1
|
Iqbal U, Malik A, Sial NT, Uttra AM, Rehman MFU, Mehmood MH. Molecular insights of Eucalyptol (1,8-Cineole) as an anti-arthritic agent: in vivo and in silico analysis of IL-17, IL-10, NF-κB, 5-LOX and COX-2. Inflammopharmacology 2024; 32:1941-1959. [PMID: 38649658 DOI: 10.1007/s10787-024-01465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/17/2024] [Indexed: 04/25/2024]
Abstract
The monoterpene oxide, Eucalyptol (1,8-Cineole), a primary component of eucalyptus oil, has been evaluated pharmacologically for anti-inflammatory and analgesic activity. Current research aimed to evaluate Eucalyptol's anti-arthritic potential in a Complete Freund's adjuvant induced arthritis that resembles human rheumatoid arthritis. Polyarthritis developed after 0.1 mL CFA injection into the left hind footpad in rats. Oral administration of Eucalyptol at various doses (100, 200 and 400 mg/kg) significantly reduced paw edema, body weight loss, 5-LOX, PGE2 and Anti-CCP levels. Real-time PCR investigation showed significant downregulation of COX-2, TNF-α, NF-κB, IL-17, IL-6, IL-1β and upregulation of IL-4 and IL-10 in Eucalyptol treated groups. Hemoglobin and RBCs counts significantly increased post-treatment with Eucalyptol while ESR, CRP, WBCs and platelets count significantly decreased. Eucalyptol significantly increased Superoxide Dismutase, Catalase and Glutathione levels compared to CFA-induced arthritic control however, MDA significantly decreased post-treatment. Further, radiographic and histopathological examination of the ankle joints of rodents administered Eucalyptol revealed an improvement in the structure of the joints. Piroxicam was taken as standard. Furthermore, molecular docking findings supported the anti-arthritic efficacy of Eucalyptol exhibited high binding interaction against IL-17, TNF-α, IL-4, IL-10, iNOS NF-κB, 5-LOX, and COX-2. Eucalyptol has reduced the severity of CFA induced arthritis by promoting anti-inflammatory cytokines for example IL-4, IL-10 and by inhibiting pro-inflammatory cytokines such as 5-LOX, COX-2, IL-17, NF-κB, TNF-α, IL-6 and IL-1β. Therefore, Eucalyptol might be as a potential therapeutic agent because of its pronounced anti-oxidant and anti-arthritic activity.
Collapse
Affiliation(s)
- Urooj Iqbal
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan.
| | - Nabeela Tabassum Sial
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Ambreen Malik Uttra
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | | | - Malik Hassan Mehmood
- Department of Pharmaceutical Sciences, Government College University, Lahore, Pakistan
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
2
|
Song Y, Wei D, Raza SHA, Zhao Y, Jiang C, Song X, Wu H, Wang X, Luoreng Z, Ma Y. Research progress of intramuscular fat formation based on co-culture. Anim Biotechnol 2023; 34:3216-3236. [PMID: 36200856 DOI: 10.1080/10495398.2022.2127410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Intramuscular fat (IMF) is closely related to the meat quality of livestock and poultry. As a new cell culture technique in vitro, cell co-culture has been gradually applied to the related research of IMF formation because it can simulate the changes of microenvironment in vivo during the process of IMF cell formation. In the co-culture model, in addition to studying the effects of skeletal muscle cells on the proliferation and differentiation of IMF, we can also consider the role of many secretion factors in the formation of IMF, thus making the cell research in vitro closer to the real level in vivo. This paper reviewed the generation and origin of IMF, summarized the existing co-culture methods and systems, and discussed the advantages and disadvantages of each method as well as the challenges faced in the establishment of the system, with emphasis on the current status of research on the formation of IMF for human and animal based on co-culture technology.
Collapse
Affiliation(s)
- Yaping Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Dawei Wei
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | | | - Yiang Zhao
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Chao Jiang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xiaoyu Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Hao Wu
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| |
Collapse
|
3
|
Shin U, Choi Y, Ko HS, Myung K, Lee S, Cheon CK, Lee Y. A heterozygous mutation in UBE2H in a patient with developmental delay leads to an aberrant brain development in zebrafish. Hum Genomics 2023; 17:44. [PMID: 37208785 DOI: 10.1186/s40246-023-00491-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Ubiquitin-related rare diseases are generally characterized by developmental delays and mental retardation, but the exact incidence or prevalence is not yet fully understood. The clinical application of next-generation sequencing for pediatric seizures and developmental delay of unknown causes has become common in studies aimed at identification of a causal gene in patients with ubiquitin-related rare diseases that cannot be diagnosed using conventional fluorescence in situ hybridization or chromosome microarray tests. Our study aimed to investigate the effects of ubiquitin-proteasome system on ultra-rare neurodevelopmental diseases, through functional identification of candidate genes and variants. METHODS In our present work, we carried out genome analysis of a patient with clinical phenotypes of developmental delay and intractable convulsion, to identify causal mutations. Further characterization of the candidate gene was performed using zebrafish, through gene knockdown approaches. Transcriptomic analysis using whole embryos of zebrafish knockdown morphants and additional functional studies identified downstream pathways of the candidate gene affecting neurogenesis. RESULTS Through trio-based whole-genome sequencing analysis, we identified a de novo missense variant of the ubiquitin system-related gene UBE2H (c.449C>T; p.Thr150Met) in the proband. Using zebrafish, we found that Ube2h is required for normal brain development. Differential gene expression analysis revealed activation of the ATM-p53 signaling pathway in the absence of Ube2h. Moreover, depletion of ube2h led to induction of apoptosis, specifically in the differentiated neural cells. Finally, we found that a missense mutation in zebrafish, ube2h (c.449C>T; p.Thr150Met), which mimics a variant identified in a patient with neurodevelopmental defects, causes aberrant Ube2h function in zebrafish embryos. CONCLUSION A de novo heterozygous variant in the UBE2H c.449C>T (p.Thr150Met) has been identified in a pediatric patient with global developmental delay and UBE2H is essential for normal neurogenesis in the brain.
Collapse
Affiliation(s)
- Unbeom Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yeonsong Choi
- Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, 44919, Republic of Korea
| | - Hwa Soo Ko
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Kyungjae Myung
- Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
- Korean Genomics Center, UNIST, Ulsan, 44919, Republic of Korea.
| | - Chong Kun Cheon
- Division of Medical Genetics and Metabolism Department of Paediatrics, Pusan National University School of Medicine, Pusan National University Children's Hospital, Yangsan, 50612, Republic of Korea.
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea.
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea.
| |
Collapse
|
4
|
Signals for Muscular Protein Turnover and Insulin Resistance in Critically Ill Patients: A Narrative Review. Nutrients 2023; 15:nu15051071. [PMID: 36904071 PMCID: PMC10005516 DOI: 10.3390/nu15051071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Sarcopenia in critically ill patients is a highly prevalent comorbidity. It is associated with a higher mortality rate, length of mechanical ventilation, and probability of being sent to a nursing home after the Intensive Care Unit (ICU). Despite the number of calories and proteins delivered, there is a complex network of signals of hormones and cytokines that affect muscle metabolism and its protein synthesis and breakdown in critically ill and chronic patients. To date, it is known that a higher number of proteins decreases mortality, but the exact amount needs to be clarified. This complex network of signals affects protein synthesis and breakdown. Some hormones regulate metabolism, such as insulin, insulin growth factor glucocorticoids, and growth hormone, whose secretion is affected by feeding states and inflammation. In addition, cytokines are involved, such as TNF-alpha and HIF-1. These hormones and cytokines have common pathways that activate muscle breakdown effectors, such as the ubiquitin-proteasome system, calpain, and caspase-3. These effectors are responsible for protein breakdown in muscles. Many trials have been conducted with hormones with different results but not with nutritional outcomes. This review examines the effect of hormones and cytokines on muscles. Knowing all the signals and pathways that affect protein synthesis and breakdown can be considered for future therapeutics.
Collapse
|
5
|
Huang F, Zhang T, Li B, Wang S, Xu C, Huang C, Lin D. NMR-based metabolomic analysis for the effects of moxibustion on imiquimod-induced psoriatic mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115626. [PMID: 36049653 DOI: 10.1016/j.jep.2022.115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/15/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moxibustion is a traditional medical intervention of traditional Chinese medicine. It refers to the direct or indirect application of ignited moxa wool made of mugwort leaves to acupuncture points or other specific parts of the body for either treating or preventing diseases. Moxibustion has been proven to be effective in treating skin lesions of psoriasis. AIM OF THE STUDY This study was performed to elucidate molecular mechanisms underlying the effects of moxibustion treatment on imiquimod-induced psoriatic mice. MATERIALS AND METHODS We established an imiquimod (IMQ)-induced psoriatic mice (Model) and assessed the effects of moxibustion (Moxi) treatment on skin lesions of psoriatic mice by the PASI scores and expressions of inflammation-related factors relative to normal control mice (NC). We then performed nuclear magnetic resonance (NMR)-based metabolomic analysis on the skin tissues of the NC, Model and Moxi-treated mice to address metabolic differences among the three groups. RESULTS Moxi mice showed reduced PASI scores and decreased expressions of the pro-inflammatory cytokines IL-8, IL-17A and IL-23 relative to Model mice. Compared with the Model group, the NC and Moxi groups shared 9 characteristic metabolites and 4 significantly altered metabolic pathways except for taurine and hypotaurine metabolism uniquely identified in the NC group. To a certain extent, moxibustion treatment improved metabolic disorders of skin lesions of psoriatic mice by decreasing glucose, valine, asparagine, aspartate and alanine-mediated cell proliferation and synthesis of scaffold proteins, alleviating histidine-mediated hyperproliferation of blood vessels, and promoting triacylglycerol decomposition. CONCLUSIONS This study reveals the molecular mechanisms underlying the effects of moxibustion treatment on the skin lesions of psoriasis, potentially improving the clinical efficacy of moxibustion.
