1
|
Peng Z, Luo XY, Li X, Li Y, Wu Y, Tian Y, Pan B, Petrovic A, Kosanovic D, Schermuly RT, Ruppert C, Günther A, Zhang Z, Qiu C, Li Y, Pu J, Li X, Chen AF. Cathepsin L Promotes Pulmonary Hypertension via BMPR2/GSDME-Mediated Pyroptosis. Hypertension 2024; 81:2430-2443. [PMID: 39403807 DOI: 10.1161/hypertensionaha.124.22903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a fatal progressive disease characterized by pulmonary endothelial injury and occlusive pulmonary vascular remodeling. Lysosomal protease cathepsin L degrades essential molecules to participate in the human pathophysiological process. BMPR2 (bone morphogenetic protein type II receptor) deficiency, an important cause of PH, results from mutational inactivation or excessive lysosomal degradation and induces caspase-3-mediated cell death. Given recent evidence that pyroptosis, as a new form of programmed cell death, is induced by caspase-3-dependent GSDME (gasdermin E) cleavage, we hypothesized that cathepsin L might promote PH through BMPR2/caspase-3/GSDME axis-mediated pyroptosis. METHODS Cathepsin L expression was evaluated in the lungs and plasma of patients with pulmonary arterial hypertension. The role of cathepsin L in the progression of PH and vascular remodeling was assessed in vivo. Small interfering RNA, specific inhibitors, and lentiviruses were used to explore the mechanisms of cathepsin L on human pulmonary arterial endothelial cell dysfunction. RESULTS Cathepsin L expression is elevated in pulmonary artery endothelium from patients with idiopathic pulmonary arterial hypertension and experimental PH models. Genetic ablation of cathepsin L in PH rats relieved right ventricular systolic pressure, pulmonary vascular remodeling, and right ventricular hypertrophy, also restoring endothelial integrity. Mechanistically, cathepsin L promotes caspase-3/GSDME-mediated endothelial cell pyroptosis and represses BMPR2 signaling activity. Cathepsin L degrades BMPR2 via the lysosomal pathway, and restoring BMPR2 signaling prevents the pro-pyroptotic role of cathepsin L in PAECs and experimental PH models. CONCLUSIONS These results show for the first time that cathepsin L promotes the development of PH by degrading BMPR2 to induce caspase-3/GSDME-mediated endothelial pyroptosis.
Collapse
Affiliation(s)
- Zhouyangfan Peng
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital (Z.P., Yapei Li., Y.W., B.P., Z.Z., C.Q., Xiaohui Li, A.F.C.), Central South University, Changsha, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Science (Z.P., Y.W., B.P., C.Q., Xiaohui Li), Central South University, Changsha, China
| | - Xue-Yang Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital (XY. L, Xinyi Li, Y. T., A.F.C.), Shanghai Jiao Tong University School of Medicine, China
| | - Xinyi Li
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital (XY. L, Xinyi Li, Y. T., A.F.C.), Shanghai Jiao Tong University School of Medicine, China
| | - Yapei Li
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital (Z.P., Yapei Li., Y.W., B.P., Z.Z., C.Q., Xiaohui Li, A.F.C.), Central South University, Changsha, China
- Health Management Medicine Center, the Third Xiangya Hospital (Yapei Li., Ying Li.), Central South University, Changsha, China
| | - Yusi Wu
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital (Z.P., Yapei Li., Y.W., B.P., Z.Z., C.Q., Xiaohui Li, A.F.C.), Central South University, Changsha, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Science (Z.P., Y.W., B.P., C.Q., Xiaohui Li), Central South University, Changsha, China
| | - Yuyang Tian
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital (XY. L, Xinyi Li, Y. T., A.F.C.), Shanghai Jiao Tong University School of Medicine, China
| | - Bingjie Pan
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital (Z.P., Yapei Li., Y.W., B.P., Z.Z., C.Q., Xiaohui Li, A.F.C.), Central South University, Changsha, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Science (Z.P., Y.W., B.P., C.Q., Xiaohui Li), Central South University, Changsha, China
| | - Aleksandar Petrovic
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Germany (A.P., R.T.S., C.R., A.G.)
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Russia (D.K.)
| | - Ralph Theo Schermuly
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Germany (A.P., R.T.S., C.R., A.G.)
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Germany (A.P., R.T.S., C.R., A.G.)
| | - Andreas Günther
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Germany (A.P., R.T.S., C.R., A.G.)
| | - Zhen Zhang
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital (Z.P., Yapei Li., Y.W., B.P., Z.Z., C.Q., Xiaohui Li, A.F.C.), Central South University, Changsha, China
| | - Chengfeng Qiu
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital (Z.P., Yapei Li., Y.W., B.P., Z.Z., C.Q., Xiaohui Li, A.F.C.), Central South University, Changsha, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Science (Z.P., Y.W., B.P., C.Q., Xiaohui Li), Central South University, Changsha, China
| | - Ying Li
- Health Management Medicine Center, the Third Xiangya Hospital (Yapei Li., Ying Li.), Central South University, Changsha, China
| | - Jun Pu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital (J.P.), Shanghai Jiao Tong University School of Medicine, China
| | - Xiaohui Li
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital (Z.P., Yapei Li., Y.W., B.P., Z.Z., C.Q., Xiaohui Li, A.F.C.), Central South University, Changsha, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Science (Z.P., Y.W., B.P., C.Q., Xiaohui Li), Central South University, Changsha, China
| | - Alex F Chen
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital (Z.P., Yapei Li., Y.W., B.P., Z.Z., C.Q., Xiaohui Li, A.F.C.), Central South University, Changsha, China
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital (XY. L, Xinyi Li, Y. T., A.F.C.), Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
2
|
Cannea FB, Diana D, Rossino R, Padiglia A. ECPUB5 Polyubiquitin Gene in Euphorbia characias: Molecular Characterization and Seasonal Expression Analysis. Genes (Basel) 2024; 15:957. [PMID: 39062736 PMCID: PMC11275293 DOI: 10.3390/genes15070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The spurge Euphorbia characias is known for its latex, which is rich in antioxidant enzymes and anti-phytopathogen molecules. In this study, we identified a novel polyubiquitin protein in the latex and leaves, leading to the first molecular characterization of its coding gene and expressed protein in E. characias. Using consensus-degenerate hybrid oligonucleotide primers (CODEHOP) and rapid amplification of cDNA ends (5'/3'-RACE), we reconstructed the entire open reading frame (ORF) and noncoding regions. Our analysis revealed that the polyubiquitin gene encodes five tandemly repeated sequences, each coding for a ubiquitin monomer with amino acid variations in four of the five repeats. In silico studies have suggested functional differences among monomers. Gene expression peaked during the summer, correlating with high temperatures and suggesting a role in heat stress response. Western blotting confirmed the presence of polyubiquitin in the latex and leaf tissues, indicating active ubiquitination processes. These findings enhance our understanding of polyubiquitin's regulatory mechanisms and functions in E. characias, highlighting its unique structural and functional features.
Collapse
Affiliation(s)
- Faustina Barbara Cannea
- Biomedical Section, Department of Life and Environmental Sciences (DiSVA), Cittadella Universitaria di Monserrato, University of Cagliari, 09042 Cagliari, Italy;
| | - Daniela Diana
- Department of Medical Sciences and Public Health (DSMSP), AOU Presidio Microcitemico, University of Cagliari, 09121 Cagliari, Italy; (D.D.); (R.R.)
| | - Rossano Rossino
- Department of Medical Sciences and Public Health (DSMSP), AOU Presidio Microcitemico, University of Cagliari, 09121 Cagliari, Italy; (D.D.); (R.R.)
| | - Alessandra Padiglia
- Biomedical Section, Department of Life and Environmental Sciences (DiSVA), Cittadella Universitaria di Monserrato, University of Cagliari, 09042 Cagliari, Italy;
| |
Collapse
|
3
|
Franzka P, Mittag S, Chakraborty A, Huber O, Hübner CA. Ubiquitination contributes to the regulation of GDP-mannose pyrophosphorylase B activity. Front Mol Neurosci 2024; 17:1375297. [PMID: 38979475 PMCID: PMC11228364 DOI: 10.3389/fnmol.2024.1375297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024] Open
Abstract
GDP-mannose pyrophosphorylase B (GMPPB) loss-of-function is associated with muscular dystrophy and variable additional neurological symptoms. GMPPB facilitates the catalytic conversion of mannose-1-phosphate and GTP to GDP-mannose, which serves as a mannose donor for glycosylation. The activity of GMPPB is regulated by its non-catalytic paralogue GMPPA, which can bind GDP-mannose and interact with GMPPB, thereby acting as an allosteric feedback inhibitor of GMPPB. Using pulldown, immunoprecipitation, turnover experiments as well as immunolabeling and enzyme activity assays, we provide first direct evidence that GMPPB activity is regulated by ubiquitination. We further show that the E3 ubiquitin ligase TRIM67 interacts with GMPPB and that knockdown of TRM67 reduces ubiquitination of GMPPB, thus reflecting a candidate E3 ligase for the ubiquitination of GMPPB. While the inhibition of GMPPB ubiquitination decreases its enzymatic activity, its ubiquitination neither affects its interaction with GMPPA nor its turnover. Taken together, we show that the ubiquitination of GMPPB represents another level of regulation of GDP-mannose supply.
