent 4 hours of hemorrhage (removal of 40% of the blood volume and subsequent blood removal/retransfusion to maintain mean arterial pressure at 30 mm Hg). Resuscitation comprised of hydroxyethyl starch and norepinephrine infusion titrated to maintain mean arterial pressure at preshock values. MEASUREMENTS AND MAIN RESULTS Before, immediately at the end of, and 12 and 22 hours after hemorrhage, we measured systemic and regional hemodynamics (portal vein, hepatic and right kidney artery ultrasound flow probes) and oxygen transport, and nitric oxide and cytokine production. Hemostasis was assessed by rotation thromboelastometry. Postmortem biopsies were analyzed for histomorphology (hematoxylin and eosin staining) and markers of apoptosis (kidney Bcl-xL and caspase-3 expression). Hypothermia at 32°C attenuated the shock-related lactic acidosis but caused metabolic acidosis, most likely resulting from reduced carbohydrate oxidation. Although hypothermia did not further aggravate shock-related coagulopathy, it caused a transitory attenuation of kidney and liver dysfunction, which was ultimately associated with reduced histological damage and more pronounced apoptosis. CONCLUSIONS During long-term porcine hemorrhage and resuscitation, moderate pretreatment hypothermia was associated with a transitory attenuation of organ dysfunction and less severe histological tissue damage despite more pronounced metabolic acidosis. This effect is possibly due to a switch from necrotic to apoptotic cell death, ultimately resulting from reduced tissue energy deprivation during the shock phase.
Collapse
|
23
|
Time dependency and topography of hepatic nuclear factor κB activation after hemorrhagic shock and resuscitation in mice. Shock 2013; 38:486-92. [PMID: 22814290 DOI: 10.1097/shk.0b013e3182699072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The leading causes of death in people aged 1 to 44 years are unintentional injuries with associated hemorrhagic shock. Hemorrhagic shock followed by resuscitation (H/R) activates the nuclear factor κB (NF-κB) pathway. To further address the association between liver damage and NF-κB activation, we analyzed the H/R-induced activation of NF-κB using cis-NF-κB reporter gene mice. In these mice, the expression of green fluorescent protein (GFP) is linked to the activation of NF-κB, and therefore tracing of GFP colocalizes NF-κB activation. Mice were hemorrhaged to a mean arterial blood pressure of 30mmHg for 90 min, followed by resuscitation. Six, 14, or 24 h after resuscitation, mice were killed. Compared with sham-operated mice, H/R led to a profound hepatic and cellular damage as measured by aspartate aminotransferase, creatine kinase, and lactate dehydrogenase levels, which was accompanied by an elevation in interleukin 6 levels and hepatic leukocyte infiltration. Interleukin 10 levels in plasma were elevated 6 h after H/R. Using serial liver sections, we found an association between necrotic areas, oxidative stress, and enhanced GFP-positive cells. Furthermore, enhanced GFP-positive cells surrounded areas of necrotic liver tissue, predominantly in a penumbra-like-shape pericentrally. These results elucidate spatial relationship between oxidative stress, liver necrosis, and NF-κB activation, using an in vivo approach and therefore might help to further analyze mechanisms of NF-κB activation after resuscitated blood loss.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The liver comprises a multitude of parenchymal and nonparenchymal cells with diverse metabolic, hemodynamic and immune functions. Available monitoring options consist of 'static' laboratory parameters, quantitative tests of liver function based on clearance, elimination or metabolite formation and scores, most notably the 'model for end-stage liver disease'. This review aims at balancing conventional markers against 'dynamic' tests in the critically ill. RECENT FINDINGS There is emerging evidence that conventional laboratory markers, most notably bilirubin, and the composite model for end-stage liver disease are superior to assess cirrhosis and their acute decompensation, while dynamic tests provide information in the absence of preexisting liver disease. Bilirubin and plasma disappearance rate of indocyanine green reflecting static and dynamic indicators of excretory dysfunction prognosticate unfavorable outcome, both, in the absence and presence of chronic liver disease better than other functions or indicators of injury. Although dye excretion is superior to conventional static parameters in the critically ill, it still underestimates impaired canalicular transport, an increasingly recognized facet of excretory dysfunction. SUMMARY Progress has been made in the last year to weigh static and dynamic tests to monitor parenchymal liver functions, whereas biomarkers to assess nonparenchymal functions remain largely obscure.
Collapse
|
25
|
Resuscitation after hemorrhagic shock: the effect on the liver--a review of experimental data. J Anesth 2012; 27:447-60. [PMID: 23275009 DOI: 10.1007/s00540-012-1543-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/05/2012] [Indexed: 12/30/2022]
Abstract
The liver is currently considered to be one of the first organs to be subjected to the hypoxic insult inflicted by hemorrhagic shock. The oxidative injury caused by resuscitation also targets the liver and can lead to malfunction and the eventual failure of this organ. Each of the various fluids, vasoactive drugs, and pharmacologic substances used for resuscitation has its own distinct effect(s) on the liver, and the anesthetic agents used during surgical resuscitation also have an impact on hepatocytes. The aim of our study was to identify the specific effect of these substances on the liver. To this end, we conducted a literature search of MEDLINE for all types of articles published in English, with a focus on articles published in the last 12 years. Our search terms were "hemorrhagic shock," "liver," "resuscitation," "vasopressors," and "anesthesia." Experimental studies form the majority of articles found in bibliographic databases. The effect of a specific resuscitation agent on the liver is assessed mainly by measuring apoptotic pathway regulators and inflammation-induced indicators. Apart from a wide range of pharmacological substances, modifications of Ringer's Lactate, colloids, and pyruvate provide protection to the liver after hemorrhage and resuscitation. In this setting, it is of paramount importance that the treating physician recognize those agents that may attenuate liver injury and avoid using those which inflict additional damage.