Collapse
Affiliation(s)
- Feng Huang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Tong Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, 361005, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Shaosong Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Chang Xu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, 361024, China
| | - Donghai Lin
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
6
|
TNF-α Suppresses Apelin Receptor Expression in Mouse Quadriceps Femoris-Derived Cells. Curr Issues Mol Biol 2022; 44:3146-3155. [PMID: 35877441 PMCID: PMC9315797 DOI: 10.3390/cimb44070217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Expression of the apelin receptor, APJ, in skeletal muscle (SM) is known to decrease with age, but the underlying mechanism remains unclear. Increased tumor necrosis factor (TNF)-α levels are observed in SM with age and are associated with muscle atrophy. To investigate the possible interconnection between TNF-α elevation and APJ reduction with aging, we investigated the effect of TNF-α on APJ expression in cells derived from the quadriceps femoris of C57BL/6J mice. Expression of Tnfa and Apj in the quadriceps femoris was compared between 4- (young) and 24-month-old (old) C57BL/6J mice (n = 10 each) using qPCR. Additionally, APJ-positive cells and TNF-α protein were analyzed by flow cytometry and Western blotting, respectively. Further, quadricep-derived cells were exposed to 0 (control) or 25 ng/mL TNF-α, and the effect on Apj expression was examined by qRT-PCR. Apj expression and the ratio of APJ-positive cells among quadricep cells were significantly lower in old compared to young mice. In contrast, levels of Tnfa mRNA and TNF-α protein were significantly elevated in old compared to young mice. Exposing young and old derived quadricep cells to TNF-α for 8 and 24 h caused Apj levels to significantly decrease. TNF-α suppresses APJ expression in muscle cells in vitro. The increase in TNF-α observed in SM with age may induce a decrease in APJ expression.
Collapse
|
7
|
Maitland MER, Lajoie GA, Shaw GS, Schild-Poulter C. Structural and Functional Insights into GID/CTLH E3 Ligase Complexes. Int J Mol Sci 2022; 23:5863. [PMID: 35682545 PMCID: PMC9180843 DOI: 10.3390/ijms23115863] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Multi-subunit E3 ligases facilitate ubiquitin transfer by coordinating various substrate receptor subunits with a single catalytic center. Small molecules inducing targeted protein degradation have exploited such complexes, proving successful as therapeutics against previously undruggable targets. The C-terminal to LisH (CTLH) complex, also called the glucose-induced degradation deficient (GID) complex, is a multi-subunit E3 ligase complex highly conserved from Saccharomyces cerevisiae to humans, with roles in fundamental pathways controlling homeostasis and development in several species. However, we are only beginning to understand its mechanistic basis. Here, we review the literature of the CTLH complex from all organisms and place previous findings on individual subunits into context with recent breakthroughs on its structure and function.
Collapse
Affiliation(s)
- Matthew E. R. Maitland
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5B7, Canada;
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada; (G.A.L.); (G.S.S.)
| | - Gilles A. Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada; (G.A.L.); (G.S.S.)
| | - Gary S. Shaw
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada; (G.A.L.); (G.S.S.)
| | - Caroline Schild-Poulter
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5B7, Canada;
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada; (G.A.L.); (G.S.S.)
| |
Collapse
|
8
|
Liu DB, He YF, Chen GJ, Huang H, Xie XL, Lin WJ, Peng ZJ. Construction of a circRNA-Mediated ceRNA Network Reveals Novel Biomarkers for Aortic Dissection. Int J Gen Med 2022; 15:3951-3964. [PMID: 35437351 PMCID: PMC9013255 DOI: 10.2147/ijgm.s355906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/18/2022] [Indexed: 12/26/2022] Open
Abstract
Background Aortic dissection (AD) is a rare and lethal disorder with its genetic basis remains largely unknown. Many studies have confirmed that circRNAs play important roles in various physiological and pathological processes. However, the roles of circRNAs in AD are still unclear and need further investigation. The present study aimed to elucidate the underlying molecular mechanisms of circRNAs regulation in AD based on the circRNA-associated competing endogenous RNA (ceRNA) network. Methods Expression profiles of circRNAs (GSE97745), miRNAs (GSE92427), and mRNAs (GSE52093) were downloaded from Gene Expression Omnibus (GEO) databases, and the differentially expressed RNAs (DERNAs) were subsequently identified by bioinformatics analysis. CircRNA–miRNA–mRNA ceRNA network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to predict the potential functions of circRNA-associated ceRNA network. RNA was isolated from human arterial blood samples after which qRT-PCR was performed to confirm the DERNAs. Results We identified 14 (5 up-regulated and 9 down-regulated) differentially expressed circRNAs (DEcircRNAs), 17 (8 up-regulated and 9 down-regulated) differentially expressed miRNAs (DEmiRNAs) and 527 (297 up-regulated and 230 down-regulated) differentially expressed mRNAs (DEmRNAs) (adjusted P-value <0.05 and | log2FC | > 1.0). KEGG pathway analysis indicated that DEmRNAs were related to focal adhesion and extracellular matrix receptor interaction signaling pathways. Simultaneously, the present study constructed a ceRNA network based on 1 circRNAs (hsa_circRNA_082317), 1 miRNAs (hsa-miR-149-3p) and 10 mRNAs (MLEC, ENTPD7, SLC16A3, SLC7A8, TBC1D16, PAQR4, MAPK13, PIK3R2, ITGA5, SERPINA1). qRT-PCR demonstrated that hsa_circRNA_082317 and ITGA5 were significantly up-regulated, and hsa-miR-149-3p was dramatically down-regulated in AD (n = 3). Conclusion This is the first study to demonstrate the circRNA-associated ceRNA network is altered in AD, implying that circRNAs may play important roles in regulating the onset and progression and thus may serve as potential biomarkers for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- De-Bin Liu
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - You-Fu He
- Department of Cardiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, People’s Republic of China
- Guizhou Provincial Cardiovascular Disease Clinical Medicine Research Center, Guiyang, Guizhou Province, People’s Republic of China
- Medical College, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
| | - Gui-Jian Chen
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - Hua Huang
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - Xu-Ling Xie
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - Wan-Jun Lin
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - Zhi-Jian Peng
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
- Correspondence: Zhi-Jian Peng, Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, 515000, Guangdong Province, People’s Republic of China, Tel +86 18316056382, Fax +86-754 88983534, Email
| |
Collapse
|
9
|
Sheng L, Tong Y, Zhang Y, Feng Q. Identification of Hub Genes With Differential Correlations in Sepsis. Front Genet 2022; 13:876514. [PMID: 35401666 PMCID: PMC8987114 DOI: 10.3389/fgene.2022.876514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
As a multifaceted syndrome, sepsis leads to high risk of death worldwide. It is difficult to be intervened due to insufficient biomarkers and potential targets. The reason is that regulatory mechanisms during sepsis are poorly understood. In this study, expression profiles of sepsis from GSE134347 were integrated to construct gene interaction network through weighted gene co-expression network analysis (WGCNA). R package DiffCorr was utilized to evaluate differential correlations and identify significant differences between sepsis and healthy tissues. As a result, twenty-six modules were detected in the network, among which blue and darkred modules exhibited the most significant associations with sepsis. Finally, we identified some novel genes with opposite correlations including ZNF366, ZMYND11, SVIP and UBE2H. Further biological analysis revealed their promising roles in sepsis management. Hence, differential correlations-based algorithm was firstly established for the discovery of appealing regulators in sepsis.
Collapse
Affiliation(s)
- Lulu Sheng
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yiqing Tong
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yi Zhang
- Biomedical Research Center, Institute for Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Qiming Feng, ; Yi Zhang,
| | - Qiming Feng
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Qiming Feng, ; Yi Zhang,
| |
Collapse
|
10
|
Kang EA, Park JM, Jin W, Tchahc H, Kwon KA, Hahm KB. Amelioration of cancer cachexia with preemptive administration of tumor necrosis factor-α blocker. J Clin Biochem Nutr 2022; 70:117-128. [PMID: 35400817 PMCID: PMC8921719 DOI: 10.3164/jcbn.21-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/30/2021] [Indexed: 02/04/2023] Open
Abstract
Cancer cachexia is syndrome accompanying weight reduction, fat loss, muscle atrophy in patients with advanced cancer. Since tumor necrosis factor-α (TNF-α) played pivotal role in cancer cachexia, we hypothesized preemptive administration of TNF-α antibody might mitigate cancer cachexia. Detailed molecular mechanisms targeting muscle atrophy, cachexic inflammation, and catabolic catastrophe were explored whether TNF-α antibody can antagonize these cachexic mechanisms. Stimulated with preliminary finding human antibody, infliximab or adalimumab, significantly inhibited TNF-α as well as their signals relevant to cachexia in mice, preemptive administration of 1.5 mg/kg adalimumab was done in C-26-induced cancer cachexia. Adalimumab significantly mitigated cancer cachexia manifested with significantly lesser weight loss, leg muscle preservation, and higher survival compared to cachexia control (p<0.05). Significant ameliorating action of muscle atrophy were accompanied significant decreases of muscle-specific UPS like atrogin-1/MuRF-1, Pax-7, PCG-1α, and Mfn-2 after adalimumab (p<0.01) and significantly attenuated lipolysis with inhibition of ATGL HSL, and MMPs. Cachexic factors including IL-6 expression, serum IL-6, gp130, IL-6R, JAK2, and STAT3 were significantly inhibited with adalimumab (p<0.01). Genes implicated in cachexic inflammation like NF-κB, c-Jun/c-Fos, and MAPKs were significantly repressed, while mTOR/AKT was significantly increased adalimumab (p<0.05). Conclusively, preemptive administration of adalimumab can be tried in high risk to cancer cachexia.