Collapse
Affiliation(s)
- Patricia Franzka
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Sonnhild Mittag
- Department of Biochemistry II, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Abhijnan Chakraborty
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Otmar Huber
- Department of Biochemistry II, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
4
|
Somin S, Kulasiri D, Samarasinghe S. Alleviating the unwanted effects of oxidative stress on Aβ clearance: a review of related concepts and strategies for the development of computational modelling. Transl Neurodegener 2023; 12:11. [PMID: 36907887 PMCID: PMC10009979 DOI: 10.1186/s40035-023-00344-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Treatment for Alzheimer's disease (AD) can be more effective in the early stages. Although we do not completely understand the aetiology of the early stages of AD, potential pathological factors (amyloid beta [Aβ] and tau) and other co-factors have been identified as causes of AD, which may indicate some of the mechanism at work in the early stages of AD. Today, one of the primary techniques used to help delay or prevent AD in the early stages involves alleviating the unwanted effects of oxidative stress on Aβ clearance. 4-Hydroxynonenal (HNE), a product of lipid peroxidation caused by oxidative stress, plays a key role in the adduction of the degrading proteases. This HNE employs a mechanism which decreases catalytic activity. This process ultimately impairs Aβ clearance. The degradation of HNE-modified proteins helps to alleviate the unwanted effects of oxidative stress. Having a clear understanding of the mechanisms associated with the degradation of the HNE-modified proteins is essential for the development of strategies and for alleviating the unwanted effects of oxidative stress. The strategies which could be employed to decrease the effects of oxidative stress include enhancing antioxidant activity, as well as the use of nanozymes and/or specific inhibitors. One area which shows promise in reducing oxidative stress is protein design. However, more research is needed to improve the effectiveness and accuracy of this technique. This paper discusses the interplay of potential pathological factors and AD. In particular, it focuses on the effect of oxidative stress on the expression of the Aβ-degrading proteases through adduction of the degrading proteases caused by HNE. The paper also elucidates other strategies that can be used to alleviate the unwanted effects of oxidative stress on Aβ clearance. To improve the effectiveness and accuracy of protein design, we explain the application of quantum mechanical/molecular mechanical approach.
Collapse
Affiliation(s)
- Sarawoot Somin
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand.,Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, 7647, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand. .,Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, 7647, New Zealand.
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand
| |
Collapse
|
5
|
Bose M, Sanders A, De C, Zhou R, Lala P, Shwartz S, Mitra B, Brouwer C, Mukherjee P. Targeting tumor-associated MUC1 overcomes anoikis-resistance in pancreatic cancer. Transl Res 2023; 253:41-56. [PMID: 36031050 DOI: 10.1016/j.trsl.2022.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 02/01/2023]
Abstract
The third leading cause of cancer-related deaths in the United States is pancreatic cancer, more than 95% of which is pancreatic ductal adenocarcinoma (PDA). The incidence rate of PDA nearly matches its mortality rate and the best treatment till date is surgical resection for which only 25% are eligible. Tumor recurrence and metastasis are the main causes of cancer-related mortality. MUC1 is a transmembrane glycoprotein expressed on most epithelial cells. It is overexpressed and aberrantly glycosylated in cancer and is known as tumor-associated MUC1 (tMUC1). More than 80% of PDAs express tMUC1. A monoclonal antibody called TAB004 has been developed specifically against human tMUC1 extracellular domain. We report that treatment with TAB004 significantly reduced the colony forming potential of multiple PDA cell lines while sparing normal pancreatic epithelial cell line. Binding of TAB004 to tMUC1 compromised desmosomal integrity, induced ER stress and anoikis in PDA cells. The mechanisms underlying TAB004's antitumor effects were found to be reduced activation of the EGFR-PI3K signaling pathway, and degradation of tMUC1, thereby reducing expression of its transcriptional targets, c-Src and c-Myc. This reduction in oncogenic signaling triggered anoikis as indicated by reduced expression of antiapoptotic proteins, PTRH2 and BCL2. TAB004 treatment slowed the growth of PDA xenograft compared to IgG control and enhanced survival of mice when combined with 5-FU. Since TAB004 significantly reduced colony forming potential and triggered anoikis in the PDA cells, we suggest that it could be used as a potential prophylactic agent to curb tumor relapse after surgery, prevent metastasis and help increase the efficacy of chemotherapeutic agents.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Alexa Sanders
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Chandrav De
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Priyanka Lala
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Sophia Shwartz
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Bhaskar Mitra
- Pacific Northwest National Laboratory, Richland, Washington
| | - Cory Brouwer
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina.
| |
Collapse
|
6
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Li E, Ajuwon KM. Mechanism of endocytic regulation of intestinal tight junction remodeling during nutrient starvation in jejunal IPEC-J2 cells. FASEB J 2021; 35:e21356. [PMID: 33484473 DOI: 10.1096/fj.202002098r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022]
Abstract
Intestinal epithelial cells are tightly bound by tight junction proteins (TJP) which are dynamic and sensitive to environmental stress. However, the role of the endocytic pathway in the regulation of TJP abundance and tight junction integrity during nutrient stress is poorly understood. Therefore, this study was conducted to investigate the regulation of TJP abundance during nutrient starvation and the role of the endocytic mechanism in this process. IPEC-J2 cells were subjected to nutrient starvation in Krebs-Ringer bicarbonate buffer (KRB) and abundance of TJP, an indication of tight junction remodeling, was characterized with RT-PCR, western blotting and immunofluorescence. Abundance of TJP was dynamically regulated by nutrient starvation. The protein levels of claudin-1, 3, and 4 were initially downregulated within the first 6 hours of starvation, and then, increased thereafter (P < .01). However, there was no change in occludin and ZO-1. Lysosome and proteasome inhibitors were used to determine the contribution of these protein degradation pathways to the TJP remodeling. Short-term starvation-induced degradation of claudin-1, 3, and 4 was found to be lysosome dependent. Specifically, the downregulation of claudin-3 and 4 was via a dynamin-dependent, but clathrin and caveolae independent, endocytic pathway and this downregulation was partly reversed by amino acids supplementation. Interestingly, the re-synthesis of TJP with prolonged starvation partly depended on proteasome function. Collectively, this study, for the first time, elucidated a major role for dynamin-dependent endocytosis of claudin-3 and 4 during nutrient stress in intestinal epithelial cells. Therefore, transient endocytosis inhibition may be a potential mechanism for preserving tight junction integrity and function in metabolic or pathological states such as inflammatory bowel disease that involves destruction of intestinal epithelial TJP.
Collapse
Affiliation(s)
- Enkai Li
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
8
|
Zhang H, Morgan TE, Forman HJ. Age-related alteration in HNE elimination enzymes. Arch Biochem Biophys 2021; 699:108749. [PMID: 33417945 DOI: 10.1016/j.abb.2020.108749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
4-hydroxynonenal (HNE, 4-hydroxy-2-nonenal) is a primary α,β-unsaturated aldehyde product of lipid peroxidation. The accumulation of HNE increases with aging and the mechanisms are mainly attributable to increased oxidative stress and decreased capacity of HNE elimination. In this review article, we summarize the studies on age-related change of HNE concentration and alteration of HNE metabolizing enzymes (GCL, GST, ALDHs, aldose reductase, and 20S-proteasome), and discuss potential mechanism of age-related decrease in HNE-elimination capacity by focusing on Nrf2 redox signaling.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, United States
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, United States
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, United States.
| |
Collapse
|
9
|
Ubiquitination-activating enzymes UBE1 and UBA6 regulate ubiquitination and expression of cardiac sodium channel Nav1.5. Biochem J 2020; 477:1683-1700. [PMID: 32315024 DOI: 10.1042/bcj20200138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022]
Abstract
Cardiac sodium channel Nav1.5 is associated with cardiac arrhythmias and heart failure. Protein ubiquitination is catalyzed by an E1-E2-E3 cascade of enzymes. However, the E1 enzyme catalyzing Nav1.5 ubiquitination is unknown. Here, we show that UBE1 and UBA6 are two E1 enzymes regulating Nav1.5 ubiquitination and expression. Western blot analysis and patch-clamping recordings showed that overexpression of UBE1 or UBA6 increased the ubiquitination of Nav1.5 and significantly reduced Nav1.5 expression and sodium current density, and knockdown of UBE1 or UBA6 expression significantly increased Nav1.5 expression and sodium current density in HEK293/Nav1.5 cells. Similar results were obtained in neonatal cardiomyocytes. Bioinformatic analysis predicted two ubiquitination sites at K590 and K591. Mutations of K590 and K591 to K590A and K591A abolished the effects of overexpression or knockdown of UBE1 or UBA6 on Nav1.5 expression and sodium current density. Western blot analysis showed that the effects of UBE1 or UBA6 overexpression on the ubiquitination and expression of Nav1.5 were abolished by knockdown of UBC9, a putative E2 enzyme reported for Nav1.5 ubiquitination by us. Interestingly, real-time RT-PCR analysis showed that the expression level of UBE1, but not UBA6, was significantly up-regulated in ventricular tissues from heart failure patients. These data establish UBE1 and UBA6 as the E1 enzymes involved in Nav1.5 ubiquitination, and suggest that UBE1 and UBA6 regulate ubiquitination of Nav1.5 through UBC9. Our study is the first to reveal the regulatory role of the UBE1 or UBA6 E1 enzyme in the ubiquitination of an ion channel and links UBE1 up-regulation to heart failure.
Collapse
|
10
|
Abstract
![]()
The biological responses to dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl
pharmacophore have been studied extensively. Despite their expected
general thiol reactivity, these compounds display considerable degrees
of tumor cell selectivity. Here we review in vitro and preclinical studies of dienone compounds including b-AP15, VLX1570,
RA-9, RA-190, EF24, HO-3867, and MCB-613. A common property of these
compounds is their targeting of the ubiquitin–proteasome system
(UPS), known to be essential for the viability of tumor cells. Gene
expression profiling experiments have shown induction of responses
characteristic of UPS inhibition, and experiments using cellular reporter
proteins have shown that proteasome inhibition is associated with
cell death. Other mechanisms of action such as reactivation of mutant
p53, stimulation of steroid receptor coactivators, and induction of
protein cross-linking have also been described. Although unsuitable
as biological probes due to widespread reactivity, dienone compounds
are cytotoxic to apoptosis-resistant tumor cells and show activity
in animal tumor models.