Collapse
|
26
|
Incidence of early burn-induced effects on liver function as reflected by the plasma disappearance rate of indocyanine green: A prospective descriptive cohort study. Burns 2012; 38:214-24. [DOI: 10.1016/j.burns.2011.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 12/23/2022]
|
27
|
Yang R, Vernon K, Thomas A, Morrison D, Qureshi N, Van Way CW. Crocetin reduces activation of hepatic apoptotic pathways and improves survival in experimental hemorrhagic shock. JPEN J Parenter Enteral Nutr 2011; 35:107-13. [PMID: 21224437 DOI: 10.1177/0148607110374058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hemorrhagic shock results in cellular damage and cell death. A primary mechanism is cellular apoptosis from mitochondrial damage. This study demonstrated that administration of crocetin to experimental animals during resuscitation from shock significantly improved postshock survival and reduced apoptosis. Crocetin is a component of saffron and has long been used in traditional medicine in Asia. METHODS Male Sprague-Dawley rats (350 ± 30 g) were randomly assigned to 1 of 4 groups of 8 animals. Hemorrhagic shock was induced by withdrawing blood until the mean arterial pressure was 35-40 mm Hg, and blood pressure was maintained at that level for 60 minutes with further withdrawals as needed. Resuscitation was carried out by administration of 21 mL/kg lactated Ringer's solution and return of shed blood, with or without concurrent administration of crocetin (2 mg/kg). Control animals were sham-treated with surgical preparation, without shock or resuscitation, and with and without crocetin. Rats were sacrificed 24 hours after completion of resuscitation. The extent of activation of hepatic apoptosis was established by measuring levels of hepatic cytosolic cytochrome c, caspase-3, and bcl-2. A separate group of 53 animals treated identically was used to assess survival. RESULTS Crocetin administration during resuscitation resulted in less extensive activation of hepatic apoptosis and significantly increased survival relative to controls. CONCLUSIONS Crocetin administration to experimental animals during resuscitation post hemorrhage increased survival, at least in part by protecting the liver from activation of apoptotic cell death. This agent continues to show promise as a potential treatment strategy for hemorrhagic shock.
Collapse
Affiliation(s)
- Rongjie Yang
- Thoracic Surgery, Liaoning Province Cancer Hospital
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Statins are established in the prevention and therapy of chronic cardiovascular diseases because of inhibition of HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A), thus lowering blood cholesterol levels. However, their cholesterol-independent effects include regulation of Rho/Rho-kinases (ROCK) and eNOS, proteins centrally involved in various models of acute inflammation. Therefore, we tested the hypothesis that simvastatin confers protection after rat hemorrhage/resuscitation (H/R) and wanted to elucidate the mechanisms involved. Fifty-two female Lewis rats (180-250 g) were pretreated with simvastatin 5 mg/kg per day or vehicle for 6 days (i.p.). Then, rats were hemorrhaged to a mean arterial pressure of 30 +/- 2 mmHg for 60 min and resuscitated. Control group underwent surgical procedures without H/R. Two hours after resuscitation, tissues were harvested. Mortality was assessed 72 h after H/R. Simvastatin pretreatment increased survival after H/R from 20% to 80%. Serum alanine aminotransferase after H/R increased 2.2-fold in vehicle as compared with simvastatin-treated rats. Histopathological analysis revealed decreased hepatic necrosis in simvastatin-treated rats after H/R. Hepatic oxidative (4-hydroxynonenal) and nitrosative (3-nitrotyrosine) stress, inflammatory markers (serum IL-6 and hepatic infiltration with polymorphonuclear leukocytes), and actin cytoskeleton rearrangements were decreased after simvastatin pretreatment compared with vehicle-treated rats after H/R. Simvastatin increased eNOS and heme oxygenase 1 expression and eNOS activation. Expression of Rho/Rho-kinase and myosin phosphatase targeting subunit, Thr-MYPT1, a marker for Rho-kinase activity, decreased after simvastatin treatment compared with vehicle-treated rats after H/R. Simvastatin pretreatment exerts beneficial effects in this model of acute inflammation by supporting protective mechanisms that are important for hepatic microcirculation after H/R.