Collapse
Affiliation(s)
- Eun A Kang
- CHA Cancer Prevention Research Center, CHA Bio Complex, CHA University
| | | | - Wook Jin
- Department of Pediatrics, Gachon University Gil Hospital
| | - Hann Tchahc
- Department of Pediatrics, Gachon University Gil Hospital
| | - Kwang An Kwon
- Department of Gastroenterology, Gachon University Gil Hospital
| | - Ki Baik Hahm
- CHA Cancer Prevention Research Center, CHA Bio Complex, CHA University
| |
Collapse
|
11
|
Cheung K, Rathbone A, Melanson M, Trier J, Ritsma BR, Allen MD. Pathophysiology and management of critical illness polyneuropathy and myopathy. J Appl Physiol (1985) 2021; 130:1479-1489. [PMID: 33734888 PMCID: PMC8143786 DOI: 10.1152/japplphysiol.00019.2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Critical illness-associated weakness (CIAW) is an umbrella term used to describe a group of neuromuscular disorders caused by severe illness. It can be subdivided into three major classifications based on the component of the neuromuscular system (i.e. peripheral nerves or skeletal muscle or both) that are affected. This includes critical illness polyneuropathy (CIP), critical illness myopathy (CIM), and an overlap syndrome, critical illness polyneuromyopathy (CIPNM). It is a common complication observed in people with critical illness requiring intensive care unit (ICU) admission. Given CIAW is found in individuals experiencing grave illness, it can be challenging to study from a practical standpoint. However, over the past 2 decades, many insights into the pathophysiology of this condition have been made. Results from studies in both humans and animal models have found that a profound systemic inflammatory response and factors related to bioenergetic failure as well as microvascular, metabolic, and electrophysiological alterations underlie the development of CIAW. Current management strategies focus on early mobilization, achieving euglycemia, and nutritional optimization. Other interventions lack sufficient evidence, mainly due to a dearth of large trials. The goal of this Physiology in Medicine article is to highlight important aspects of the pathophysiology of these enigmatic conditions. It is hoped that improved understanding of the mechanisms underlying these disorders will lead to further study and new investigations for novel pharmacologic, nutritional, and exercise-based interventions to optimize patient outcomes.
Collapse
Affiliation(s)
- Kevin Cheung
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alasdair Rathbone
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
| | - Michel Melanson
- Division of Neurology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jessica Trier
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
| | - Benjamin R Ritsma
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
- School of Kinesiology, Faculty of Arts and Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
12
|
Du X, Song H, Shen N, Hua R, Yang G. The Molecular Basis of Ubiquitin-Conjugating Enzymes (E2s) as a Potential Target for Cancer Therapy. Int J Mol Sci 2021; 22:ijms22073440. [PMID: 33810518 PMCID: PMC8037234 DOI: 10.3390/ijms22073440] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
Ubiquitin-conjugating enzymes (E2s) are one of the three enzymes required by the ubiquitin-proteasome pathway to connect activated ubiquitin to target proteins via ubiquitin ligases. E2s determine the connection type of the ubiquitin chains, and different types of ubiquitin chains regulate the stability and activity of substrate proteins. Thus, E2s participate in the regulation of a variety of biological processes. In recent years, the importance of E2s in human health and diseases has been particularly emphasized. Studies have shown that E2s are dysregulated in variety of cancers, thus it might be a potential therapeutic target. However, the molecular basis of E2s as a therapeutic target has not been described systematically. We reviewed this issue from the perspective of the special position and role of E2s in the ubiquitin-proteasome pathway, the structure of E2s and biological processes they are involved in. In addition, the inhibitors and microRNAs targeting E2s are also summarized. This article not only provides a direction for the development of effective drugs but also lays a foundation for further study on this enzyme in the future.
Collapse
|
13
|
A transition to degeneration triggered by oxidative stress in degenerative disorders. Mol Psychiatry 2021; 26:736-746. [PMID: 33159186 PMCID: PMC7914161 DOI: 10.1038/s41380-020-00943-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Although the activities of many signaling pathways are dysregulated during the progression of neurodegenerative and muscle degeneration disorders, the precise sequence of cellular events leading to degeneration has not been fully elucidated. Two kinases of particular interest, the growth-promoting Tor kinase and the energy sensor AMPK, appear to show reciprocal changes in activity during degeneration, with increased Tor activity and decreased AMPK activity reported. These changes in activity have been predicted to cause degeneration by attenuating autophagy, leading to the accumulation of unfolded protein aggregates and dysfunctional mitochondria, the consequent increased production of reactive oxygen species (ROS), and ultimately oxidative damage. Here we propose that this increased ROS production not only causes oxidative damage but also ultimately induces an oxidative stress response that reactivates the redox-sensitive AMPK and activates the redox-sensitive stress kinase JNK. Activation of these kinases reactivates autophagy. Because at this late stage, cells have become filled with dysfunctional mitochondria and protein aggregates, which are autophagy targets, this autophagy reactivation induces degeneration. The mechanism proposed here emphasizes that the process of degeneration is dynamic, that dysregulated signaling pathways change over time and can transition from deleterious to beneficial and vice versa as degeneration progresses.
Collapse
|
14
|
Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia. Oncogenesis 2021; 10:1. [PMID: 33419963 PMCID: PMC7794402 DOI: 10.1038/s41389-020-00288-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cachexia is a severe complication of cancer that adversely affects the course of the disease, with currently no effective treatments. It is characterized by a progressive atrophy of skeletal muscle and adipose tissue, resulting in weight loss, a reduced quality of life, and a shortened life expectancy. Although the cachectic condition primarily affects the skeletal muscle, a tissue that accounts for ~40% of total body weight, cachexia is considered a multi-organ disease that involves different tissues and organs, among which the cardiac muscle stands out for its relevance. Patients with cancer often experience severe cardiac abnormalities and manifest symptoms that are indicative of chronic heart failure, including fatigue, shortness of breath, and impaired exercise tolerance. Furthermore, cardiovascular complications are among the major causes of death in cancer patients who experienced cachexia. The lack of effective treatments for cancer cachexia underscores the need to improve our understanding of the underlying mechanisms. Increasing evidence links the wasting of the cardiac and skeletal muscles to metabolic alterations, primarily increased energy expenditure, and to increased proteolysis, ensuing from activation of the major proteolytic machineries of the cell, including ubiquitin-dependent proteolysis and autophagy. This review aims at providing an overview of the key mechanisms of cancer cachexia, with a major focus on those that are shared by the skeletal and cardiac muscles.
Collapse
|
15
|
Preclinical Evaluation of a Food-Derived Functional Ingredient to Address Skeletal Muscle Atrophy. Nutrients 2020; 12:nu12082274. [PMID: 32751276 PMCID: PMC7469066 DOI: 10.3390/nu12082274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is the metabolic powerhouse of the body, however, dysregulation of the mechanisms involved in skeletal muscle mass maintenance can have devastating effects leading to many metabolic and physiological diseases. The lack of effective solutions makes finding a validated nutritional intervention an urgent unmet medical need. In vitro testing in murine skeletal muscle cells and human macrophages was carried out to determine the effect of a hydrolysate derived from vicia faba (PeptiStrong: NPN_1) against phosphorylated S6, atrophy gene expression, and tumour necrosis factor alpha (TNF-α) secretion, respectively. Finally, the efficacy of NPN_1 on attenuating muscle waste in vivo was assessed in an atrophy murine model. Treatment of NPN_1 significantly increased the phosphorylation of S6, downregulated muscle atrophy related genes, and reduced lipopolysaccharide-induced TNF-α release in vitro. In a disuse atrophy murine model, following 18 days of NPN_1 treatment, mice exhibited a significant attenuation of muscle loss in the soleus muscle and increased the integrated expression of Type I and Type IIa fibres. At the RNA level, a significant upregulation of protein synthesis-related genes was observed in the soleus muscle following NPN_1 treatment. In vitro and preclinical results suggest that NPN_1 is an effective bioactive ingredient with great potential to prolong muscle health.