Collapse
Affiliation(s)
- Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stig Linder
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-58183 Linköping, Sweden.,Department of Oncology and Pathology, Karolinska Institute, SE-17176 Stockholm, Sweden
| |
Collapse
|
11
|
Gibb Z, Griffin RA, Aitken RJ, De Iuliis GN. Functions and effects of reactive oxygen species in male fertility. Anim Reprod Sci 2020; 220:106456. [DOI: 10.1016/j.anireprosci.2020.106456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
|
12
|
Zhang H, Lyn N, Haghani A, Forman HJ. Detection of HNE Modification of Proteins in Aging Mouse Tissues: A Western Blot-Based Approach. Methods Mol Biol 2020; 2144:237-244. [PMID: 32410040 DOI: 10.1007/978-1-0716-0592-9_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
4-Hydroxenonenal (HNE) is one of the major α,β-unsaturated aldehyde products of lipid peroxidation. HNE can form conjugates with macromolecules, including protein, and thereby alter their function. HNE and its conjugation with proteins are increased in aging and age-related diseases. To elucidate how HNE is involved in these aging-related pathophysiological changes, it is necessary to assess HNE modification of proteins. Here a simple and convenient Western-blot based method is presented to detect HNE modification of proteins in tissues of aging mice.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Natalie Lyn
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Pacifici F, Della Morte D, Capuani B, Pastore D, Bellia A, Sbraccia P, Di Daniele N, Lauro R, Lauro D. Peroxiredoxin6, a Multitask Antioxidant Enzyme Involved in the Pathophysiology of Chronic Noncommunicable Diseases. Antioxid Redox Signal 2019; 30:399-414. [PMID: 29160110 DOI: 10.1089/ars.2017.7427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Chronic noncommunicable diseases (NCDs) are the leading causes of disability and death worldwide. NCDs mainly comprise diabetes mellitus, cardiovascular diseases, chronic obstructive pulmonary disease, cancer, and neurological degenerative diseases, which kill more than 80% of population, especially the elderly, worldwide. Recent Advances: Several recent theories established NCDs as multifactorial diseases, where a combination of genetic, epigenetic, and environmental factors contributes to their pathogenesis. Nevertheless, recent findings suggest that the common factor linking all these pathologies is an increase in oxidative stress and the age-related loss of the antioxidant mechanisms of defense against it. Impairment in mitochondrial homeostasis with consequent deregulation in oxidative stress balance has also been suggested. CRITICAL ISSUES Therefore, antioxidant proteins deserve particular attention for their potential role against NCDs. In particular, peroxiredoxin(Prdx)6 is a unique antioxidant enzyme, belonging to the Prdx family, with double properties, peroxidase and phospholipase activities. Through these activities, Prdx6 has been shown to be a powerful antioxidant enzyme, implicated in the pathogenesis of different NCDs. Recently, we described a phenotype of diabetes mellitus in Prdx6 knockout mice, suggesting a pivotal role of Prdx6 in the pathogenesis of cardiometabolic diseases. FUTURE DIRECTIONS Increasing awareness on the role of antioxidant defenses in the pathogenesis of NCDs may open novel therapeutic approaches to reduce the burden of this pandemic phenomenon. However, knowledge of the role of Prdx6 in NCD prevention and pathogenesis is still not clarified.
Collapse
Affiliation(s)
- Francesca Pacifici
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - David Della Morte
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 2 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
| | - Barbara Capuani
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Donatella Pastore
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Alfonso Bellia
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Paolo Sbraccia
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Nicola Di Daniele
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Renato Lauro
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Davide Lauro
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| |
Collapse
|
14
|
Bromfield EG, Aitken RJ, McLaughlin EA, Nixon B. Proteolytic degradation of heat shock protein A2 occurs in response to oxidative stress in male germ cells of the mouse. Mol Hum Reprod 2018; 23:91-105. [PMID: 27932549 DOI: 10.1093/molehr/gaw074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/20/2016] [Indexed: 12/23/2022] Open
Abstract
STUDY QUESTION Does oxidative stress compromise the protein expression of heat shock protein A2 (HSPA2) in the developing germ cells of the mouse testis? SUMMARY ANSWER Oxidative stress leads to the modification of HSPA2 by the lipid aldehyde 4-hydroxynonenal (4HNE) and initiates its degradation via the ubiquitin-proteasome system. WHAT IS KNOWN ALREADY Previous work has revealed a deficiency in HSPA2 protein expression within the spermatozoa of infertile men that have failed fertilization in a clinical setting. While the biological basis of this reduction in HSPA2 remains to be established, we have recently shown that the HSPA2 expressed in the spermatozoa of normozoospermic individuals is highly susceptible to adduction, a form of post-translational modification, by the lipid aldehyde 4HNE that has been causally linked to the degradation of its substrates. This modification of HSPA2 by 4HNE adduction dramatically reduced human sperm-egg interaction in vitro. Moreover, studies in a mouse model offer compelling evidence that the co-chaperone BCL2-associated athanogene 6 (BAG6) plays a key role in regulating the stability of HSPA2 in the testis, by preventing its ubiquitination and subsequent proteolytic degradation. STUDY DESIGN, SIZE, DURATION Dose-dependent studies were used to establish a 4HNE-treatment regime for primary culture(s) of male mouse germ cells. The influence of 4HNE on HSPA2 protein stability was subsequently assessed in treated germ cells. Additionally, sperm lysates from infertile patients with established zona pellucida recognition defects were examined for the presence of 4HNE and ubiquitin adducts. A minimum of three biological replicates were performed to test statistical significance. PARTICIPANTS/MATERIALS, SETTING, METHODS Oxidative stress was induced in pachytene spermatocytes and round spermatids isolated from the mouse testis, as well as a GC-2 cell line, using 50-200 µM 4HNE or hydrogen peroxide (H2O2), and the expression of HSPA2 was monitored via immunocytochemistry and immunoblotting approaches. Using the GC-2 cell line as a model, the ubiquitination and degradation of HSPA2 was assessed using immunoprecipitation techniques and pharmacological inhibition of proteasomal and lysosomal degradation pathways. Finally, the interaction between BAG6 and HSPA2 was examined in response to 4HNE exposure via proximity ligation assays. MAIN RESULTS AND THE ROLE OF CHANCE HSPA2 protein levels were significantly reduced compared with controls after 4HNE treatment of round spermatids (P < 0.01) and GC-2 cells (P < 0.001) but not pachytene spermatocytes. Using GC-2 cells as a model, HSPA2 was shown to be both adducted by 4HNE and targeted for ubiquitination in response to cellular oxidative stress. Inhibition of the proteasome with MG132 prevented HSPA2 degradation after 4HNE treatment indicating that the degradation of HSPA2 is likely to occur via a proteasomal pathway. Moreover, our assessment of proteasome activity provided evidence that 4HNE treatment can significantly increase the proteasome activity of GC-2 cells (P < 0.05 versus control). Finally, 4HNE exposure to GC-2 cells resulted in the dissociation of HSPA2 from its regulatory co-chaperone BAG6, a key mediator of HSPA2 stability in male germ cells. LIMITATIONS, REASONS FOR CAUTION While these experiments were performed using a mouse germ cell-model system, our analyses of patient sperm lysate imply that these mechanisms are conserved between mouse and human germ cells. WIDER IMPLICATIONS OF THE FINDINGS This study suggests a causative link between non-enzymatic post-translational modifications and the relative levels of HSPA2 in the spermatozoa of a specific sub-class of infertile males. In doing so, this work enhances our understanding of failed sperm-egg recognition and may assist in the development of targeted antioxidant-based approaches for ameliorating the production of cytotoxic lipid aldehydes in the testis in an attempt to prevent this form of infertility. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Health and Medical Research Council of Australia (APP1101953). The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
15
|
Lee S, Oh ST, Jeong HJ, Pak SC, Park HJ, Kim J, Cho HS, Jeon S. MPTP-induced vulnerability of dopamine neurons in A53T α-synuclein overexpressed mice with the potential involvement of DJ-1 downregulation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:625-632. [PMID: 29200905 PMCID: PMC5709479 DOI: 10.4196/kjpp.2017.21.6.625] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 11/15/2022]
Abstract
Familial Parkinson's disease (PD) has been linked to point mutations and duplication of the α-synuclein (α-syn) gene. Mutant α-syn expression increases the vulnerability of neurons to exogenous insults. In this study, we developed a new PD model in the transgenic mice expressing mutant hemizygous (hemi) or homozygous (homo) A53T α-synuclein (α-syn Tg) and their wildtype (WT) littermates by treatment with sub-toxic (10 mg/kg, i.p., daily for 5 days) or toxic (30 mg/kg, i.p., daily for 5 days) dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Tyrosine hydroxylase and Bcl-2 levels were reduced in the α-syn Tg but not WT mice by sub-toxic MPTP injection. In the adhesive removal test, time to remove paper was significantly increased only in the homo α-syn Tg mice. In the challenging beam test, the hemi and homo α-syn Tg mice spent significantly longer time to traverse as compared to that of WT group. In order to find out responsible proteins related with vulnerability of mutant α-syn expressed neurons, DJ-1 and ubiquitin enzyme expressions were examined. In the SN, DJ-1 and ubiquitin conjugating enzyme, UBE2N, levels were significantly decreased in the α-syn Tg mice. Moreover, A53T α-syn overexpression decreased DJ-1 expression in SH-SY5Y cells. These findings suggest that the vulnerability to oxidative injury such as MPTP of A53T α-syn mice can be explained by downregulation of DJ-1.
Collapse
Affiliation(s)
- Seongmi Lee
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea
| | - Seung Tack Oh
- Research Institute, Dongkwang Pharmaceutical Company, Ltd., Seoul 04535, Korea
| | - Ha Jin Jeong
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju 61469, Korea
| | - Sok Cheon Pak
- School of Biomedical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Hi-Joon Park
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.,Studies of Translational Acupuncture Research (STAR), Acupuncture & Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul 02447, Korea
| | - Jongpil Kim
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea
| | - Hyun-Seok Cho
- Department of Acupuncture and Moxibustion, Dongguk University of Korea Medicine, Dongguk University Bundang Korean Medical Hospital, Seongnam 13601, Korea
| | - Songhee Jeon
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju 61469, Korea
| |
Collapse
|
16
|
Castro JP, Jung T, Grune T, Siems W. 4-Hydroxynonenal (HNE) modified proteins in metabolic diseases. Free Radic Biol Med 2017; 111:309-315. [PMID: 27815191 DOI: 10.1016/j.freeradbiomed.2016.10.497] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
4-Hydroxynonenal (HNE) is one of the quantitatively most important products of lipid peroxidation. Due to its high toxicity it is quickly metabolized, however, a small share of HNE avoids enzymatic detoxification and reacts with biomolecules including proteins. The formation of HNE-protein-adducts is one of the accompanying processes in oxidative stress or redox disbalance. The modification of proteins might occur at several amino acids side chains, leading to a variety of products and having effects on the protein function and fate. This review summarizes current knowledge on the formation of HNE-modified proteins, their fate in mammalian cells and their potential role as a damaging agents during oxidative stress. Furthermore, the potential of HNE-modified proteins as biomarkers for several diseases are highlighted.