Collapse
|
29
|
Kozlov AV, Duvigneau JC, Hyatt TC, Raju R, Behling T, Hartl RT, Staniek K, Miller I, Gregor W, Redl H, Chaudry IH. Effect of estrogen on mitochondrial function and intracellular stress markers in rat liver and kidney following trauma-hemorrhagic shock and prolonged hypotension. Mol Med 2010; 16:254-61. [PMID: 20379612 DOI: 10.2119/molmed.2009.00184] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/16/2010] [Indexed: 11/06/2022] Open
Abstract
Trauma-hemorrhage (T-H) is known to impair tissue perfusion, leading to tissue hypoxia, and thus affecting mitochondria, the organelles with the highest oxygen demand. In a model of T-H and prolonged hypotension without fluid resuscitation, administration of a small volume of 17beta-estradiol (E2), but not vehicle, prolonged the survival of rats for 3 h, even in the absence of fluid resuscitation. The main finding of this study is that T-H followed by prolonged hypotension significantly affects mitochondrial function, endoplasmic reticulum (ER) stress markers and free iron levels, and that E2 ameliorated all these changes. All of these changes were observed in the liver but not in the kidney. The sensitivity of mitochondrial respiration to exogenous cytochrome c can reflect increased permeability of the outer mitochondrial membrane for cytochrome c. Increased levels of free iron are indicative of oxidative stress, but neither oxidative nor nitrosylative stress markers changed. The spliced isoform of XBP1 mRNA (an early marker of ER stress) and the expression of C/EBP homologous protein (CHOP) (a protein regulating ER stress-induced apoptosis) were elevated in T-H animals but remained unchanged if T-H rats received E2. Both the prevention of elevated sensitivity of mitochondrial respiration to cytochrome c and a decrease in ER stress by E2 maintain functional integrity of the liver and may help the organ during prolonged hypotension and following resuscitation. A decrease in free iron levels by E2 is more relevant for resuscitation, often accompanied by oxidative stress reaction. Thus, E2 appears to be a novel hormonal adjunct that prolongs permissive hypotension during lengthy transportation of the injured patient between the injury site and the hospital in both civilian and military injuries.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Inhibition of c-Jun N-terminal kinase after hemorrhage but before resuscitation mitigates hepatic damage and inflammatory response in male rats. Shock 2010; 32:509-16. [PMID: 19295484 DOI: 10.1097/shk.0b013e3181a2530d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inhibition of c-Jun N-terminal kinase (JNK) by a cell-penetrating, protease-resistant JNK peptide (D-JNKI-1) before hemorrhage and resuscitation (H/R) ameliorated the H/R-induced hepatic injury and blunted the proinflammatory changes. Here we tested the hypothesis if JNK inhibition at a later time point-after hemorrhagic shock but before the onset of resuscitation-in a rat model of H/R also confers protection. Twenty-four male Sprague-Dawley rats (250 - 350 g) were randomly divided into 4 groups: 2 groups of shock animals were hemorrhaged to a MAP of 32 to 37 mmHg for 60 min and randomly received either D-JNKI-1 (11 mg/kg i.p.) or sterile saline as vehicle immediately before the onset of resuscitation. Two groups of sham-operated animals underwent surgical procedures without H/R and were either D-JNKI-1 or vehicle treated. Rats were killed 2 h later. Serum activity of alanine aminotransferase and serum lactate dehydrogenase after H/R increased 3.5-fold in vehicle-treated rats as compared with D-JNKI-1-treated rats. Histopathological analysis revealed that hepatic necrosis and apoptosis (hematoxylin-eosin, TUNEL, and M30, respectively) were significantly inhibited in D-JNKI-1-treated rats after H/R. Hepatic oxidative (4-hydroxynonenal) and nitrosative (3-nitrotyrosine) stress as well as markers of inflammation (hepatic and serum IL-6 levels and hepatic infiltration with polymorphonuclear leukocytes) were also reduced in D-JNKI-1-treated rats. LPS-stimulated TNF-alpha release from whole blood from hemorrhaged and resuscitated animals was higher in vehicle-treated rats as compared with D-JNKI-1-treated rats. c-Jun N-terminal kinase inhibition after hemorrhage before resuscitation resulted in a reduced activation of c-Jun. Taken together, these results indicate that D-JNKI-1 application after hemorrhagic shock before resuscitation blunts hepatic damage and proinflammatory changes during resuscitation. Hence, JNK inhibition is even protective when initiated after blood loss before resuscitation. These experimental results indicate that the JNK pathway may be a possible treatment option for the harmful consequences of H/R.
Collapse
|
31
|
Zingarelli B, Chima R, O'Connor M, Piraino G, Denenberg A, Hake PW. Liver apoptosis is age dependent and is reduced by activation of peroxisome proliferator-activated receptor-gamma in hemorrhagic shock. Am J Physiol Gastrointest Liver Physiol 2010; 298:G133-41. [PMID: 19926821 PMCID: PMC2806104 DOI: 10.1152/ajpgi.00262.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A clinical observation in pediatric and adult intensive care units is that the incidence of multiple organ failure in pediatric trauma victims is lower than in adult patients. However, the molecular mechanisms are not yet defined. Recent experimental studies have shown that the nuclear peroxisome proliferator-activated receptor-gamma (PPARgamma) modulates the inflammatory process. In this study, we hypothesized that severity of liver injury may be age dependent and PPARgamma activation may provide beneficial effects. Hemorrhagic shock was induced in anesthetized young (3-5 mo old) and mature male Wistar rats (11-13 mo old) by withdrawing blood to a mean arterial blood pressure of 50 mmHg. After 3 h, rats were rapidly resuscitated with shed blood. Animals were euthanized 3 h after resuscitation. In mature rats, liver injury appeared more pronounced compared with young rats and was characterized by marked hepatocyte apoptosis, extravasation of erythrocytes, and accumulation of neutrophils. The ratio between the antiapoptotic protein Bcl-2 and the proapoptotic protein BAX was lower, whereas activity of caspase-3, the executioner of apoptosis, was higher in liver of mature rats compared with young rats. Plasma alanine aminotransferase levels were not different between the two age groups. This heightened liver apoptosis was associated with a significant downregulation of PPARgamma DNA binding in mature rats compared with young rats. Treatment with the PPARgamma ligand ciglitazone significantly reduced liver apoptosis in mature rats. Our data suggest that liver injury after severe hemorrhage is age dependent and PPARgamma activation is a novel hepatoprotective mechanism.