Collapse
|
16
|
Predictive Potential of Circulating Ube2h mRNA as an E2 Ubiquitin-Conjugating Enzyme for Diagnosis or Treatment of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21093398. [PMID: 32403399 PMCID: PMC7246987 DOI: 10.3390/ijms21093398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders are caused by neuronal cell death, miscommunications between synapse, and abnormal accumulations of proteins in the brain. Alzheimer’s disease (AD) is one of the age-related disorders, which are the most common degenerative disorders today, and strongly affects memory consolidation and cognitive function in the brain. Amyloid-β and tau proteins are triggers for AD pathogenesis, and usually used as AD candidate biomarkers in the clinical research. Especially, clinical exam, brain imaging and molecular biological methods are being used to diagnosis for AD. Genome-wide association study (GWAS) is a new biomedical method, and its use contributes to understanding many human diseases, including brain diseases. Here, we identified ubiquitin conjugating enzyme E2 (Ube2) gene expression in neurons through GWAS. The subfamilies of Ube2’s genetic expression and inborn errors affect the ubiquitin proteasome system (UPS), leading to protein degradation in the brain. We found that only Ube2h mRNA transcription was significantly increased in the blood from AD, however we did not find any change of Ube2 subfamily genes’ expression in the blood and brain tissue. These data may provide information for diagnosis or clinical approach, and suggest that cell-free circulating Ube2h mRNA is a novel potential biomarker for AD.
Collapse
|
17
|
Pötsch MS, Ishida J, Palus S, Tschirner A, von Haehling S, Doehner W, Anker SD, Springer J. MT-102 prevents tissue wasting and improves survival in a rat model of severe cancer cachexia. J Cachexia Sarcopenia Muscle 2020; 11:594-605. [PMID: 32067370 PMCID: PMC7113539 DOI: 10.1002/jcsm.12537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cachexia, a common manifestation of malignant cancer, is associated with wasting of skeletal muscle and fat tissue. In this study, we investigated the effects of a new first in class anabolic catabolic transforming agent on skeletal muscle in a rat model of cancer cachexia. METHODS Young male Wistar Han rats were intraperitoneally inoculated with 108 Yoshida hepatoma AH-130 cells and once daily treated with 0.3 mg kg-1 , 3 mg kg-1 MT-102, or placebo by gavage. RESULTS Three mg kg-1 d-1 MT-102 not only prevented progressive loss of fat mass (-6 ± 2 g vs -12 ± 1 g; P < 0.001); lean mass (+1 ± 10 g vs. -37 ± 2 g; P < 0.001) and body weight (+1 ± 13 g vs. -60 ± 2 g; P < 0.001) were remained. Quality of life was also improved as indicated by a higher food intake 12.9 ± 3.1 g and 4.3 ± 0.5 g, 3 mg kg-1 d-1 MT-102 vs. placebo, respectively, P < 0.001) and a higher spontaneous activity (52 369 ± 6521 counts/24 h and 29 509 ± 1775 counts/24 h, 3 mg·kg-1 d-1 MT-102 vs. placebo, respectively, P < 0.01) on Day 11. Most importantly, survival was improved (HR = 0.29; 95% CI: 0.16-0.51, P < 0.001). The molecular mechanisms behind these effects involve reduction of overall protein degradation and activation of protein synthesis, assessed by measurement of proteasome and caspase-6 activity or Western blot analysis, respectively. CONCLUSIONS The present study shows that 3 mg kg-1 MT-102 reduces catabolism, while inducing anabolism in skeletal muscle leading to an improved survival.
Collapse
Affiliation(s)
- Mareike S Pötsch
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Junichi Ishida
- Charite Medical School, Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Sandra Palus
- Charite Medical School, Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Anika Tschirner
- Charite Medical School, Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medicine Goettingen (UMG), Goettingen, Germany
| | - Wolfram Doehner
- Charite Medical School, Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,Center for Stroke Research Berlin, Charité Medical School, Berlin, Germany
| | - Stefan D Anker
- Charite Medical School, Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Springer
- Charite Medical School, Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
| |
Collapse
|
18
|
Change in body weight and body mass index in psoriasis patients receiving biologics: A systematic review and network meta-analysis. J Am Acad Dermatol 2020; 82:101-109. [DOI: 10.1016/j.jaad.2019.07.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 01/11/2023]
|
19
|
Borges RC, Barbeiro HV, Barbeiro DF, Soriano FG. Muscle degradation, vitamin D and systemic inflammation in hospitalized septic patients. J Crit Care 2019; 56:125-131. [PMID: 31896446 DOI: 10.1016/j.jcrc.2019.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/14/2019] [Accepted: 12/20/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE To date, the relationship between systemic inflammation and muscle changes observed by ultrasonography in septic patients in clinical studies is not known. Furthermore, the role of vitamin D on muscle changes in these patients needs to be investigated. MATERIALS AND METHODS Forty-five patients admitted to the ICU due to severe sepsis or septic shock. Blood samples were collected to evaluate systemic inflammation (interleukin (IL)-10, IL-1β, IL-1α, IL-6, IL-8 and tumor necrosis factor-α(TNF-α)) and vitamin D. Muscle mass was evaluated by ultrasound during hospitalization. Clinical tests of muscle strength (Medical Research Council (MRC) scale and handgrip) were performed after the awakening of patients. RESULTS There was a reduction in day 2 values to hospital discharge on TNF-alpha, IL-8, IL-6 and IL-10 (p < .05). The muscle mass showed a significant decline from day 6 of the ICU. After awakening, the patients had a significant increase in muscle strength (p < .05). There was a positive association between muscle mass variation (day 2 - ICU) with absolute values of IL-8 (r = 0.38 p = .05). For muscle strength, there was a negative association between handgrip strength with IL-8 (r = -0.36 p < .05) on ICU discharge. The vitamin D showed a positive association with the handgrip strength of the day 1 of the awakening (r = 0.51 p < .05). CONCLUSIONS In septic patients, there is an association between inflammation and changes in muscle mass and strength during ICU stay, which is similar to those observed in experimental studies. In addition, there was an association of vitamin D with recovery of muscle strength during hospitalization.
Collapse
Affiliation(s)
| | - Hermes Vieira Barbeiro
- Laboratory of Clinical Emergencies - 51, School of Medicine, University of São Paulo, Brazil.
| | | | - Francisco Garcia Soriano
- University Hospital, University of São Paulo, São Paulo, Brazil; Internal Medicine Department, School of Medicine, University of São Paulo, Brazil.
| |
Collapse
|
20
|
Sin TK, Zhang G, Zhang Z, Gao S, Li M, Li YP. Cancer Takes a Toll on Skeletal Muscle by Releasing Heat Shock Proteins-An Emerging Mechanism of Cancer-Induced Cachexia. Cancers (Basel) 2019; 11:cancers11091272. [PMID: 31480237 PMCID: PMC6770863 DOI: 10.3390/cancers11091272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
Cancer-associated cachexia (cancer cachexia) is a major contributor to the modality and mortality of a wide variety of solid tumors. It is estimated that cachexia inflicts approximately ~60% of all cancer patients and is the immediate cause of ~30% of all cancer-related death. However, there is no established treatment of this disorder due to the poor understanding of its underlying etiology. The key manifestations of cancer cachexia are systemic inflammation and progressive loss of skeletal muscle mass and function (muscle wasting). A number of inflammatory cytokines and members of the TGFβ superfamily that promote muscle protein degradation have been implicated as mediators of muscle wasting. However, clinical trials targeting some of the identified mediators have not yielded satisfactory results. Thus, the root cause of the muscle wasting associated with cancer cachexia remains to be identified. This review focuses on recent progress of laboratory studies in the understanding of the molecular mechanisms of cancer cachexia that centers on the role of systemic activation of Toll-like receptor 4 (TLR4) by cancer-released Hsp70 and Hsp90 in the development and progression of muscle wasting, and the downstream signaling pathways that activate muscle protein degradation through the ubiquitin-proteasome and the autophagy-lysosome pathways in response to TLR4 activation. Verification of these findings in humans could lead to etiology-based therapies of cancer cachexia by targeting multiple steps in this signaling cascade.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Song Gao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Min Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Dumitru A, Radu BM, Radu M, Cretoiu SM. Muscle Changes During Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1088:73-92. [PMID: 30390248 DOI: 10.1007/978-981-13-1435-3_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscle atrophy typically is a direct effect of protein degradation induced by a diversity of pathophysiologic states such as disuse, immobilization, denervation, aging, sepsis, cachexia, glucocorticoid treatment, hereditary muscular disorders, cancer, diabetes and obesity, kidney and heart failure, and others. Muscle atrophy is defined by changes in the muscles, consisting in shrinkage of myofibers, changes in the types of fiber and myosin isoforms, and a net loss of cytoplasm, organelles and overall a protein loss. Although in the literature there are extensive studies in a range of animal models, the paucity of human data is a reality. This chapter is focused on various aspects of muscle wasting and describes the transitions of myofiber types during the progression of muscle atrophy in several pathological states. Clinical conditions associated with muscle atrophy have been grouped based on the fast-to-slow or slow-to-fast fiber-type shifts. We have also summarized the ultrastructural and histochemical features characteristic for muscle atrophy in clinical and experimental models for aging, cancer, diabetes and obesity, and heart failure and arrhythmia.