Collapse
Affiliation(s)
- José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Institute for Innovation and Health Research (I3S), Aging and Stress Group, R. Alfredo Allen, 4200-135 Porto, Portugal
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct - Competence Cluster for Nutritional Sciences Berlin-Potsdam, Germany.
| | - Werner Siems
- Institute of Physiotherapy and Gerontology of Kortexmed, 38667 Bad Harzburg, Germany; University of Salzburg, Institute of Biology, Department of Cellular Physiology, A-5020 Salzburg, Austria
| |
Collapse
|
17
|
Bromfield EG, Mihalas BP, Dun MD, Aitken RJ, McLaughlin EA, Walters JL, Nixon B. Inhibition of arachidonate 15-lipoxygenase prevents 4-hydroxynonenal-induced protein damage in male germ cells†. Biol Reprod 2017; 96:598-609. [DOI: 10.1093/biolre/iox005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
|
18
|
Grasso G, Axelsen PH. Effects of covalent modification by 4-hydroxy-2-nonenal on the noncovalent oligomerization of ubiquitin. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:36-42. [PMID: 27862610 PMCID: PMC5360464 DOI: 10.1002/jms.3897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
When lipid membranes containing ω-6 polyunsaturated fatty acyl chains are subjected to oxidative stress, one of the reaction products is 4-hydroxy-2-nonenal (HNE)-a chemically reactive short chain alkenal that can covalently modify proteins. The ubiquitin proteasome system is involved in the clearing of proteins modified by oxidation products such as HNE, but the chemical structure, stability and function of ubiquitin may be impaired by HNE modification. To evaluate this possibility, the susceptibility of ubiquitin to modification by HNE has been characterized over a range of concentrations where ubiquitin forms non-covalent oligomers. Results indicate that HNE modifies ubiquitin at only two of the many possible sites, and that HNE modification at these two sites alters the ubiquitin oligomerization equilibrium. These results suggest that any role ubiquitin may have in clearing proteins damaged by oxidative stress may itself be impaired by oxidative lipid degradation products. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Giuseppe Grasso
- University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Paul H Axelsen
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
19
|
Heat Shock Protein A2 (HSPA2): Regulatory Roles in Germ Cell Development and Sperm Function. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 222:67-93. [PMID: 28389751 DOI: 10.1007/978-3-319-51409-3_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among the numerous families of heat shock protein (HSP) that have been implicated in the regulation of reproductive system development and function, those belonging to the 70 kDa HSP family have emerged as being indispensable for male fertility. In particular, the testis-enriched heat shock 70 kDa protein 2 (HSPA2) has been shown to be critical for the progression of germ cell differentiation during spermatogenesis in the mouse model. Beyond this developmentally important window, mounting evidence has also implicated HSPA2 in the functional transformation of the human sperm cell during their ascent of the female reproductive tract. Specifically, HSPA2 appears to coordinate the remodelling of specialised sperm domains overlying the anterior region of the sperm head compatible with their principle role in oocyte recognition. The fact that levels of the HSPA2 protein in mature spermatozoa tightly correlate with the efficacy of oocyte binding highlight its utility as a powerful prognostic biomarker of male fertility. In this chapter, we consider the unique structural and biochemical characteristics of HSPA2 that enable this heat shock protein to fulfil its prominent roles in orchestrating the morphological differentiation of male germ cells during spermatogenesis as well as their functional transformation during post-testicular sperm maturation.
Collapse
|
20
|
Honokiol induces proteasomal degradation of AML1-ETO oncoprotein via increasing ubiquitin conjugase UbcH8 expression in leukemia. Biochem Pharmacol 2016; 128:12-25. [PMID: 28043811 DOI: 10.1016/j.bcp.2016.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/28/2016] [Indexed: 01/09/2023]
Abstract
AML1-ETO is the most common oncoprotein leading to acute myeloid leukemia (AML), in which 5-year survival rate is only about 30%. However, currently there are no specific therapies for AML patients with AML1-ETO. Here, we report that AML1-ETO protein is rapidly degraded by Honokiol (HNK), a natural phenolic compound isolated from the plant Magnolia officinalis. HNK induced the degradation of AML1-ETO in a concentration- and time-dependent manner in leukemic cell lines and primary AML blasts with t(8;21) translocation. Mechanistically, HNK obviously increased the expression of UbcH8, an E2-conjugase for the degradation of AML1-ETO, through triggering accumulation of acetylated histones in the promoter region of UbcH8. Knockdown of UbcH8 by small hairpin RNAs (shRNAs) prevented HNK-induced degradation of AML-ETO, suggesting that UbcH8 plays a critical role in the degradation of AML1-ETO. HNK inhibited cell proliferation and induced apoptotic death without activation of caspase-3, which was reported to cleave and degrade AML1-ETO protein. Thus, HNK-induced degradation of AML1-ETO is independent of activation of caspase-3. Finally, HNK reduced the angiogenesis and migration in Kasumi-1-injected zebrafish, decreased xenograft tumor size in a xenograft leukemia mouse model, and prolonged the survival time in mouse C1498 AML model. Collectively, HNK might be a potential treatment for t(8;21) leukemia by targeting AML1-ETO oncoprotein.
Collapse
|
21
|
Zhang H, Forman HJ. Signaling by 4-hydroxy-2-nonenal: Exposure protocols, target selectivity and degradation. Arch Biochem Biophys 2016; 617:145-154. [PMID: 27840096 DOI: 10.1016/j.abb.2016.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/20/2016] [Accepted: 11/09/2016] [Indexed: 01/26/2023]
Abstract
4-hydroxy-2-nonenal (HNE), a major non-saturated aldehyde product of lipid peroxidation, has been extensively studied as a signaling messenger. In these studies a wide range of HNE concentrations have been used, ranging from the unstressed plasma concentration to far beyond what would be found in actual pathophysiological condition. In addition, accumulating evidence suggest that signaling protein modification by HNE is specific with only those proteins with cysteine, histidine, and lysine residues located in certain sequence or environments adducted by HNE. HNE-signaling is further regulated through the turnover of HNE-signaling protein adducts through proteolytic process that involve proteasomes, lysosomes and autophagy. This review discusses the HNE concentrations and exposure modes used in signaling studies, the selectivity of the HNE-adduction site, and the turnover of signaling protein adducts.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA.
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
22
|
Subnormothermic Perfusion in the Isolated Rat Liver Preserves the Antioxidant Glutathione and Enhances the Function of the Ubiquitin Proteasome System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9324692. [PMID: 27800122 PMCID: PMC5075307 DOI: 10.1155/2016/9324692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022]
Abstract
The reduction of oxidative stress is suggested to be one of the main mechanisms to explain the benefits of subnormothermic perfusion against ischemic liver damage. In this study we investigated the early cellular mechanisms induced in isolated rat livers after 15 min perfusion at temperatures ranging from normothermia (37°C) to subnormothermia (26°C and 22°C). Subnormothermic perfusion was found to maintain hepatic viability. Perfusion at 22°C raised reduced glutathione levels and the activity of glutathione reductase; however, lipid and protein oxidation still occurred as determined by malondialdehyde, 4-hydroxynonenal-protein adducts, and advanced oxidation protein products. In livers perfused at 22°C the lysosomal and ubiquitin proteasome system (UPS) were both activated. The 26S chymotrypsin-like (β5) proteasome activity was significantly increased in the 26°C (46%) and 22°C (42%) groups. The increased proteasome activity may be due to increased Rpt6 Ser120 phosphorylation, which is known to enhance 26S proteasome activity. Together, our results indicate that the early events produced by subnormothermic perfusion in the liver can induce oxidative stress concomitantly with antioxidant glutathione preservation and enhanced function of the lysosomal and UPS systems. Thus, a brief hypothermia could trigger antioxidant mechanisms and may be functioning as a preconditioning stimulus.
Collapse
|
23
|
Smith N, Wei W, Zhao M, Qin X, Seravalli J, Kim H, Lee J. Cadmium and Secondary Structure-dependent Function of a Degron in the Pca1p Cadmium Exporter. J Biol Chem 2016; 291:12420-31. [PMID: 27059957 DOI: 10.1074/jbc.m116.724930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/06/2022] Open
Abstract
Protein turnover is a critical cellular process regulating biochemical pathways and destroying terminally misfolded or damaged proteins. Pca1p, a cadmium exporter in the yeast Saccharomyces cerevisiae, is rapidly degraded by the endoplasmic reticulum-associated degradation (ERAD) system via a cis-acting degron that exists at the 250-350 amino acid region of Pca1p and is transferable to other proteins to serve as a degradation signal. Cadmium stabilizes Pca1p in a manner dependent on the degron. This suggested that cadmium-mediated masking of the degron impedes its interaction with the molecular factors involved in the ERAD. The characteristics and mechanisms of action of the degron in Pca1p and most of those in other proteins however remain to be determined. The results presented here indicate that specific cysteine residues in a degron of Pca1p sense cadmium. An unbiased approach selecting non-functional degrons indicated a critical role of hydrophobic amino acids in the degron for its function. A secondary structure modeling predicted the formation of an amphipathic helix. Site-directed mutagenesis confirmed the functional significance of the hydrophobic patch. Last, hydrophobic amino acids in the degron- and cadmium-binding region affected the interaction of Pca1p with the Ssa1p molecular chaperone, which is involved in ERAD. These results reveal the mechanism of action of the degron, which might be useful for the identification and characterization of other degrons.
Collapse
Affiliation(s)
- Nathan Smith
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Wenzhong Wei
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Miaoyun Zhao
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Xiaojuan Qin
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and the College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Javier Seravalli
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Heejeong Kim
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Jaekwon Lee
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| |
Collapse
|
24
|
Abstract
The α,β polyunsaturated lipid aldehydes are potent lipid electrophiles that covalently modify lipids, proteins, and nucleic acids. Recent work highlights the critical role these lipids play under both physiological and pathological conditions. Protein carbonylation resulting from nucleophilic attack of lysine, histidine, and cysteine residues is a major outcome of oxidative stress and functions as a redox-sensitive signaling mechanism with roles in autophagy, cell proliferation, transcriptional control, and apoptosis. In addition, protein carbonylation is implicated as an initiating factor in mitochondrial dysfunction and endoplasmic reticulum stress, providing a mechanistic connection between oxidative stress and metabolic disease. In this review, we discuss the generation and metabolism of reactive lipid aldehydes, as well as their signaling roles.