Collapse
Affiliation(s)
- Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 2009; 89:1269-339. [PMID: 19789382 DOI: 10.1152/physrev.00027.2008] [Citation(s) in RCA: 372] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The complex functions of the liver in biosynthesis, metabolism, clearance, and host defense are tightly dependent on an adequate microcirculation. To guarantee hepatic homeostasis, this requires not only a sufficient nutritive perfusion and oxygen supply, but also a balanced vasomotor control and an appropriate cell-cell communication. Deteriorations of the hepatic homeostasis, as observed in ischemia/reperfusion, cold preservation and transplantation, septic organ failure, and hepatic resection-induced hyperperfusion, are associated with a high morbidity and mortality. During the last two decades, experimental studies have demonstrated that microcirculatory disorders are determinants for organ failure in these disease states. Disorders include 1) a dysregulation of the vasomotor control with a deterioration of the endothelin-nitric oxide balance, an arterial and sinusoidal constriction, and a shutdown of the microcirculation as well as 2) an overwhelming inflammatory response with microvascular leukocyte accumulation, platelet adherence, and Kupffer cell activation. Within the sequelae of events, proinflammatory mediators, such as reactive oxygen species and tumor necrosis factor-alpha, are the key players, causing the microvascular dysfunction and perfusion failure. This review covers the morphological and functional characterization of the hepatic microcirculation, the mechanistic contributions in surgical disease states, and the therapeutic targets to attenuate tissue injury and organ dysfunction. It also indicates future directions to translate the knowledge achieved from experimental studies into clinical practice. By this, the use of the recently introduced techniques to monitor the hepatic microcirculation in humans, such as near-infrared spectroscopy or orthogonal polarized spectral imaging, may allow an early initiation of treatment, which should benefit the final outcome of these critically ill patients.
Collapse
Affiliation(s)
- Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany.
| | | |
Collapse
|
33
|
Kortgen A, Paxian M, Werth M, Recknagel P, Rauchfu F, Lupp A, Krenn CG, Müller D, Claus RA, Reinhart K, Settmacher U, Bauer M. PROSPECTIVE ASSESSMENT OF HEPATIC FUNCTION AND MECHANISMS OF DYSFUNCTION IN THE CRITICALLY ILL. Shock 2009; 32:358-65. [DOI: 10.1097/shk.0b013e31819d8204] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Uncoupling protein-2 deficiency provides protection in a murine model of endotoxemic acute liver failure. Crit Care Med 2009; 37:215-22. [PMID: 19050629 DOI: 10.1097/ccm.0b013e31819260ae] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Liver injury and cell death are prominent features in the pathogenesis of acute liver failure. Mitochondrial uncoupling protein 2 plays a controversial role in liver cell death through its involvement in the production of reactive oxygen species and adenosine triphosphate. DESIGN This randomized controlled animal study was designed to investigate the exact role of uncoupling protein 2 in the pathogenesis of endotoxemic acute liver failure. SETTING Research laboratory of an academic institution. SUBJECTS, INTERVENTIONS, AND MEASUREMENTS: Uncoupling protein 2+/+ and uncoupling protein 2-/- mice were challenged with D-galactosamine (Gal, 720 mg/kg intraperitoneally) and Escherichia coli lipopolysaccharide (10 microg/kg intraperitoneally) and studied 6 hrs thereafter (n = 5 per group). Control mice received physiologic saline (n = 5 per group). Analysis included in vivo fluorescence microscopy of hepatic microcirculation and hepatocellular apoptosis as well as plasma malondialdehyde concentrations as reactive oxygen species-dependent lipid peroxidation product and hepatic adenosine triphosphate levels. MAIN RESULTS Administration of Gal-lipopolysaccharide in uncoupling protein 2+/+ mice caused systemic cytokine release and malondialdehyde production. Further, it provoked marked hepatic damage, characterized by intrahepatic leukocyte recruitment (10.5 +/- 1.3 n/mm2 vs. 3.3 +/- 0.5 n/mm2), microvascular perfusion failure (33.1% +/- 1.6% vs. 2.3% +/- 0.4%), and adenosine triphosphate depletion (3.4 +/- 0.9 micromol/g vs. 6.4 +/- 0.9 micromol/g). Furthermore, uncoupling protein +/+ mice revealed a huge rise in cell apoptosis, given by high numbers of hepatocytes exhibiting nuclear chromatin fragmentation (44.9 +/- 11.5 n/mm2 vs. 0.0 +/- 0.0 n/mm2) and cleaved caspase-3 expression (1.24 +/- 0.24 vs. 0.06 +/- 0.04). Liver injury was coexistent with enzyme release (alanine aminotransferase 442 +/- 126 U/L vs. 57 +/- 12 U/L) and necrotic cell death. Of interest, Gal-lipopolysaccharide-exposed uncoupling protein 2-/- mice exhibited higher rates of hepatocellular apoptosis (135.6 +/- 46.0 n/mm2) as well as cleaved caspase-3 expression (1.75 +/- 0.25), however, preserved hepatic adenosine triphosphate (6.4 +/- 1.7), milder perfusion failure (24.5 +/- 2.4) and decreased leukocyte recruitment (2.7 +/- 0.2), less necrotic injury, lower transaminase levels (340 +/- 91), and finally better survival rates. CONCLUSION The higher adenosine triphosphate availability in uncoupling protein 2-deficient mice might allow hepatocytes to undergo apoptosis as an energy-consuming mode of cell death, while at the same time cellular adenosine triphosphate levels seem to increase hepatic resistance against harmful effects upon Gal-lipopolysaccharide exposure. As net result, uncoupling protein 2 deficiency provided protection under endotoxemic stress conditions, underlining the significant role of the bioenergetic status in critical illness.