Collapse
Affiliation(s)
- Adrian Dumitru
- Department of Pathology, Emergency University Hospital, Bucharest, Romania
| | - Beatrice Mihaela Radu
- Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Bucharest, Romania.,Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Mihai Radu
- Department of Life & Environmental Physics, 'Horia Hulubei' National Institute for Physics & Nuclear Engineering, Magurele, Romania
| | - Sanda Maria Cretoiu
- Division of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
22
|
Pulmonary and muscle profile in pneumosepsis: A temporal analysis of inflammatory markers. Cytokine 2018; 114:128-134. [PMID: 30470659 DOI: 10.1016/j.cyto.2018.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 01/09/2023]
Abstract
In sepsis, greater understanding of the inflammatory mechanism involved would provide insights into the condition and into its extension to the muscular apparatus in critically ill patients. Therefore, this study evaluates the inflammatory profile of pneumosepsis induced by Klebsiella pneumoniae (K.p.) in lungs and skeletal muscles during the first 72 h. Male BALB/c mice were divided into 4 groups, submitted to intratracheal inoculation of K.p. at a concentration of 2 × 108 (PS) or PBS, and assessed after 24 (PS24), 48 (PS48) and 72 (PS72) hours. The Maximum Physical Capacity Test (MPCT) was performed before and after induction. Pulmonary inflammation was assessed by total cell number, nitric oxide levels (NOx), IL-1β and TNF-α levels in bronchoalveolar lavage fluid (BALF); inflammation and muscle trophism were evaluated by the levels of TNF-α, IL-6, TGF-β and BDNF by ELISA and NF-κB by western blotting in muscle tissue. Cells and colony forming units (CFU) were also analyzed in blood samples. The PS groups showed an increase in total cells in the BALF (p < 0.05), as well in the number of granulocytes in the blood (p < 0.05) and a decrease in performance in the MPCT (p < 0.05). NOx levels showed significant increase in PS72, when compared to Control group (p = 0.03). The PS24 showed a significant increase lung in TNF-α levels (p < 0.001) and in CFU (p = 0.013). We observed an increase in muscular IL-6 and nuclear NF-κB levels in PS24 group, when compared to PS48 and Control groups (p < 0.05). Nevertheless, mild signs of injury in the skeletal muscle tissue does not support the idea of an early muscular injury in this experimental model, suggesting that the low performance of the animals during the MPCT may be related to lung inflammation.
Collapse
|
23
|
NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:267-279. [PMID: 30390256 DOI: 10.1007/978-981-13-1435-3_12] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Atrophy is a classical hallmark of an array of disorders that affect skeletal muscle, ranging from inherited dystrophies, acquired inflammatory myopathies, ageing (sarcopenia) and critical illness (sepsis). The loss of muscle mass and function in these instances is associated with disability, poor quality of life and in some cases mortality. The mechanisms which underpin muscle atrophy are complex; however, significant research has demonstrated an important role for inflammatory cytokines such as tumour necrosis factor-alpha (TNF-α), mediated by the generation of reactive oxygen species (ROS) in muscle wasting. Moreover, activation of the transcription factor nuclear factor kappa B (NF-κB) is a key lynchpin in the overall processes that mediate muscle atrophy. The significance of NF-κB as a key regulator of muscle atrophy has been emphasised by several in vivo studies, which have demonstrated that NF-κB-targeted therapies can abrogate muscle atrophy. In this chapter, we will summarise current knowledge on the role of cytokines (TNF-α) and NF-κB in the loss of muscle mass and function and highlight perspectives towards future research and potential therapies to combat muscle atrophy.
Collapse
|
24
|
Liu QM, Li CX, Wu Q, Shi QM, Sun AJ, Zhang HD, Guo XX, Dong YD, Xing D, Zhang YM, Han Q, Diao XP, Zhao TY. Identification of Differentially Expressed Genes In Deltamethrin-Resistant Culex pipiens quinquefasciatus. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2017; 33:324-330. [PMID: 29369035 DOI: 10.2987/17-6658.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Culex quinquefasciatus is one of China's major house-dwelling mosquito species and an important vector of filariasis and encephalitis. Chemical treatments represent one of the most successful approaches for comprehensive mosquito prevention and control. However, the widespread use of chemical pesticides has led to the occurrence and development of insecticide resistance. Therefore, in-depth studies of resistance to insecticides are of vital importance. In this study, we performed a gene expression analysis to investigate genes from Cx. quinquefasciatus that may confer pyrethroid resistance. We aimed to understand the mechanisms of Cx. quinquefasciatus resistance to pyrethroid insecticides and provide insights into insect resistance management. Using a resistance bioassay, we determined the deltamethrin LC50 values (lethal concentration required to kill 50% of the population) for Cx. quinquefasciatus larvae in the F21, F23, F24, F26, F27, and F30 generations. The 7 tested strains exhibited pesticide resistance that was 25.25 to 87.83 times higher than that of the SanYa strain. Moreover, the expression of the OBPjj7a (odorant-binding protein OBPjj7a), OBP28 (odorant-binding protein OBP28), and E2 (ubiquitin-conjugating enzyme) genes was positively correlated with deltamethrin resistance ( R2 = 0.836, P = 0.011; R2 = 0.788, P = 0.018; and R2 = 0.850, P = 0.009, respectively) in Cx. quinquefasciatus. The expression of 4 additional genes, H/ACA, S19, SAR2, and PGRP, was not correlated with deltamethrin resistance. In summary, this study identified 3 Cx. quinquefasciatus genes with potential involvement in deltamethrin resistance, and these results may provide a theoretical basis for the control of mosquito resistance and insights into resistance detection.
Collapse
|
25
|
Toll-like receptor 4 mediates Lewis lung carcinoma-induced muscle wasting via coordinate activation of protein degradation pathways. Sci Rep 2017; 7:2273. [PMID: 28536426 PMCID: PMC5442131 DOI: 10.1038/s41598-017-02347-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
Cancer-induced cachexia, characterized by muscle wasting, is a lethal metabolic syndrome with undefined etiology. Current consensus is that multiple factors contribute to cancer-induced muscle wasting, and therefore therapy requires combinational strategies. Here, we show that Toll-like receptor 4 (TLR4) mediates cancer-induced muscle wasting by directly activating muscle catabolism as well as stimulating an innate immune response in mice bearing Lewis lung carcinoma (LLC), and targeting TLR4 alone effectively abrogate muscle wasting. Utilizing specific siRNAs we observed that LLC cell-conditioned medium (LCM)-treated C2C12 myotubes underwent a rapid catabolic response in a TLR4-dependent manner, including activation of the p38 MAPK−C/EBPβ signaling pathway as well as the ubiquitin-proteasome and autophagy-lysosome pathways, resulting in myotube atrophy. Utilizing a reporter cell-line it was confirmed that LCM activated TLR4. These results suggest that LLC-released cachexins directly activate muscle catabolism via activating TLR4 on muscle cells independent of immune responses. Critically, LLC tumor-bearing TLR4−/− mice were spared from muscle wasting due to a blockade in muscle catabolic pathways. Further, tumor-induced elevation of circulating TNFα and interleukin-6 (IL-6) was abolished in TLR4−/− mice. These data suggest that TLR4 is a central mediator and therapeutic target of cancer-induced muscle wasting.
Collapse
|
26
|
Cunha TF, Bechara LRG, Bacurau AVN, Jannig PR, Voltarelli VA, Dourado PM, Vasconcelos AR, Scavone C, Ferreira JCB, Brum PC. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats. J Appl Physiol (1985) 2017; 122:817-827. [DOI: 10.1152/japplphysiol.00182.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 11/22/2022] Open
Abstract
We have recently demonstrated that NADPH oxidase hyperactivity, NF-κB activation, and increased p38 phosphorylation lead to atrophy of glycolytic muscle in heart failure (HF). Aerobic exercise training (AET) is an efficient strategy to counteract skeletal muscle atrophy in this syndrome. Therefore, we tested whether AET would regulate muscle redox balance and protein degradation by decreasing NADPH oxidase hyperactivity and reestablishing NF-κB signaling, p38 phosphorylation, and proteasome activity in plantaris muscle of myocardial infarcted-induced HF (MI) rats. Thirty-two male Wistar rats underwent MI or fictitious surgery (SHAM) and were randomly assigned into untrained (UNT) and trained (T; 8 wk of AET on treadmill) groups. AET prevented HF signals and skeletal muscle atrophy in MI-T, which showed an improved exercise tolerance, attenuated cardiac dysfunction and increased plantaris fiber cross-sectional area. To verify the role of inflammation and redox imbalance in triggering protein degradation, circulating TNF-α levels, NADPH oxidase profile, NF-κB signaling, p38 protein levels, and proteasome activity were assessed. MI-T showed a reduced TNF-α levels, NADPH oxidase activity, and Nox2 mRNA expression toward SHAM-UNT levels. The rescue of NADPH oxidase activity induced by AET in MI rats was paralleled by reducing nuclear binding activity of the NF-κB, p38 phosphorylation, atrogin-1, mRNA levels, and 26S chymotrypsin-like proteasome activity. Taken together our data provide evidence for AET improving plantaris redox homeostasis in HF associated with a decreased NADPH oxidase, redox-sensitive proteins activation, and proteasome hyperactivity further preventing atrophy. These data reinforce the role of AET as an efficient therapy for muscle wasting in HF. NEW & NOTEWORTHY This study demonstrates, for the first time, the contribution of aerobic exercise training (AET) in decreasing muscle NADPH oxidase activity associated with reduced reactive oxygen species production and systemic inflammation, which diminish NF-κB overactivation, p38 phosphorylation, and ubiquitin proteasome system hyperactivity. These molecular changes counteract plantaris atrophy in trained myocardial infarction-induced heart failure rats. Our data provide new evidence into how AET may regulate protein degradation and thus prevent skeletal muscle atrophy.