Collapse
Affiliation(s)
- Amy K Hauck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455
| |
Collapse
|
25
|
Nixon B, Bromfield EG, Dun MD, Redgrove KA, McLaughlin EA, Aitken RJ. The role of the molecular chaperone heat shock protein A2 (HSPA2) in regulating human sperm-egg recognition. Asian J Androl 2016; 17:568-73. [PMID: 25865850 PMCID: PMC4492046 DOI: 10.4103/1008-682x.151395] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
One of the most common lesions present in the spermatozoa of human infertility patients is an idiopathic failure of sperm-egg recognition. Although this unique cellular interaction can now be readily by-passed by assisted reproductive strategies such as intracytoplasmic sperm injection (ICSI), recent large-scale epidemiological studies have encouraged the cautious use of this technology and highlighted the need for further research into the mechanisms responsible for defective sperm-egg recognition. Previous work in this field has established that the sperm domains responsible for oocyte interaction are formed during spermatogenesis prior to being dynamically modified during epididymal maturation and capacitation in female reproductive tract. While the factors responsible for the regulation of these sequential maturational events are undoubtedly complex, emerging research has identified the molecular chaperone, heat shock protein A2 (HSPA2), as a key regulator of these events in human spermatozoa. HSPA2 is a testis-enriched member of the 70 kDa heat shock protein family that promotes the folding, transport, and assembly of protein complexes and has been positively correlated with in vitro fertilization (IVF) success. Furthermore, reduced expression of HSPA2 from the human sperm proteome leads to an impaired capacity for cumulus matrix dispersal, sperm-egg recognition and fertilization following both IVF and ICSI. In this review, we consider the evidence supporting the role of HSPA2 in sperm function and explore the potential mechanisms by which it is depleted in the spermatozoa of infertile patients. Such information offers novel insights into the molecular mechanisms governing sperm function.
Collapse
Affiliation(s)
- Brett Nixon
- Priority Research Centre in Reproductive Science; Priority Research Centre in Chemical Biology, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Navarro-Yepes J, Anandhan A, Bradley E, Bohovych I, Yarabe B, de Jong A, Ovaa H, Zhou Y, Khalimonchuk O, Quintanilla-Vega B, Franco R. Inhibition of Protein Ubiquitination by Paraquat and 1-Methyl-4-Phenylpyridinium Impairs Ubiquitin-Dependent Protein Degradation Pathways. Mol Neurobiol 2015; 53:5229-51. [PMID: 26409479 DOI: 10.1007/s12035-015-9414-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 09/01/2015] [Indexed: 12/21/2022]
Abstract
Intracytoplasmic inclusions of protein aggregates in dopaminergic cells (Lewy bodies) are the pathological hallmark of Parkinson's disease (PD). Ubiquitin (Ub), alpha (α)-synuclein, p62/sequestosome 1, and oxidized proteins are the major components of Lewy bodies. However, the mechanisms involved in the impairment of misfolded/oxidized protein degradation pathways in PD are still unclear. PD is linked to mitochondrial dysfunction and environmental pesticide exposure. In this work, we evaluated the effects of the pesticide paraquat (PQ) and the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP(+)) on Ub-dependent protein degradation pathways. No increase in the accumulation of Ub-bound proteins or aggregates was observed in dopaminergic cells (SK-N-SH) treated with PQ or MPP(+), or in mice chronically exposed to PQ. PQ decreased Ub protein content, but not its mRNA transcription. Protein synthesis inhibition with cycloheximide depleted Ub levels and potentiated PQ-induced cell death. The inhibition of proteasomal activity by PQ was found to be a late event in cell death progression and had neither effect on the toxicity of either MPP(+) or PQ, nor on the accumulation of oxidized sulfenylated, sulfonylated (DJ-1/PARK7 and peroxiredoxins), and carbonylated proteins induced by PQ. PQ- and MPP(+)-induced Ub protein depletion prompted the dimerization/inactivation of the Ub-binding protein p62 that regulates the clearance of ubiquitinated proteins by autophagy. We confirmed that PQ and MPP(+) impaired autophagy flux and that the blockage of autophagy by the overexpression of a dominant-negative form of the autophagy protein 5 (dnAtg5) stimulated their toxicity, but there was no additional effect upon inhibition of the proteasome. PQ induced an increase in the accumulation of α-synuclein in dopaminergic cells and membrane-associated foci in yeast cells. Our results demonstrate that the inhibition of protein ubiquitination by PQ and MPP(+) is involved in the dysfunction of Ub-dependent protein degradation pathways.
Collapse
Affiliation(s)
- Juliana Navarro-Yepes
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 114 VBS 0905, Lincoln, NE, 68583, USA.,Department of Toxicology, CINVESTAV-IPN, IPN No. 2508, Colonia Zacatenco, Mexico City, D.F., 07360, Mexico
| | - Annadurai Anandhan
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 114 VBS 0905, Lincoln, NE, 68583, USA
| | - Erin Bradley
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Iryna Bohovych
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bo Yarabe
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Annemieke de Jong
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - You Zhou
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Oleh Khalimonchuk
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Betzabet Quintanilla-Vega
- Department of Toxicology, CINVESTAV-IPN, IPN No. 2508, Colonia Zacatenco, Mexico City, D.F., 07360, Mexico.
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA. .,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 114 VBS 0905, Lincoln, NE, 68583, USA.
| |
Collapse
|
27
|
Turnover Rate of NS3 Proteins Modulates Bluetongue Virus Replication Kinetics in a Host-Specific Manner. J Virol 2015; 89:10467-81. [PMID: 26246581 DOI: 10.1128/jvi.01541-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Bluetongue virus (BTV) is an arbovirus transmitted to livestock by midges of the Culicoides family and is the etiological agent of a hemorrhagic disease in sheep and other ruminants. In mammalian cells, BTV particles are released primarily by virus-induced cell lysis, while in insect cells they bud from the plasma membrane and establish a persistent infection. BTV possesses a ten-segmented double-stranded RNA genome, and NS3 proteins are encoded by segment 10 (Seg-10). The viral nonstructural protein 3 (NS3) plays a key role in mediating BTV egress as well as in impeding the in vitro synthesis of type I interferon in mammalian cells. In this study, we asked whether genetically distant NS3 proteins can alter BTV-host interactions. Using a reverse genetics approach, we showed that, depending on the NS3 considered, BTV replication kinetics varied in mammals but not in insects. In particular, one of the NS3 proteins analyzed harbored a proline at position 24 that leads to its rapid intracellular decay in ovine but not in Culicoides cells and to the attenuation of BTV virulence in a mouse model of disease. Overall, our data reveal that the genetic variability of Seg-10/NS3 differentially modulates BTV replication kinetics in a host-specific manner and highlight the role of the host-specific variation in NS3 protein turnover rate. IMPORTANCE BTV is the causative agent of a severe disease transmitted between ruminants by biting midges of Culicoides species. NS3, encoded by Seg-10 of the BTV genome, fulfills key roles in BTV infection. As Seg-10 sequences from various BTV strains display genetic variability, we assessed the impact of different Seg-10 and NS3 proteins on BTV infection and host interactions. In this study, we revealed that various Seg-10/NS3 proteins alter BTV replication kinetics in mammals but not in insects. Notably, we found that NS3 protein turnover may vary in ovine but not in Culicoides cells due to a single amino acid residue that, most likely, leads to rapid and host-dependent protein degradation. Overall, this study highlights that genetically distant BTV Seg-10/NS3 influence BTV biological properties in a host-specific manner and increases our understanding of how NS3 proteins contribute to the outcome of BTV infection.
Collapse
|
28
|
Gilbane AJ, Derrett-Smith E, Trinder SL, Good RB, Pearce A, Denton CP, Holmes AM. Impaired Bone Morphogenetic Protein Receptor II Signaling in a Transforming Growth Factor-β–Dependent Mouse Model of Pulmonary Hypertension and in Systemic Sclerosis. Am J Respir Crit Care Med 2015; 191:665-77. [DOI: 10.1164/rccm.201408-1464oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
29
|
Pandya CD, Crider A, Pillai A. Glucocorticoid regulates parkin expression in mouse frontal cortex: implications in schizophrenia. Curr Neuropharmacol 2014; 12:100-7. [PMID: 24669205 PMCID: PMC3964742 DOI: 10.2174/1570159x11666131120224950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 09/12/2013] [Accepted: 11/02/2013] [Indexed: 12/19/2022] Open
Abstract
Stress and glucocorticoid hormones, which are released into the circulation following stressful experiences, have been shown to contribute significantly to the manifestation of various psychiatric illnesses including schizophrenia and depression. Studies in rodents have reported dose and time dependent effects of glucocorticoids on the expression of proteins related to neuroplasticity. However, the mechanism(s) involved in the regulation of proteins by glucocorticoids are not clear. Ubiquitin ligases play important role in degradation, trafficking and stabilization of proteins. The present study investigated the effect of glucocorticoid on ubiquitin-proteasome system in mouse frontal cortex. A significant increase in mRNA and protein levels of parkin, an E3 ubiquitin ligase was found in cultured mouse primary cortical neurons following corticosterone treatment. An increase in parkin levels was also found in mouse frontal cortex in vivo following acute dexamethasone treatment. However, chronic treatment with corticosterone did not change parkin protein levels in mouse frontal cortex. Studies using postmortem brain samples from schizophrenia and control subjects indicated a significant increase in parkin protein levels in frontal cortex of schizophrenia subjects suggesting a response to increased stress conditions in schizophrenia. These findings suggest a possible role of parkin in the pathophysiology of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Chirayu D Pandya
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Amanda Crider
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
30
|
Jebali J, Chicano-Gálvez E, Fernández-Cisnal R, Banni M, Chouba L, Boussetta H, López-Barea J, Alhama J. Proteomic analysis in caged Mediterranean crab (Carcinus maenas) and chemical contaminant exposure in Téboulba Harbour, Tunisia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 100:15-26. [PMID: 24433786 DOI: 10.1016/j.ecoenv.2013.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 06/03/2023]
Abstract
This study uses proteomics approach to assess the toxic effects of contaminants in the Mediterranean crab (Carcinus maenas) after transplantation into Téboulba fishing harbour. High levels of aliphatic and aromatic hydrocarbons were detected in sediments. Although their effects on vertebrates are well described, little is known about their early biological effects in marine invertebrates under realistic conditions. Protein expression profiles of crabs caged for 15, 30 and 60 days were compared to unexposed animals. Nineteen proteins with significant expression differences were identified by capLC-µESI-IT MS/MS and homology search on databases. Differentially expressed proteins were assigned to five different categories of biological function including: (1) chitin catabolism, (2) proteolysis, (3) exoskeleton biosynthesis, (4) protein folding and stress response, and (5) transport. The proteins showing major expression changes in C. maenas after different caging times may be considered as novel molecular biomarkers for effectively biomonitoring aquatic environment contamination.