Collapse
|
35
|
Abstract
Abstract This is a review paper that provides an overview of current information on programmed cell death in haemorrhagic shock, including the identification of different molecular receptor signals. A PubMed search for all dates was undertaken using the search terms apoptosis, trauma and haemorrhagic shock. Original research, sentinel and review papers from peer-reviewed journals were included for identification of key concepts. Haemorrhagic shock remains a primary cause of death in civilian and military trauma. Apoptosis is accelerated following haemorrhagic shock. Many methods are used to detect and quantify apoptosis. Fluid resuscitation regimens vary in their effect on the extent of apoptosis. Investigators are examining the effects of haemorrhagic shock and fluid resuscitation on apoptotic signalling pathways. Molecular information is becoming available and being applied to the care of patients experiencing haemorrhagic shock, making it essential for nurses and other health care providers to consider the mechanisms and consequences of apoptosis.
Collapse
Affiliation(s)
- William J Mach
- School of Nursing, University of Kansas, Kansas City, Kansas, USA
| | - Amanda R Knight
- School of Nursing, University of Kansas, Kansas City, Kansas, USA
| | - James A Orr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Janet D Pierce
- School of Nursing, University of Kansas, Kansas City, Kansas, USA
| |
Collapse
|
36
|
A peptide inhibitor of C-jun N-terminal kinase modulates hepatic damage and the inflammatory response after hemorrhagic shock and resuscitation. Shock 2008; 30:159-65. [PMID: 18628689 DOI: 10.1097/shk.0b013e31815dd623] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hemorrhage and resuscitation (H/R) leads to phosphorylation of mitogen-activated stress kinases, an event that is associated with organ damage. Recently, a specific, cell-penetrating, protease-resistant inhibitory peptide of the mitogen-activated protein kinase c-JUN N-terminal kinase (JNK) was developed (D-JNKI-1). Here, using this peptide, we tested if inhibition of JNK protects against organ damage after H/R. Male Sprague-Dawley rats were treated with D-JNKI-1 (11 mg/kg, i.p.) or vehicle. Thirty minutes later, rats were hemorrhaged for 1 h to a MAP of 30 to 35 mmHg and then resuscitated with 60% of the shed blood and twice the shed blood volume as Ringer lactate. Tissues were harvested 2 h later. ANOVA with Tukey post hoc analysis or Kruskal-Wallis ANOVA on ranks, P < 0.05, was considered significant. c-JUN N-terminal kinase inhibition decreased serum alanine aminotransferase activity as a marker of liver injury by 70%, serum creatine kinase activity by 67%, and serum lactate dehydrogenase activity by 60% as compared with vehicle treatment. The histological tissue damage observed was blunted after D-JNKI-1 pretreatment both for necrotic and apoptotic cell death. Hepatic leukocyte infiltration and serum IL-6 levels were largely diminished after D-JNKI-1 pretreatment. The extent of oxidative stress as evaluated by immunohistochemical detection of 4-hydroxynonenal was largely abrogated after JNK inhibition. After JNK inhibition, activation of cJUN after H/R was also reduced. Hemorrhage and resuscitation induces a systemic inflammatory response and leads to end-organ damage. These changes are mediated, at least in part, by JNK. Therefore, JNK inhibition deserves further evaluation as a potential treatment option in patients after resuscitated blood loss.
Collapse
|
37
|
HEMIN ARGINATE-INDUCED HEME OXYGENASE 1 EXPRESSION IMPROVES LIVER MICROCIRCULATION AND MEDIATES AN ANTI-INFLAMMATORY CYTOKINE RESPONSE AFTER HEMORRHAGIC SHOCK. Shock 2008; 29:583-90. [DOI: 10.1097/shk.0b013e318157e526] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Matot I, Cohen K, Pappo O, Barash H, Abramovitch R. Liver response to hemorrhagic shock and subsequent resuscitation: MRI analysis. Shock 2008; 29:16-24. [PMID: 17621258 DOI: 10.1097/shk.0b013e3180556964] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The liver is a target for injury in low flow states. Markers of liver injury are either invasive or not rapidly responding. Magnetic resonance imaging (MRI) may offer a noninvasive alternative to evaluate liver injury due to reduced perfusion. Recently, we reported an MRI method (functional MRI [fMRI]) that enables us to follow liver perfusion by changing the enrichment of inspired gas (air, air-5% carbon dioxide, 95% oxygen-5% carbon dioxide). Rats were subjected to hemorrhagic shock (HS) (bleeding to a MAP of 25 mmHg) and randomized to no resuscitation or resuscitation with Ringer lactate (RL) or adrenaline infusion targeted to a MAP of 50 mmHg or baseline. Significantly decreased fMRI responses to hyperoxia and hypercapnia were observed immediately after HS. Liver enzymes levels, liver histology, and apoptosis assessments were normal immediately after hemorrhage, however, showed significant changes after 6 h. Functional MRI revealed that adrenaline, but not RL infusion, significantly (P < 0.01) improved liver perfusion. Similarly, liver injury, as assessed by liver enzyme levels, liver histology, and apoptosis, was attenuated to a greater extent with adrenaline resuscitation. No significant differences in liver perfusion and injury were noted between resuscitation to low (50 mmHg) versus high (baseline) MAP. This study shows that fMRI enables early assessment of changes in liver perfusion, resulting in liver injury or recovery, and therefore, it may be considered as a noninvasive, rapidly responding tool for following liver outcome subsequent to hemorrhage and resuscitation. Using fMRI, we showed that adrenaline may be preferable to RL as an initial measure to attenuate liver injury after HS.