Collapse
Affiliation(s)
- Telma F. Cunha
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Luiz R. G. Bechara
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Aline V. N. Bacurau
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Paulo R. Jannig
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Paulo M. Dourado
- Heart Institute, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; and
| | - Cristóforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; and
| | | | - Patricia C. Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Batt J, Herridge M, dos Santos C. Mechanism of ICU-acquired weakness: skeletal muscle loss in critical illness. Intensive Care Med 2017; 43:1844-1846. [DOI: 10.1007/s00134-017-4758-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/02/2017] [Indexed: 01/07/2023]
|
28
|
The Effect of Anti-Tumor Necrosis Factor-Alpha Treatment on Muscle Performance and Endurance in Patients With Ankylosing Spondylitis: A Prospective Follow-Up Study. Arch Rheumatol 2017; 32:309-314. [PMID: 29901011 DOI: 10.5606/archrheumatol.2017.6335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/20/2017] [Indexed: 11/21/2022] Open
Abstract
Objectives This study aims to evaluate muscle performance by using isokinetic dynamometer before and at third month of anti-tumor necrosis factor-alpha treatment in ankylosing spondylitis patients. Patients and methods Thirty ankylosing spondylitis patients (23 males, 7 females; mean age 39.3±8.6 years; range 18 to 45 years) starting on anti- tumor necrosis factor-alpha treatment and 30 healthy controls (23 males, 7 females; mean age 39.1±8.8 years; range 18 to 48 years) with similar age, body mass index, and sex were enrolled. The clinical anthropometric measurements of chest expansion, lumbar Schober test, hand-finger floor distance and visual analog scale-global, C-reactive protein, erythrocyte sedimentation rate, Ankylosing Spondylitis Disease Activity Score-C-reactive protein and Ankylosing Spondylitis Disease Activity Score-erythrocyte sedimentation rate, Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Metrology Index, Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Metrology Index were determined before and at third month of the treatment. Results There was no statistically significant difference in age, sex and, body mass index between the groups (p>0.05). A statistically significant difference was detected between 60 °/second and 180 °/second peak torque in angular velocity of flexor and extensor muscles (p<0.05). A significant difference was detected in respect to total work of patients with 180 °/second peak torque in angular velocity of flexor and extensor muscles (p<0.05). There was a statistically significant difference between the findings of 60 °/second and 180 °/second peak torque in angular velocity of flexor and extensor muscles (p<0.05). Isokinetic test results were better at third month after treatment than before treatment. Conclusion The results of this study showed that both functional limitations and performance and endurance of muscles may be improved with anti-tumor necrosis factor-alpha treatment in ankylosing spondylitis patients.
Collapse
|
29
|
Batt J, Mathur S, Katzberg HD. Mechanism of ICU-acquired weakness: muscle contractility in critical illness. Intensive Care Med 2017; 43:584-586. [PMID: 28255615 DOI: 10.1007/s00134-017-4730-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Jane Batt
- Department of Medicine, Keenan Centre for Biomedical Research, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.
| | - Sunita Mathur
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Hans D Katzberg
- Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Peroxynitrite: From interception to signaling. Arch Biochem Biophys 2016; 595:153-60. [PMID: 27095233 DOI: 10.1016/j.abb.2015.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022]
Abstract
Peroxynitrite is a strong oxidant and nitrating species that mediates certain biological effects of superoxide and nitrogen monoxide. These biological effects include oxidative damage to proteins as well as the formation of 3-nitrotyrosyl moieties in proteins. As a consequence, such proteins may lose their activity, gain altered function, or become prone to proteolytic degradation - resulting in modulation of cellular protein turnover and in the modulation of signaling cascades. In analogy to hydrogen peroxide, peroxynitrite may be scavenged by selenoproteins like glutathione peroxidase-1 (GPx-1) or by selenocompounds with a GPx-like activity, such as ebselen; in further analogy to H2O2, peroxiredoxins have also been established as contributors to peroxynitrite reduction. This review covers three aspects of peroxynitrite biochemistry, (i) the interaction of selenocompounds/-proteins with peroxynitrite, (ii) peroxynitrite-induced modulation of cellular proteolysis, and (iii) peroxynitrite-induced modulation of cellular signaling.
Collapse
|
31
|
Campanati A, Molinelli E, Ganzetti G, Giuliodori K, Minetti I, Taus M, Catani M, Martina E, Conocchiari L, Offidani A. The effect of low-carbohydrates calorie-restricted diet on visceral adipose tissue and metabolic status in psoriasis patients receiving TNF-alpha inhibitors: results of an open label controlled, prospective, clinical study. J DERMATOL TREAT 2016; 28:206-212. [DOI: 10.1080/09546634.2016.1214666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol 2016; 116:1595-625. [PMID: 27294501 PMCID: PMC4983298 DOI: 10.1007/s00421-016-3411-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/03/2016] [Indexed: 02/06/2023]
Abstract
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Philipp Baumert
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mark J Lake
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Barry Drust
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Robert M Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
33
|
Girven M, Dugdale HF, Owens DJ, Hughes DC, Stewart CE, Sharples AP. l-glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced p38 MAPK Signal Transduction. J Cell Physiol 2016; 231:2720-32. [PMID: 26991744 DOI: 10.1002/jcp.25380] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/15/2016] [Indexed: 02/06/2023]
Abstract
Tumour Necrosis Factor-Alpha (TNF-α) is chronically elevated in conditions where skeletal muscle loss occurs. As l-glutamine can dampen the effects of inflamed environments, we investigated the role of l-glutamine in both differentiating C2C12 myoblasts and existing myotubes in the absence/presence of TNF-α (20 ng · ml(-1) ) ± l-glutamine (20 mM). TNF-α reduced the proportion of cells in G1 phase, as well as biochemical (CK activity) and morphological differentiation (myotube number), with corresponding reductions in transcript expression of: Myogenin, Igf-I, and Igfbp5. Furthermore, when administered to mature myotubes, TNF-α induced myotube loss and atrophy underpinned by reductions in Myogenin, Igf-I, Igfbp2, and glutamine synthetase and parallel increases in Fox03, Cfos, p53, and Bid gene expression. Investigation of signaling activity suggested that Akt and ERK1/2 were unchanged, JNK increased (non-significantly) whereas P38 MAPK substantially and significantly increased in both myoblasts and myotubes in the presence of TNF-α. Importantly, 20 mM l-glutamine reduced p38 MAPK activity in TNF-α conditions back to control levels, with a corresponding rescue of myoblast differentiation and a reversal of atrophy in myotubes. l-glutamine resulted in upregulation of genes associated with growth and survival including; Myogenin, Igf-Ir, Myhc2 & 7, Tnfsfr1b, Adra1d, and restored atrophic gene expression of Fox03 back to baseline in TNF-α conditions. In conclusion, l-glutamine supplementation rescued suppressed muscle cell differentiation and prevented myotube atrophy in an inflamed environment via regulation of p38 MAPK. l-glutamine administration could represent an important therapeutic strategy for reducing muscle loss in catabolic diseases and inflamed ageing. J. Cell. Physiol. 9999: 231: 2720-2732, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew Girven
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Hannah F Dugdale
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Daniel J Owens
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom.,Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - David C Hughes
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom.,Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| | - Claire E Stewart
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Adam P Sharples
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
34
|
Files DC, Sanchez MA, Morris PE. A conceptual framework: the early and late phases of skeletal muscle dysfunction in the acute respiratory distress syndrome. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:266. [PMID: 26134116 PMCID: PMC4488983 DOI: 10.1186/s13054-015-0979-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Patients with acute respiratory distress syndrome (ARDS) often develop severe diaphragmatic and limb skeletal muscle dysfunction. Impaired muscle function in ARDS is associated with increased mortality, increased duration of mechanical ventilation, and functional disability in survivors. In this review, we propose that muscle dysfunction in ARDS can be categorized into an early and a late phase. These early and late phases are based on the timing in relationship to lung injury and the underlying mechanisms. The early phase occurs temporally with the onset of lung injury, is driven by inflammation and disuse, and is marked predominantly by muscle atrophy from increased protein degradation. The ubiquitin-proteasome, autophagy, and calpain-caspase pathways have all been implicated in early-phase muscle dysfunction. Late-phase muscle weakness persists in many patients despite resolution of lung injury and cessation of ongoing acute inflammation-driven muscle atrophy. The clinical characteristics and mechanisms underlying late-phase muscle dysfunction do not involve the massive protein degradation and atrophy of the early phase and may reflect a failure of the musculoskeletal system to regain homeostatic balance. Owing to these underlying mechanistic differences, therapeutic interventions for treating muscle dysfunction in ARDS may differ during the early and late phases. Here, we review clinical and translational investigations of muscle dysfunction in ARDS, placing them in the conceptual framework of the early and late phases. We hypothesize that this conceptual model will aid in the design of future mechanistic and clinical investigations of the skeletal muscle system in ARDS and other critical illnesses.