Collapse
Affiliation(s)
- Jamel Jebali
- Laboratory of Biochemical and Environmental Toxicology, Higher Institute of Agriculture, Chott-Mariem, 4042-Sousse, Tunisia.
| | - Eduardo Chicano-Gálvez
- Department of Biochemistry and Molecular Biology, University of Córdoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071-Córdoba, Spain; Maimonides Institute for Research in Biomedicine of Córdoba, Reina Sofía University Hospital, University of Córdoba, 14071-Córdoba, Spain
| | - Ricardo Fernández-Cisnal
- Department of Biochemistry and Molecular Biology, University of Córdoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071-Córdoba, Spain
| | - Mohamed Banni
- Laboratory of Biochemical and Environmental Toxicology, Higher Institute of Agriculture, Chott-Mariem, 4042-Sousse, Tunisia
| | - Lassaad Chouba
- Chemical Laboratory, Higher Institute of Marine Sciences and Technology, La Goulette Center, 2060 Tunis, Tunisia
| | - Hamadi Boussetta
- Laboratory of Biochemical and Environmental Toxicology, Higher Institute of Agriculture, Chott-Mariem, 4042-Sousse, Tunisia
| | - Juan López-Barea
- Department of Biochemistry and Molecular Biology, University of Córdoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071-Córdoba, Spain
| | - José Alhama
- Department of Biochemistry and Molecular Biology, University of Córdoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071-Córdoba, Spain
| |
Collapse
|
31
|
Aly HF, Rizk MZ, Abo-Elmatty DM, Desoky MM, Ibrahim NA, Younis EA. Therapeutic and protective effects of Caesalpinia gilliesii and Cajanus cajan proteins against acetaminophen overdose-induced renal damage. Toxicol Ind Health 2013; 32:753-68. [PMID: 24280655 DOI: 10.1177/0748233713509428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present work aims to evaluate the protective and ameliorative effects of two plant-derived proteins obtained from the seeds of Cajanus cajan and Caesalpinia gilliesii(Leguminosae) against the toxic effects of acetaminophen in kidney after chronic dose through determination of certain biochemical markers including total urea, creatinine, and kidney marker enzyme, that is, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In addition histopathological examination of intoxicated and treated kidney with both proteins was performed. The present results show a significant increase in serum total urea and creatinine, while significant decrease in GAPDH. Improvement in all biochemical parameters studied was demonstrated, which was documented by the amelioration signs in rats kidney architecture. Thus, both plant protein extracts can counteract the nephrotoxic process, minimize damage to the kidney, delay disease progression, and reduce its complications.
Collapse
Affiliation(s)
- Hanan F Aly
- Therapeutical Chemistry Department, National Research Center, Cairo, Egypt
| | - Maha Z Rizk
- Therapeutical Chemistry Department, National Research Center, Cairo, Egypt
| | - Dina M Abo-Elmatty
- Biochemistry Department, Faculty of Pharmacy, Suez Canal University, Ismaileya, Egypt
| | - M M Desoky
- Pharmacognosy Department, National Research Center, Cairo, Egypt
| | - N A Ibrahim
- Pharmacognosy Department, National Research Center, Cairo, Egypt
| | - Eman A Younis
- Therapeutical Chemistry Department, National Research Center, Cairo, Egypt
| |
Collapse
|
32
|
Simon A, Karbach S, Habermeier A, Closs EI. Decoding the substrate supply to human neuronal nitric oxide synthase. PLoS One 2013; 8:e67707. [PMID: 23874440 PMCID: PMC3706577 DOI: 10.1371/journal.pone.0067707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/21/2013] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide, produced by the neuronal nitric oxide synthase (nNOS) from L-arginine is an important second messenger molecule in the central nervous system: It influences the synthesis and release of neurotransmitters and plays an important role in long-term potentiation, long-term depression and neuroendocrine secretion. However, under certain pathological conditions such as Alzheimer’s or Parkinson’s disease, stroke and multiple sclerosis, excessive NO production can lead to tissue damage. It is thus desirable to control NO production in these situations. So far, little is known about the substrate supply to human nNOS as a determinant of its activity. Measuring bioactive NO via cGMP formation in reporter cells, we demonstrate here that nNOS in both, human A673 neuroepithelioma and TGW-nu-I neuroblastoma cells can be fast and efficiently nourished by extracellular arginine that enters the cells via membrane transporters (pool I that is freely exchangeable with the extracellular space). When this pool was depleted, NO synthesis was partially sustained by intracellular arginine sources not freely exchangeable with the extracellular space (pool II). Protein breakdown made up by far the largest part of pool II in both cell types. In contrast, citrulline to arginine conversion maintained NO synthesis only in TGW-nu-I neuroblastoma, but not A673 neuroepithelioma cells. Histidine mimicked the effect of protease inhibitors causing an almost complete nNOS inhibition in cells incubated additionally in lysine that depletes the exchangeable arginine pool. Our results identify new ways to modulate nNOS activity by modifying its substrate supply.
Collapse
Affiliation(s)
- Alexandra Simon
- Department of Pharmacology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Susanne Karbach
- Department of Pharmacology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Alice Habermeier
- Department of Pharmacology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Ellen I. Closs
- Department of Pharmacology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| |
Collapse
|
33
|
Bufalino MR, DeVeale B, van der Kooy D. The asymmetric segregation of damaged proteins is stem cell-type dependent. ACTA ACUST UNITED AC 2013; 201:523-30. [PMID: 23649805 PMCID: PMC3653353 DOI: 10.1083/jcb.201207052] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Asymmetric segregation of damaged proteins is detectable in three different adult tissue stem cells in Drosophila melanogaster but does not always favor segregation away from the stem cell. Asymmetric segregation of damaged proteins (DPs) during mitosis has been linked in yeast and bacteria to the protection of one cell from aging. Recent evidence suggests that stem cells may use a similar mechanism; however, to date there is no in vivo evidence demonstrating this effect in healthy adult stem cells. We report that stem cells in larval (neuroblast) and adult (female germline and intestinal stem cell) Drosophila melanogaster asymmetrically segregate DPs, such as proteins with the difficult-to-degrade and age-associated 2,4-hydroxynonenal (HNE) modification. Surprisingly, of the cells analyzed only the intestinal stem cell protects itself by segregating HNE to differentiating progeny, whereas the neuroblast and germline stem cells retain HNE during division. This led us to suggest that chronological life span, and not cell type, determines the amount of DPs a cell receives during division. Furthermore, we reveal a role for both niche-dependent and -independent mechanisms of asymmetric DP division.
Collapse
Affiliation(s)
- Mary Rose Bufalino
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| | | | | |
Collapse
|
34
|
Sun M, Ouzounian M, de Couto G, Chen M, Yan R, Fukuoka M, Li G, Moon M, Liu Y, Gramolini A, Wells GJ, Liu PP. Cathepsin-L ameliorates cardiac hypertrophy through activation of the autophagy-lysosomal dependent protein processing pathways. J Am Heart Assoc 2013; 2:e000191. [PMID: 23608608 PMCID: PMC3647266 DOI: 10.1161/jaha.113.000191] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Autophagy is critical in the maintenance of cellular protein quality control, the final step of which involves the fusion of autophagosomes with lysosomes. Cathepsin-L (CTSL) is a key member of the lysosomal protease family that is expressed in the murine and human heart, and it may play an important role in protein turnover. We hypothesized that CTSL is important in regulating protein processing in the heart, particularly under pathological stress. METHODS AND RESULTS Phenylephrine-induced cardiac hypertrophy in vitro was more pronounced in CTSL-deficient neonatal cardiomyocytes than in in controls. This was accompanied by a significant accumulation of autophagosomes, increased levels of ubiquitin-conjugated protein, as well as impaired protein degradation and decreased cell viability. These effects were partially rescued with CTSL1 replacement via adeno-associated virus-mediated gene transfer. In the in vivo murine model of aortic banding (AB), a deficiency in CTSL markedly exacerbated cardiac hypertrophy, worsened cardiac function, and increased mortality. Ctsl(-/-) AB mice demonstrated significantly decreased lysosomal activity and increased sarcomere-associated protein aggregation. Homeostasis of the endoplasmic reticulum was also altered by CTSL deficiency, with increases in Bip and GRP94 proteins, accompanied by increased ubiquitin-proteasome system activity and higher levels of ubiquitinated proteins in response to AB. These changes ultimately led to a decrease in cellular ATP production, enhanced oxidative stress, and increased cellular apoptosis. CONCLUSIONS Lysosomal CTSL attenuates cardiac hypertrophy and preserves cardiac function through facilitation of autophagy and proteasomal protein processing.
Collapse
Affiliation(s)
- Mei Sun
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Maral Ouzounian
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Geoffrey de Couto
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Manyin Chen
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Ran Yan
- McMaster University Medical School, Hamilton, Ontario, Canada (R.Y.)
| | - Masahiro Fukuoka
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Guohua Li
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Mark Moon
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Youan Liu
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Anthony Gramolini
- Department of Physiology, University of Toronto and University Health Network, Toronto, Ontario, Canada (A.G.)
| | - George J. Wells
- Department of Epidemiology and Statistics, University of Ottawa Heart Institute, Ottawa, Ontario, Canada (G.J.W.)
| | - Peter P. Liu
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada (P.P.L.)