Collapse
Affiliation(s)
- Idit Matot
- Department of Anesthesiology & Critical Care Medicine, Hadassah University Medical Center, the Hebrew University, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
39
|
Liver Failure: Diagnostic Assessment and Therapeutic Options. Intensive Care Med 2007. [DOI: 10.1007/0-387-35096-9_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Fink MP, Macias CA, Xiao J, Tyurina YY, Delude RL, Greenberger JS, Kagan VE, Wipf P. Hemigramicidin-TEMPO conjugates: novel mitochondria-targeted antioxidants. Crit Care Med 2007; 35:S461-7. [PMID: 17713394 DOI: 10.1097/01.ccm.0000279192.96303.e7] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reactive oxygen species (ROS) are reactive, partially reduced derivatives of molecular oxygen. ROS are important in the pathogenesis of a wide range of acute pathologic processes, including ischemia/reperfusion injury, sepsis, and shock. Accordingly, effective ROS scavengers might be useful therapeutic agents for these conditions. Since mitochondria are the primary sites for ROS production within cells, it seems reasonable that targeting ROS scavengers to these organelles could be a particularly effective strategy. Indeed, a number of compounds or classes of compounds have been described that are based on this concept. One approach consists of coupling a payload--the portion of the molecule with ROS-scavenging activities--to a targeting moiety--the portion of the molecule that promotes selective accumulation within mitochondria. For example, the payload portion of XJB-5-131 consists of a stable nitroxide radical, which has been extensively investigated as a cytoprotective agent in a number of experimental models of oxidative stress. The targeting portion of XJB-5-131 consists of a portion of the membrane-active cyclopeptide antibiotic, gramicidin S. The gramicidin segment was used to target the nitroxide payload to mitochondria because antibiotics of this type have a high affinity for bacterial membranes and because of the close relationship between bacteria and mitochondria. In a rat model of hemorrhagic shock, delayed treatment with XJB-5-131 has been shown to prolong survival time in the absence of resuscitation with blood or a large volume of crystalloid fluid. Compounds like XJB-5-131 warrant further evaluation for the treatment of hemorrhagic shock as well as other acute conditions associated with increased mitochondrial production of ROS.
Collapse
Affiliation(s)
- Mitchell P Fink
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Fink MP, Macias CA, Xiao J, Tyurina YY, Jiang J, Belikova N, Delude RL, Greenberger JS, Kagan VE, Wipf P. Hemigramicidin–TEMPO conjugates: Novel mitochondria-targeted anti-oxidants. Biochem Pharmacol 2007; 74:801-9. [PMID: 17601494 DOI: 10.1016/j.bcp.2007.05.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 05/23/2007] [Accepted: 05/23/2007] [Indexed: 01/19/2023]
Abstract
Oxidative damage to various cellular constituents (such as, proteins and lipids) mediated by reactive oxygen species (ROS) is thought to be an important mechanism underlying the pathogenesis of a variety of acute and chronic diseases. Mitochondria are the main source of ROS within most cells. Accordingly, there is increasing interest in the development of pharmacological ROS scavengers, which are specifically targeted to and concentrated within mitochondria. Numerous compounds with these general characteristics have been synthesized and evaluated in a variety of in vitro and in vivo models of redox stress. Among the more promising of these mitochondria-targeted anti-oxidants are those that employ various peptides (or peptide-like moieties) derived from the antibiotic, gramicidin S, as the targeting construct and employ the stable free radical, 4-amino-2,2,6,6-tetramethylpiperidine-N-oxyl (4-NH(2)-TEMPO), as the ROS scavenging "payload." One of these hemigramicidin-TEMPO conjugates, XJB-5-131, has been shown to ameliorate intestinal mucosal injury and prolong survival in rats subjected to lethal hemorrhage.
Collapse
Affiliation(s)
- Mitchell P Fink
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kiang JG, Bowman PD, Lu X, Li Y, Wu BW, Loh HH, Tsen KT, Tsokos GC. Geldanamycin inhibits hemorrhage-induced increases in caspase-3 activity: role of inducible nitric oxide synthase. J Appl Physiol (1985) 2007; 103:1045-55. [PMID: 17525298 DOI: 10.1152/japplphysiol.00100.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hemorrhage has been shown to increase inducible nitric oxide synthase (iNOS) and deplete ATP levels in tissues and geldanamycin limits both processes. Moreover, it is evident that inhibition of iNOS reduces caspase-3 and increases survival. Thus we sought to identify the molecular events responsible for the beneficial effect of geldanamycin. Hemorrhage in mice significantly increased caspase-3 activity and protein while treatment with geldanamycin significantly limited these increases. Similarly, geldanamycin inhibited increases in proteins forming the apoptosome (a complex of caspase-9, cytochrome c, and Apaf-1). Modulation of the expression of iNOS by iNOS gene transfection or siRNA treatment demonstrated that the level of iNOS correlates with caspase-3 activity. Our data indicate that geldanamycin limits caspase-3 expression and protects from organ injury by suppressing iNOS expression and apoptosome formation. Geldanamycin, therefore, may prove useful as an adjuvant in fluids used to treat patients suffering blood loss.
Collapse
Affiliation(s)
- Juliann G Kiang
- Scientific Research Department, Armed Forces Radiobiology Research Institute, BLDG 46, Rm. 2423, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave., Bethesda, MD 20889-5603, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW This is a review on the techniques for assessing liver function in critically ill patients. RECENT FINDINGS Actually, there is no ideal real-time and bedside technique for assessing liver function in critically ill patients. Though not allowing to differentiate between liver blood flow and cell function, dynamic tests, that is indocyanine green plasma disappearance rate and lidocaine metabolism (monoethylglycinxylidide test), are superior, however, to static tests. Recently, the indocyanine green plasma disappearance rate, which nowadays can be measured reliably by a transcutaneous system in critically ill patients, was confirmed to correlate well with indocyanine green clearance. In general, the indocyanine green plasma disappearance rate is superior to bilirubin, which is still used as a marker of liver function, and comparable or even superior to complex intensive care scoring systems in terms of outcome prediction. Furthermore, indocyanine green plasma disappearance rate is more sensitive than serum enzyme tests for assessing liver dysfunction and early improvement in the indocyanine green plasma disappearance rate after onset of septic shock is associated with better outcome. SUMMARY Since no ideal tool is currently available, dynamic tests such as indocyanine green plasma disappearance rate and monoethylglycinxylidide test may be recommended for assessing liver function in critically ill patients. The indocyanine green plasma disappearance rate has the advantage, however, of being measurable noninvasively at the bedside and providing results within a few minutes.