Collapse
Affiliation(s)
- D Clark Files
- Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA. .,Critical Illness Injury and Recovery Research Center Chadwick Miller MD Department of Emergency Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - Michael A Sanchez
- Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Peter E Morris
- Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Critical Illness Injury and Recovery Research Center Chadwick Miller MD Department of Emergency Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| |
Collapse
|
35
|
Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, Larsson L. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill. Physiol Rev 2015; 95:1025-109. [PMID: 26133937 PMCID: PMC4491544 DOI: 10.1152/physrev.00028.2014] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Critical illness polyneuropathies (CIP) and myopathies (CIM) are common complications of critical illness. Several weakness syndromes are summarized under the term intensive care unit-acquired weakness (ICUAW). We propose a classification of different ICUAW forms (CIM, CIP, sepsis-induced, steroid-denervation myopathy) and pathophysiological mechanisms from clinical and animal model data. Triggers include sepsis, mechanical ventilation, muscle unloading, steroid treatment, or denervation. Some ICUAW forms require stringent diagnostic features; CIM is marked by membrane hypoexcitability, severe atrophy, preferential myosin loss, ultrastructural alterations, and inadequate autophagy activation while myopathies in pure sepsis do not reproduce marked myosin loss. Reduced membrane excitability results from depolarization and ion channel dysfunction. Mitochondrial dysfunction contributes to energy-dependent processes. Ubiquitin proteasome and calpain activation trigger muscle proteolysis and atrophy while protein synthesis is impaired. Myosin loss is more pronounced than actin loss in CIM. Protein quality control is altered by inadequate autophagy. Ca(2+) dysregulation is present through altered Ca(2+) homeostasis. We highlight clinical hallmarks, trigger factors, and potential mechanisms from human studies and animal models that allow separation of risk factors that may trigger distinct mechanisms contributing to weakness. During critical illness, altered inflammatory (cytokines) and metabolic pathways deteriorate muscle function. ICUAW prevention/treatment is limited, e.g., tight glycemic control, delaying nutrition, and early mobilization. Future challenges include identification of primary/secondary events during the time course of critical illness, the interplay between membrane excitability, bioenergetic failure and differential proteolysis, and finding new therapeutic targets by help of tailored animal models.
Collapse
Affiliation(s)
- O Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - M B Reid
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - G Van den Berghe
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - I Vanhorebeek
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - G Hermans
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - M M Rich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - L Larsson
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Hsu HT, Rau LR, Zeng YN, Kang YL, Tsai SW, Wu MH. External vibration enhances macromolecular crowding for construction of aligned three-dimensional collagen fibril scaffolds. Biofabrication 2015; 7:025004. [DOI: 10.1088/1758-5090/7/2/025004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Metsios GS, Lemmey A. Exercise as Medicine in Rheumatoid Arthritis: Effects on Function, Body Composition, and Cardiovascular Disease Risk. ACTA ACUST UNITED AC 2015. [DOI: 10.31189/2165-6193-4.1.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Negrao CE, Middlekauff HR, Gomes-Santos IL, Antunes-Correa LM. Effects of exercise training on neurovascular control and skeletal myopathy in systolic heart failure. Am J Physiol Heart Circ Physiol 2015; 308:H792-802. [PMID: 25681428 DOI: 10.1152/ajpheart.00830.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/09/2015] [Indexed: 12/14/2022]
Abstract
Neurohormonal excitation and dyspnea are the hallmarks of heart failure (HF) and have long been associated with poor prognosis in HF patients. Sympathetic nerve activity (SNA) and ventilatory equivalent of carbon dioxide (VE/VO2) are elevated in moderate HF patients and increased even further in severe HF patients. The increase in SNA in HF patients is present regardless of age, sex, and etiology of systolic dysfunction. Neurohormonal activation is the major mediator of the peripheral vasoconstriction characteristic of HF patients. In addition, reduction in peripheral blood flow increases muscle inflammation, oxidative stress, and protein degradation, which is the essence of the skeletal myopathy and exercise intolerance in HF. Here we discuss the beneficial effects of exercise training on resting SNA in patients with systolic HF and its central and peripheral mechanisms of control. Furthermore, we discuss the exercise-mediated improvement in peripheral vasoconstriction in patients with HF. We will also focus on the effects of exercise training on ventilatory responses. Finally, we review the effects of exercise training on features of the skeletal myopathy in HF. In summary, exercise training plays an important role in HF, working synergistically with pharmacological therapies to ameliorate these abnormalities in clinical practice.
Collapse
Affiliation(s)
- Carlos E Negrao
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Holly R Middlekauff
- Departament of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California
| | - Igor L Gomes-Santos
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | |
Collapse
|
39
|
Kamleh MA, Snowden SG, Grapov D, Blackburn GJ, Watson DG, Xu N, Ståhle M, Wheelock CE. LC-MS metabolomics of psoriasis patients reveals disease severity-dependent increases in circulating amino acids that are ameliorated by anti-TNFα treatment. J Proteome Res 2014; 14:557-66. [PMID: 25361234 PMCID: PMC4286171 DOI: 10.1021/pr500782g] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Psoriasis is an immune-mediated highly
heterogeneous skin disease
in which genetic as well as environmental factors play important roles.
In spite of the local manifestations of the disease, psoriasis may
progress to affect organs deeper than the skin. These effects are
documented by epidemiological studies, but they are not yet mechanistically
understood. In order to provide insight into the systemic effects
of psoriasis, we performed a nontargeted high-resolution LC–MS
metabolomics analysis to measure plasma metabolites from individuals
with mild or severe psoriasis as well as healthy controls. Additionally,
the effects of the anti-TNFα drug Etanercept on metabolic profiles
were investigated in patients with severe psoriasis. Our analyses
identified significant psoriasis-associated perturbations in three
metabolic pathways: (1) arginine and proline, (2) glycine, serine
and threonine, and (3) alanine, aspartate, and glutamate. Etanercept
treatment reversed the majority of psoriasis-associated trends in
circulating metabolites, shifting the metabolic phenotypes of severe
psoriasis toward that of healthy controls. Circulating metabolite
levels pre- and post-Etanercept treatment correlated with psoriasis
area and severity index (PASI) clinical scoring (R2 = 0.80; p < 0.0001). Although the
responsible mechanism(s) are unclear, these results suggest that psoriasis
severity-associated metabolic perturbations may stem from increased
demand for collagen synthesis and keratinocyte hyperproliferation
or potentially the incidence of cachexia. Data suggest that levels
of circulating amino acids are useful for monitoring both the severity
of disease as well as therapeutic response to anti-TNFα treatment.
Collapse
Affiliation(s)
- Muhammad Anas Kamleh
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institutet , SE-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Vu LT, Jain G, Veres BD, Rajagopalan P. Cell migration on planar and three-dimensional matrices: a hydrogel-based perspective. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:67-74. [PMID: 25011932 DOI: 10.1089/ten.teb.2013.0782] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The migration of cells is a complex process that is dependent on the properties of the surrounding environment. In vivo, the extracellular environment is complex with a wide range of physical features, topographies, and protein compositions. There have been a number of approaches to design substrates that can recapitulate the complex architecture in vivo. Two-dimensional (2D) substrates have been widely used to study the effect of material properties on cell migration. However, such substrates do not capture the intricate structure of the extracellular environment. Recent advances in hydrogel assembly and patterning techniques have enabled the design of new three-dimensional (3D) scaffolds and microenvironments. Investigations conducted on these matrices provide growing evidence that several established migratory trends obtained from studies on 2D substrates could be significantly different when conducted in a 3D environment. Since cell migration is closely linked to a wide range of physiological functions, there is a critical need to examine migratory trends on 3D matrices. In this review, our goal is to highlight recent experimental studies on cell migration within engineered 3D hydrogel environments and how they differ from planar substrates. We provide a detailed examination of the changes in cellular characteristics such as morphology, speed, directionality, and protein expression in 3D hydrogel environments. This growing field of research will have a significant impact on tissue engineering, regenerative medicine, and in the design of biomaterials.
Collapse
Affiliation(s)
- Lucas T Vu
- 1 Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia
| | | | | | | |
Collapse
|
41
|
Mierke CT. The fundamental role of mechanical properties in the progression of cancer disease and inflammation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:076602. [PMID: 25006689 DOI: 10.1088/0034-4885/77/7/076602] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Biological Physics Division, University of Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
42
|
Abstract
Pulmonary artery hypertension (PAH) is a proliferative disorder associated with enhanced pulmonary artery smooth muscle cell proliferation and suppressed apoptosis. The sustainability of this phenotype requires the activation of pro-survival transcription factor like the signal transducers and activators of transcription-3 (STAT3). Using multidisciplinary and translational approaches, we and others have demonstrated that STAT3 activation in both human and experimental models of PAH accounts for the modulation of the expression of several proteins already known as implicated in PAH pathogenesis, as well as for signal transduction to other transcription factors. Furthermore, recent data demonstrated that STAT3 could be therapeutically targeted in different animal models and some molecules are actually in clinical trials for cancer or PAH treatment.