- Correspondence to: Peter P. Liu, MD, University of Ottawa Heart Institute, Ottawa, Ontario, Canada. E‐mail:
| |
Collapse
|
35
|
CYP2E1-catalyzed alcohol metabolism: role of oxidant generation in interferon signaling, antigen presentation and autophagy. Subcell Biochem 2013; 67:177-97. [PMID: 23400922 DOI: 10.1007/978-94-007-5881-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1) is one of two major enzymes that catalyze ethanol oxidation in the liver. CYP2E1 is also unique because it is inducible, as its hepatic content rises after continuous (chronic) ethanol administration, thereby accelerating the rate of ethanol metabolism and affording greater tolerance to heavy alcohol consumption. However, the broad substrate specificity of CYP2E1 and its capacity to generate free radicals from alcohol and other hepatotoxins, places CYP2E1 as a central focus of not only liver toxicity, but also as an enzyme that regulates cytokine signaling, antigen presentation, and macromolecular degradation, all of which are crucial to liver cell function and viability. Here, we describe our own and other published work relevant to the importance of CYP2E1-catalyzed ethanol oxidation and how this catalysis affects the aforementioned cellular processes to produce liver injury.
Collapse
|
36
|
Baraibar MA, Friguet B. Oxidative proteome modifications target specific cellular pathways during oxidative stress, cellular senescence and aging. Exp Gerontol 2012; 48:620-5. [PMID: 23127722 DOI: 10.1016/j.exger.2012.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/02/2012] [Accepted: 10/18/2012] [Indexed: 11/29/2022]
Abstract
Oxidatively modified proteins build-up with age results, at least in part, from the increase of reactive oxygen species and other toxic compounds originating from both cellular metabolism and external factors. Experimental evidence has also indicated that failure of protein maintenance is a major contributor to the age-associated accumulation of damaged proteins. We have previously shown that oxidized proteins as well as proteins modified by lipid peroxidation and glycoxidation adducts are accumulating in senescent human WI-38 fibroblasts and reported that proteins targeted by these modifications are mainly involved in protein maintenance, energy metabolism and cytoskeleton. Alterations in the proteome of human muscle adult stem cells upon oxidative stress have also been recently analyzed. The carbonylated proteins identified were also found to be involved in key cellular functions, such as carbohydrate metabolism, protein maintenance, cellular motility and protein homeostasis. More recently, we have built a database of proteins modified by carbonylation, glycation and lipid peroxidation products during aging and age-related diseases, such as neurodegenerative diseases. Common pathways evidenced by enzymes involved in intermediate metabolism were found targeted by these modifications, although different tissues have been examined. These results underscore the implication of potential deleterious effects of protein irreversible oxidative modifications in key cellular pathways during aging and in the pathogenesis of age-related diseases.
Collapse
Affiliation(s)
- Martin A Baraibar
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-IFR83, Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, 75252 Paris Cedex 05, France
| | | |
Collapse
|
37
|
Liu Z, Taylor A, Liu Y, Wu M, Gong X, Shang F. Enhancement of ubiquitin conjugation activity reduces intracellular aggregation of V76D mutant γD-crystallin. Invest Ophthalmol Vis Sci 2012; 53:6655-65. [PMID: 22915036 PMCID: PMC3460391 DOI: 10.1167/iovs.12-9744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/19/2012] [Accepted: 08/16/2012] [Indexed: 01/11/2023] Open
Abstract
PURPOSE The ubiquitin-proteasome pathway (UPP) is an important protein quality control mechanism for selective degradation of abnormal proteins. The objective of this study was to test the hypothesis that enhancement of the UPP capacity could attenuate the accumulation and aggregation of misfolded proteins using V76D-γD-crystallin as a model substrate. METHODS Wild type (wt) and V76D mutant γD-crystallin were fused to red fluorescence protein (RFP) and expressed in human lens epithelial cells. The cellular distribution of the expressed proteins was compared by fluorescence microscopy. The solubility of wt- and V76D-γD-crystallin was determined by cellular fractionation and Western blotting. Wt-γD-RFP and V76D-γD-RFP were also cotransfected along with a ubiquitin ligase (CHIP) or a ubiquitin-conjugating enzyme (Ubc5) into cells. Levels of wt- and V76D-γD-crystallin, the percentage of transfected cells with aggregates, and aggregate size were quantified and compared among different groups. RESULTS Wt-γD-crystallin was evenly distributed in cells, whereas V76D-γD-crystallin formed intracellular aggregates. Eighty percent of wt-γD-crystallin was detected in the soluble fraction, whereas only 7% of V76D-γD-crystallin was soluble. CHIP or Ubc5 coexpression reduced the protein level of V76D-γD and concomitantly its aggregation in transfected cells; these effects could be attenuated by proteasome inhibitor. Mutant CHIP with defect TPR (tetratricopeptide repeat) or U-box domain failed to reduce levels of V76D-γD-crystallin. CONCLUSIONS Enhancing ubiquitin conjugation activity reduces accumulation and aggregation of V76D-γD-crystallin by promoting its degradation. Upregulation of ubiquitin-conjugating activity could be an effective strategy to maintain lens transparency by eliminating other forms of misfolded proteins.
Collapse
Affiliation(s)
- Zhenzhen Liu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; the
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and the
| | - Allen Taylor
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and the
| | - Yizhi Liu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; the
| | - Mingxing Wu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; the
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and the
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, California
| | - Fu Shang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; the
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and the
| |
Collapse
|
38
|
Shang F, Taylor A. Roles for the ubiquitin-proteasome pathway in protein quality control and signaling in the retina: implications in the pathogenesis of age-related macular degeneration. Mol Aspects Med 2012; 33:446-66. [PMID: 22521794 PMCID: PMC3417153 DOI: 10.1016/j.mam.2012.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
The accumulation of damaged or postsynthetically modified proteins and dysregulation of inflammatory responses and angiogenesis in the retina/RPE are thought be etiologically related to formation of drusen and choroidal neovascularization (CNV), hallmarks of age-related macular degeneration (AMD). The ubiquitin-proteasome pathway (UPP) plays crucial roles in protein quality control, cell cycle control and signal transduction. Selective degradation of aberrant proteins by the UPP is essential for timely removal of potentially cytotoxic damaged or otherwise abnormal proteins. Proper function of the UPP is thought to be required for cellular function. In contrast, age--or stress induced--impairment the UPP or insufficient UPP capacity may contribute to the accumulation of abnormal proteins, cytotoxicity in the retina, and AMD. Crucial roles for the UPP in eye development, regulation of signal transduction, and antioxidant responses are also established. Insufficient UPP capacity in retina and RPE can result in dysregulation of signal transduction, abnormal inflammatory responses and CNV. There are also interactions between the UPP and lysosomal proteolytic pathways (LPPs). Means that modulate the proteolytic capacity are making their way into new generation of pharmacotherapies for delaying age-related diseases and may augment the benefits of adequate nutrition, with regard to diminishing the burden of AMD.
Collapse
Affiliation(s)
- Fu Shang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Boston, MA 02111, USA.
| | | |
Collapse
|
39
|
Balestrieri ML, Dicitore A, Benevento R, Di Maio M, Santoriello A, Canonico S, Giordano A, Stiuso P. Interplay between membrane lipid peroxidation, transglutaminase activity, and cyclooxygenase 2 expression in the tissue adjoining to breast cancer. J Cell Physiol 2012; 227:1577-82. [PMID: 21678409 DOI: 10.1002/jcp.22874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Breast cancer, a leading cause of cancer related deaths worldwide, is one of the most common neoplasms in women. The increased generation of reactive oxygen species (ROS) in breast lesion is critically involved in the mutagenic processes that drive to breast carcinoma initiation and progression. To date, the molecular events occurring in the tissue adjoin the cancer lesion have not been elucidated. Here, we investigated the role of excess ROS generation during human breast carcinogenesis by evaluating oxidative stress biomarkers, tissue transglutaminase (t-TGase) activity, and expression levels of ubiquitin and cyclooxygenase-2 (COX-2) in the normal tissue adjoin to fibroadenoma (nFA), atypical ductal hyperplasia (nADH), and invasive ductal carcinoma (nIDC) from 45 breast cancer patients. We found that lipid peroxidation and nitric oxide production significantly increased in nIDC respect to nFA and nADH (P < 0.005) whereas the 4-hydroxy-2-nonenal (HNE) protein-adducts increased only in nADH (P < 0.005). The increased lipid damage observed in nIDC correlates with estrogen receptor exposure in IDC (R(2) = 0.89). Moreover, nIDC and invasive ductal carcinoma (IDC) showed a 10-fold higher t-TGase activity compared to nFA and nADH. Contrary, COX-2 expression levels significantly decreased nIDC and IDC respect to the nFA and nADH (P < 0.001). The analysis of the free ubiquitin expression revealed equal levels in nADH and nIDC samples whereas high molecular weight-ubiquitin conjugate increased about fivefold only in nIDC (P < 0.01 vs. nADH). These novel findings reveal an interplay between membrane lipid peroxidation, t-TGase activity, and COX-2 expression levels in the tissue adjoining to neoplastic lesion during breast cancer progression.