Collapse
Affiliation(s)
- Samir G Sakka
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller-University of Jena, Germany.
| |
Collapse
|
44
|
Macias CA, Chiao JW, Xiao J, Arora DS, Tyurina YY, Delude RL, Wipf P, Kagan VE, Fink MP. Treatment with a novel hemigramicidin-TEMPO conjugate prolongs survival in a rat model of lethal hemorrhagic shock. Ann Surg 2007; 245:305-14. [PMID: 17245186 PMCID: PMC1876982 DOI: 10.1097/01.sla.0000236626.57752.8e] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We sought to develop a therapeutic agent that would permit prolongation of survival in rats subjected to lethal hemorrhagic shock (HS), even in the absence of resuscitation with asanguinous fluids or blood. METHODS AND RESULTS We synthesized a series of compounds that consist of the electron scavenger and superoxide dismutase mimic, 4-amino-2,2,6,6-tetramethylpiperidine-N-oxyl (4-NH2-TEMPO), conjugated to fragments and analogs of the membrane-active cyclopeptide antibiotic, gramicidin S. Using an in vivo assay, wherein isolated intestinal segments were loaded inside the lumen with various test compounds, we studied these compounds for their ability to prevent ileal mucosal barrier dysfunction induced by subjecting rats to profound HS for 2 hours. The most active compound in this assay, XJB-5-131, ameliorated peroxidation of the mitochondrial phospholipid, cardiolipin, in ileal mucosal samples from rats subjected to HS. XJB-5-131 also ameliorated HS-induced activation of the pro-apoptotic enzymes, caspases 3 and 7, in ileal mucosa. Intravenous treatment with XJB-5-131 (2 micromol/kg) significantly prolonged the survival of rats subjected to profound blood loss (33.5 mL/kg) despite administration of only a minimal volume of crystalloid solution (2.8 mL/kg) and the absence of blood transfusion. CONCLUSION These data support the view that mitochondrially targeted electron acceptors and SOD mimics are potentially valuable therapeutics for the treatment of serious acute conditions, such as HS, which are associated with marked tissue ischemia.
Collapse
Affiliation(s)
- Carlos A Macias
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Perioperative kinetics of the nitric oxide derivatives nitrite/nitrate during orthotopic liver transplantation. Nitric Oxide 2007; 16:177-80. [DOI: 10.1016/j.niox.2006.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 06/20/2006] [Accepted: 07/06/2006] [Indexed: 11/21/2022]
|
46
|
Kiang JG, Peckham RM, Duke LE, Shimizu T, Chaudry IH, Tsokos GC. Androstenediol inhibits the trauma-hemorrhage-induced increase in caspase-3 by downregulating the inducible nitric oxide synthase pathway. J Appl Physiol (1985) 2006; 102:933-41. [PMID: 17110508 DOI: 10.1152/japplphysiol.00919.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Soft tissue trauma and hemorrhage (T-H) diminishes various aspects of liver function, while it increases hepatic nitrate/nitrite, inducible nitric oxide synthase (iNOS), and endothelin-1 levels. Treatment with androstenediol (AED) inhibits the T-H-induced alterations of the above parameters. We sought to identify the molecular events underlying the beneficial effect of AED. Exposure of rats to T-H significantly increased the caspase-3 activity and protein, whereas treatment with AED significantly limited these increases. AED treatment also suppressed the T-H-induced increase in iNOS by effectively altering the levels of key transcription factors involved in the regulation of iNOS expression. Immunoprecipitation and immunoblotting analyses indicate that T-H increased apoptosome formation, and AED treatment significantly decreased it. Modulating the iNOS protein by transfecting cells with iNOS gene or small interfering RNA further confirmed the correlation between iNOS and caspase-3. Our data indicate that AED limits caspase-3 expression by suppressing the expression of transcription factors involved in the production of iNOS, resulting in decreased apoptosome. AED can potentially be a useful adjuvant for limiting liver apoptosis following T-H shock.
Collapse
Affiliation(s)
- Juliann G Kiang
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Casillas-Ramírez A, Mosbah IB, Ramalho F, Roselló-Catafau J, Peralta C. Past and future approaches to ischemia-reperfusion lesion associated with liver transplantation. Life Sci 2006; 79:1881-1894. [PMID: 16828807 DOI: 10.1016/j.lfs.2006.06.024] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 05/19/2006] [Accepted: 06/08/2006] [Indexed: 02/06/2023]
Abstract
Ischemia-reperfusion (I/R) injury associated with liver transplantation remains a serious complication in clinical practice, in spite of several attempts to solve the problem. The present review focuses on the complexity of I/R injury, summarizing conflicting results obtained from the literature about the mechanisms responsible for it. We also review the therapeutic strategies designed in past years to reduce I/R injury, attempting to explain why most of them have not been applied clinically. These strategies include improvements in pharmacological treatments, modifications of University of Wisconsin (UW) preservation solution based on a variety of additives, and gene therapy. Finally, we will consider new potential protective strategies using trimetazidine, 5-amino-4-imidazole carboxamide riboside (AICAR), melatonin, modulators of the renin-angiotensin system (RAS) and the phosphatidylinositol-3-OH kinase (PI3K)-Akt and the p42/p44 extracellular signal-regulated kinases (Erk 1/2) pathway. These strategies have shown promising results for I/R injury but have not been tested in experimental liver transplantation to date. Moreover, we will review ischemic preconditioning, taking into account the recent clinical studies that suggest that this surgical strategy could be appropriate for liver transplantation.