Collapse
Affiliation(s)
- Roxane Paulin
- Vascular Biology Research Group; Department of Medicine; University of Alberta; Edmonton, AB Canada
| | | | | |
Collapse
|
43
|
Otis JS, Niccoli S, Hawdon N, Sarvas JL, Frye MA, Chicco AJ, Lees SJ. Pro-inflammatory mediation of myoblast proliferation. PLoS One 2014; 9:e92363. [PMID: 24647690 PMCID: PMC3960233 DOI: 10.1371/journal.pone.0092363] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/20/2014] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle satellite cell function is largely dictated by the surrounding environment following injury. Immune cell infiltration dominates the extracellular space in the injured area, resulting in increased cytokine concentrations. While increased pro-inflammatory cytokine expression has been previously established in the first 3 days following injury, less is known about the time course of cytokine expression and the specific mechanisms of cytokine induced myoblast function. Therefore, the expression of IL-1β and IL-6 at several time points following injury, and their effects on myoblast proliferation, were examined. In order to do this, skeletal muscle was injured using barium chloride in mice and tissue was collected 1, 5, 10, and 28 days following injury. Mechanisms of cytokine induced proliferation were determined in cell culture using both primary and C2C12 myoblasts. It was found that there is a ∼20-fold increase in IL-1β (p≤0.05) and IL-6 (p = 0.06) expression 5 days following injury. IL-1β increased proliferation of both primary and C2C12 cells ∼25%. IL-1β stimulation also resulted in increased NF-κB activity, likely contributing to the increased proliferation. These data demonstrate for the first time that IL-1β alone can increase the mitogenic activity of primary skeletal muscle satellite cells and offer insight into the mechanisms dictating satellite cell function following injury.
Collapse
Affiliation(s)
- Jeffrey S. Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States of America
| | - Sarah Niccoli
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Nicole Hawdon
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Jessica L. Sarvas
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Melinda A. Frye
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Adam J. Chicco
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - Simon J. Lees
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
44
|
Influence of ustekinumab on body weight of patients with psoriasis: an initial report. Postepy Dermatol Alergol 2014; 31:29-31. [PMID: 24683394 PMCID: PMC3952052 DOI: 10.5114/pdia.2014.40656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/20/2013] [Accepted: 06/23/2013] [Indexed: 12/22/2022] Open
Abstract
Introduction Many recent epidemiological studies have shown the influence of treatment with anti-TNF-α on body mass of patients with psoriasis but there are no reports in the literature on the influence of ustekinumab on that parameter. Aim To review the effect of ustekinumab therapy on body weight in patients with psoriasis. Material and methods The examined group consisted of 11 patients with psoriasis treated at the Department and Clinic of Dermatology in Olsztyn. Patients’ body mass and body mass index (BMI) were evaluated prior to the first administration of the ustekinumab dose and at week 28 of treatment (the day of the fourth dose). Results Body mass increase was determined in 7 patients (64%), on average by 2.27 kg (p < 0.05), and the BMI increased by 3.35% (p < 0.1). Conclusions Observing a correlation between ustekinumab application and body mass increase, similar to the treatment with anti-TNF-α preparations, an attempt was undertaken at explaining that correlation by analysing the role of IL-12 and IL-23 in psoriasis pathogenesis. IL-12 and IL-23, by influencing the naïve lymphocytes T and stimulating their diversification towards Th1 and Th17, also, indirectly, cause an increase in TNF-α and other cytokines production (IL-2, IFN-γ, IL-17, IL-10, IL-22). Ustekinumab will then have a significant influence on decreasing the production of cytokines, which are important for metabolism and body mass.
Collapse
|
45
|
Maegdefessel L, Dalman RL, Tsao PS. Pathogenesis of Abdominal Aortic Aneurysms: MicroRNAs, Proteases, Genetic Associations. Annu Rev Med 2014; 65:49-62. [DOI: 10.1146/annurev-med-101712-174206] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ronald L. Dalman
- Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California 94305;
| | - Philip S. Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305;
- VA Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
46
|
Tarbell JM, Shi ZD, Dunn J, Jo H. Fluid Mechanics, Arterial Disease, and Gene Expression. ANNUAL REVIEW OF FLUID MECHANICS 2014; 46:591-614. [PMID: 25360054 PMCID: PMC4211638 DOI: 10.1146/annurev-fluid-010313-141309] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065
| | - Jessilyn Dunn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| |
Collapse
|
47
|
Basualto-Alarcón C, Varela D, Duran J, Maass R, Estrada M. Sarcopenia and Androgens: A Link between Pathology and Treatment. Front Endocrinol (Lausanne) 2014; 5:217. [PMID: 25566189 PMCID: PMC4270249 DOI: 10.3389/fendo.2014.00217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/01/2014] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass and function, is becoming more prevalent as the lifespan continues to increase in most populations. As sarcopenia is highly disabling, being associated with increased risk of dependence, falls, fractures, weakness, disability, and death, development of approaches to its prevention and treatment are required. Androgens are the main physiologic anabolic steroid hormones and normal testosterone levels are necessary for a range of developmental and biological processes, including maintenance of muscle mass. Testosterone concentrations decline as age increase, suggesting that low plasma testosterone levels can cause or accelerate muscle- and age-related diseases, as sarcopenia. Currently, there is increasing interest on the anabolic properties of testosterone for therapeutic use in muscle diseases including sarcopenia. However, the pathophysiological mechanisms underlying this muscle syndrome and its relationship with plasma level of androgens are not completely understood. This review discusses the recent findings regarding sarcopenia, the intrinsic, and extrinsic mechanisms involved in the onset and progression of this disease and the treatment approaches that have been developed based on testosterone deficiency and their implications.
Collapse
Affiliation(s)
- Carla Basualto-Alarcón
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Diego Varela
- Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Javier Duran
- Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Maass
- Facultad de Medicina, Departamento de Morfofunción, Universidad Diego Portales, Santiago, Chile
| | - Manuel Estrada
- Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
- *Correspondence: Manuel Estrada, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Independencia 1027, Santiago 8389100, Chile e-mail:
| |
Collapse
|
48
|
D'Souza DM, Al-Sajee D, Hawke TJ. Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol 2013; 4:379. [PMID: 24391596 PMCID: PMC3868943 DOI: 10.3389/fphys.2013.00379] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/04/2013] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is defined as a group of metabolic diseases that are associated with the presence of a hyperglycemic state due to impairments in insulin release and/or function. While the development of each form of diabetes (Type 1 or Type 2) drastically differs, resultant pathologies often overlap. In each diabetic condition, a failure to maintain healthy muscle is often observed, and is termed diabetic myopathy. This significant, but often overlooked, complication is believed to contribute to the progression of additional diabetic complications due to the vital importance of skeletal muscle for our physical and metabolic well-being. While studies have investigated the link between changes to skeletal muscle metabolic health following diabetes mellitus onset (particularly Type 2 diabetes mellitus), few have examined the negative impact of diabetes mellitus on the growth and reparative capacities of skeletal muscle that often coincides with disease development. Importantly, evidence is accumulating that the muscle progenitor cell population (particularly the muscle satellite cell population) is also negatively affected by the diabetic environment, and as such, likely contributes to the declining skeletal muscle health observed in diabetes mellitus. In this review, we summarize the current knowledge surrounding the influence of diabetes mellitus on skeletal muscle growth and repair, with a particular emphasis on the impact of diabetes mellitus on skeletal muscle progenitor cell populations.
Collapse
Affiliation(s)
- Donna M D'Souza
- Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| | - Dhuha Al-Sajee
- Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| |
Collapse
|
49
|
Muscle wasting in hemodialysis patients: new therapeutic strategies for resolving an old problem. ScientificWorldJournal 2013; 2013:643954. [PMID: 24382946 PMCID: PMC3870868 DOI: 10.1155/2013/643954] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/28/2013] [Indexed: 01/01/2023] Open
Abstract
Muscle wasting has long been recognized as a major clinical problem in hemodialysis (HD) patients. In addition to its impact on quality of life, muscle wasting has been proven to be associated with increased mortality rates. Identification of the molecular mechanisms underlying muscle wasting in HD patients provides opportunities to resolve this clinical problem. Several signaling pathways and humeral factors have been reported to be involved in the pathogenic mechanisms of muscle wasting in HD patients, including ubiquitin-proteasome system, caspase-3, insulin/insulin-like growth factor-1 (IGF-1) signaling, endogenous glucocorticoids, metabolic acidosis, inflammation, and sex hormones. Targeting the aforementioned crucial signaling and molecules to suppress protein degradation and augment muscle strength has been extensively investigated in HD patients. In addition to exercise training, administration of megestrol acetate has been proven to be effective in improving anorexia and muscle wasting in HD patients. Correction of metabolic acidosis through sodium bicarbonate supplements can decrease muscle protein degradation and hormone therapy with nandrolone decanoate has been reported to increase muscle mass. Although thiazolidinedione has been shown to improve insulin sensitivity, its role in the treatment of muscle wasting remains unclear. This review paper focuses on the molecular pathways and potential new therapeutic approaches to muscle wasting in HD patients.
Collapse
|
50
|
Kerksick CM, Roberts MD, Dalbo VJ, Kreider RB, Willoughby DS. Changes in skeletal muscle proteolytic gene expression after prophylactic supplementation of EGCG and NAC and eccentric damage. Food Chem Toxicol 2013; 61:47-52. [DOI: 10.1016/j.fct.2013.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/17/2013] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
|