Collapse
Affiliation(s)
- Araní Casillas-Ramírez
- Experimental Liver Ischemia-Reperfusion Unit, Instituto de Investigaciones Biomédicas de Barcelona August Pi i Sunyer, Experimental Hepatology, IIBB-CSIC, C/ Rosellón 161, 7th floors, 08036-Barcelona, Spain
| | | | | | | | | |
Collapse
|
48
|
Abstract
Sepsis results from the host response to infection. While a localized and controlled inflammatory reaction helps to control infection, a dysregulated response may lead to multiple organ failure and determines the course and prognosis of the septic patient. Despite intensive care, mortality remains as high as 54% for severe sepsis and septic shock. As the mechanisms are becoming better defined, interventions aiming to interfere with the host response have been undertaken, largely with disappointing results. Thus, many evidence-based recommendations suggest waiving of resource-consuming interventions. Nevertheless, several seminal studies have indicated that early and systematic supportive therapy according to pathophysiological principles, most notably early goal-directed therapy, low-dose hydrocortisone and activated protein C, can disrupt dysfunctional cascades and can favourably influence the course of the disease. In parallel, efforts to better define nationwide epidemiology and treatment habits for severe sepsis by the German competence network "SepNet" indicate that therapy of severe sepsis is generally in poor compliance with guidelines, while the personal perception of physicians in charge would suggest high rates of adherence. Thus, strategies of change management, such as implementation of sepsis bundles are warranted to achieve a better standard of care toward the aim of the "surviving sepsis campaign", i.e. a reduction of mortality by 25% within the next 5 years.
Collapse
Affiliation(s)
- M Bauer
- Klinik für Anästhesiologie und Intensivtherapie, Klinikum der Friedrich-Schiller-Universität, Erlanger Allee 101, 07740 Jena.
| | | | | | | | | |
Collapse
|
49
|
Kiang JG, Bowman PD, Lu X, Li Y, Ding XZ, Zhao B, Juang YT, Atkins JL, Tsokos GC. Geldanamycin prevents hemorrhage-induced ATP loss by overexpressing inducible HSP70 and activating pyruvate dehydrogenase. Am J Physiol Gastrointest Liver Physiol 2006; 291:G117-27. [PMID: 16565416 DOI: 10.1152/ajpgi.00397.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hemorrhage in mice results in decreased ATP levels in the jejunum, lung, kidney, heart, and brain but not in liver tissue lysates, albeit at variable levels and time kinetics. The decreased protein expression and activity of pyruvate dehydrogenase (PDH) accounted for the hemorrhage-induced ATP loss. Treatment with geldanamycin (GA; 1 microg/g body wt), a known inducer of heat shock protein (HSP)70, inhibited the hemorrhage-induced ATP loss in the jejunum, lung, heart, kidney, and brain. GA was found to increase PDH protein, preserve PDH enzymatic activity, and inhibit mucosal injury in jejunum tissues. GA-induced HSP70i was found to form complexes with PDH protein. HSP70 gene transfer into intestinal epithelial cells promoted PDH and ATP levels, whereas HSP70 short interfering RNA limited them. We conclude that agents able to increase the expression of HSP70 and PDH may be of value in reducing pathology resulting from hemorrhage-associated ATP loss.
Collapse
Affiliation(s)
- Juliann G Kiang
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Laurens M, Scozzari G, Patrono D, St-Paul MC, Gugenheim J, Huet PM, Crenesse D. Warm ischemia-reperfusion injury is decreased by tacrolimus in steatotic rat liver. Liver Transpl 2006; 12:217-25. [PMID: 16447202 DOI: 10.1002/lt.20585] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemia-reperfusion (I-R) injury is poorly tolerated by fatty livers, most probably secondary to reduced cellular adenosine triphosphate (ATP) levels. We investigated the effectiveness of tacrolimus pretreatment on fatty liver I-R injury in obese Zucker rats. Tacrolimus (0.3 mg/kg, intravenously) was injected 24 hours before a 75-minute ischemic period and rats were sacrificed 6 hours later. Tacrolimus modified the response to I-R observed in obese Zucker rats, when compared to nontreated obese rats: a significant reduction in hepatocyte necrosis was associated with a significant increase in hepatocyte apoptosis. In addition, cell necrosis and apoptosis were significantly and inversely correlated in lean nontreated and treated obese Zucker rats following I-R. Tacrolimus also significantly increased the hepatic ATP levels, reduced in nontreated obese rats, toward values found in lean Zucker rat livers. This protective effect of tacrolimus was further confirmed in vivo by a significantly improved survival following pretreatment with tacrolimus, 24 hours prior to ischemia. In conclusion, in obese Zucker rat livers, tacrolimus pretreatment reversed the I-R injury toward the one found in lean Zucker rats. The correlations between ATP levels and the opposite changes in necrosis and apoptotic pathways strongly suggest a cause-effect relationship between tacrolimus and changes in ATP levels.
Collapse
Affiliation(s)
- Marina Laurens
- Laboratoire de Recherches Chirurgicales, Université de Nice Sophia-Antipolis, Nice, France
| | | | | | | | | | | | | |
Collapse
|