Collapse
Affiliation(s)
- Maria Luisa Balestrieri
- Department of Biochemistry and Biophysics, School of Medicine, Second University of Naples, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Regulation of subtilase cytotoxin-induced cell death by an RNA-dependent protein kinase-like endoplasmic reticulum kinase-dependent proteasome pathway in HeLa cells. Infect Immun 2012; 80:1803-14. [PMID: 22354021 DOI: 10.1128/iai.06164-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shiga-toxigenic Escherichia coli (STEC) produces subtilase cytotoxin (SubAB), which cleaves the molecular chaperone BiP in the endoplasmic reticulum (ER), leading to an ER stress response and then activation of apoptotic signaling pathways. Here, we show that an early event in SubAB-induced apoptosis in HeLa cells is mediated by RNA-dependent protein kinase (PKR)-like ER kinase (PERK), not activating transcription factor 6 (ATF6) or inositol-requiring enzyme 1(Ire1), two other ER stress sensors. PERK knockdown suppressed SubAB-induced eIF2α phosphorylation, activating transcription factor 4 (ATF4) expression, caspase activation, and cytotoxicity. Knockdown of eIF2α by small interfering RNA (siRNA) or inhibition of eIF2α dephosphorylation by Sal003 enhanced SubAB-induced caspase activation. Treatment with proteasome inhibitors (i.e., MG132 and lactacystin), but not a general caspase inhibitor (Z-VAD) or a lysosome inhibitor (chloroquine), suppressed SubAB-induced caspase activation and poly(ADP-ribose) polymerase (PARP) cleavage, suggesting that the ubiquitin-proteasome system controls events leading to caspase activation, i.e., Bax/Bak conformational changes, followed by cytochrome c release from mitochondria. Levels of ubiquitinated proteins in HeLa cells were significantly decreased by SubAB treatment. Further, in an early event, some antiapoptotic proteins, which normally turn over rapidly, have their synthesis inhibited, and show enhanced degradation via the proteasome, resulting in apoptosis. In PERK knockdown cells, SubAB-induced loss of ubiquitinated proteins was inhibited. Thus, SubAB-induced ER stress is caused by BiP cleavage, leading to PERK activation, not by accumulation of ubiquitinated proteins, which undergo PERK-dependent degradation via the ubiquitin-proteasome system.
Collapse
|
41
|
Shang F, Taylor A. Role of the ubiquitin-proteasome in protein quality control and signaling: implication in the pathogenesis of eye diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:347-96. [PMID: 22727427 DOI: 10.1016/b978-0-12-397863-9.00010-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) plays important roles in many cellular functions, such as protein quality control, cell cycle control, and signal transduction. The selective degradation of aberrant proteins by the UPP is essential for the timely removal of potential cytotoxic damaged or otherwise abnormal proteins. Conversely, accumulation of the cytotoxic abnormal proteins in eye tissues is etiologically associated with many age-related eye diseases such as retina degeneration, cataract, and certain types of glaucoma. Age- or stress-induced impairment or overburdening of the UPP appears to contribute to the accumulation of abnormal proteins in eye tissues. Cell cycle and signal transduction are regulated by the conditional UPP-dependent degradation of the regulators of these processes. Impairment or overburdening of the UPP could also result in dysregulation of cell cycle control and signal transduction. The consequences of the improper cell cycle and signal transduction include defects in ocular development, wound healing, angiogenesis, or inflammatory responses. Methods that enhance or preserve UPP function or reduce its burden may be useful strategies for preventing age-related eye diseases.
Collapse
Affiliation(s)
- Fu Shang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Boston, Massachusetts, USA
| | | |
Collapse
|
42
|
Ismahil MA, Hamid T, Haberzettl P, Gu Y, Chandrasekar B, Srivastava S, Bhatnagar A, Prabhu SD. Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2011; 301:H2050-60. [PMID: 21908791 DOI: 10.1152/ajpheart.00120.2011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Environmental triggers of dilated cardiomyopathy are poorly understood. Acute exposure to acrolein, a ubiquitous aldehyde pollutant, impairs cardiac function and cardioprotective responses in mice. Here, we tested the hypothesis that chronic oral exposure to acrolein induces inflammation and cardiomyopathy. C57BL/6 mice were gavage-fed acrolein (1 mg/kg) or water (vehicle) daily for 48 days. The dose was chosen based on estimates of human daily unsaturated aldehyde consumption. Compared with vehicle-fed mice, acrolein-fed mice exhibited significant (P < 0.05) left ventricular (LV) dilatation (LV end-diastolic volume 36 ± 8 vs. 17 ± 5 μl), contractile dysfunction (dP/dt(max) 4,697 ± 1,498 vs. 7,016 ± 1,757 mmHg/s), and impaired relaxation (tau 15.4 ± 4.3 vs. 10.4 ± 2.2 ms). Histological and biochemical evaluation revealed myocardial oxidative stress (membrane-localized protein-4-hydroxy-trans-2-nonenal adducts) and nitrative stress (increased protein-nitrotyrosine) and varying degrees of plasma and myocardial protein-acrolein adduct formation indicative of physical translocation of ingested acrolein to the heart. Acrolein also induced myocyte hypertrophy (~2.2-fold increased myocyte area, P < 0.05), increased apoptosis (~7.5-fold), and disrupted endothelial nitric oxide synthase in the heart. DNA binding studies, immunohistochemistry, and PCR revealed significant (P < 0.05) activation of nuclear factor-κB in acrolein-exposed hearts, along with upregulated gene expression of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β. Long-term oral exposure to acrolein, at an amount within the range of human unsaturated aldehyde intake, induces a phenotype of dilated cardiomyopathy in the mouse. Human exposure to acrolein may have analogous effects and raise consideration of an environmental, aldehyde-mediated basis for heart failure.
Collapse
Affiliation(s)
- Mohamed Ameen Ismahil
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Karbach S, Simon A, Slenzka A, Jaenecke I, Habermeier A, Martiné U, Förstermann U, Closs EI. Relative contribution of different l-arginine sources to the substrate supply of endothelial nitric oxide synthase. J Mol Cell Cardiol 2011; 51:855-61. [PMID: 21839088 DOI: 10.1016/j.yjmcc.2011.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/04/2011] [Accepted: 07/23/2011] [Indexed: 11/25/2022]
Abstract
In certain cases of endothelial dysfunction l-arginine becomes rate-limiting for NO synthesis in spite of sufficiently high plasma concentrations of the amino acid. To better understand this phenomenon, we investigated routes of substrate supply to endothelial nitric oxide synthase (eNOS). Our previous data with human umbilical vein (HUVEC) and EA.hy.926 endothelial cells demonstrated that eNOS can obtain its substrate from the conversion of l-citrulline to l-arginine and from protein breakdown. In the present study, we determined the quantitative contribution of proteasomal and lysosomal protein degradation and investigated to what extent extracellular peptides and l-citrulline can provide substrate to eNOS. The RFL-6 reporter cell assay was used to measure eNOS activity in human EA.hy926 endothelial cells. Individual proteasome and lysosome inhibition reduced eNOS activity in EA.hy926 cells only slightly. However, the combined inhibition had a pronounced reducing effect. eNOS activity was fully restored by supplementing either l-citrulline or l-arginine-containing dipeptides. Histidine prevented the restoration of eNOS activity by the dipeptide, suggesting that a transporter accepting both, peptides and histidine, mediates the uptake of the extracellular peptide. In fact, the peptide and histidine transporter PHT1 was expressed in EA.hy926 cells and HUVECs (qRT/PCR). Our study thus demonstrates that l-citrulline and l-arginine-containing peptides derived from either intracellular protein breakdown or from the extracellular space seem to be good substrate sources for eNOS.
Collapse
Affiliation(s)
- Susanne Karbach
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Protein targets for carbonylation by 4-hydroxy-2-nonenal in rat liver mitochondria. J Proteomics 2011; 74:2370-9. [PMID: 21801862 DOI: 10.1016/j.jprot.2011.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/27/2011] [Accepted: 07/12/2011] [Indexed: 02/03/2023]
Abstract
Protein carbonylation has been associated with various pathophysiological processes. A representative reactive carbonyl species (RCS), 4-hydroxy-2-nonenal (HNE), has been implicated specifically as a causative factor for the initiation and/or progression of various diseases. To date, however, little is known about the proteins and their modification sites susceptible to "carbonyl stress" by this RCS, especially in the liver. Using chemoprecipitation based on a solid-phase hydrazine chemistry coupled with LC-MS/MS bottom-up approach and database searching, we identified several protein-HNE adducts in isolated rat liver mitochondria upon HNE exposure. The identification of selected major protein targets, such as the ATP synthase β-subunit, was further confirmed by immunoblotting and a gel-based approach in combination with LC-MS/MS. A network was also created based on the identified protein targets, which showed that the main protein interactions were associated with cell death, tumor morphology and drug metabolism, implicating the toxic nature of HNE in the liver mitoproteome. The functional consequence of carbonylation was illustrated by its detrimental impact on the activity of ATP synthase, a representative major mitochondrial protein target for HNE modifications.
Collapse
|
45
|
Shang F, Taylor A. Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Radic Biol Med 2011; 51:5-16. [PMID: 21530648 PMCID: PMC3109097 DOI: 10.1016/j.freeradbiomed.2011.03.031] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 03/08/2011] [Accepted: 03/26/2011] [Indexed: 12/13/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in noncanonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. Whereas many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin-conjugating enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin-conjugating enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells seem to be an indicator of mild oxidative stress.
Collapse
Affiliation(s)
- Fu Shang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | |
Collapse
|
46
|
Mechanism mediating oligomeric Aβ clearance by naïve primary microglia. Neurobiol Dis 2011; 42:221-30. [DOI: 10.1016/j.nbd.2011.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 01/02/2011] [Indexed: 12/15/2022] Open
|
47
|
Wu Y, Zhou J, Fishkin N, Rittmann BE, Sparrow JR. Enzymatic degradation of A2E, a retinal pigment epithelial lipofuscin bisretinoid. J Am Chem Soc 2011; 133:849-57. [PMID: 21166406 DOI: 10.1021/ja107195u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Some forms of blinding macular disease are associated with excessive accumulation of bisretinoid lipofuscin in retinal pigment epithelial (RPE) cells of the eye. This material is refractory to lysosomal enzyme degradation. In addition to gene and drug-based therapies, treatments that reverse the accumulation of bisretinoid would be beneficial. Thus, we have examined the feasibility of degrading the bisretinoids by delivery of exogenous enzyme. As proof of principle we report that horseradish peroxidase (HRP) can cleave the RPE bisretinoid A2E. In both cell-free and cell-based assays, A2E levels were decreased in the presence of HRP. HRP-associated cleavage products were detected by ultraperformance liquid chromatography (UPLC) coupled to electrospray ionization mass spectrometry, and the structures of the aldehyde-bearing cleavage products were elucidated by 18O-labeling and 1H NMR spectroscopy and by recording UV−vis absorbance spectra. These findings indicate that RPE bisretinoids such as A2E can be degraded by appropriate enzyme activities.
Collapse
Affiliation(s)
- Yalin Wu
- Department of Ophthalmology, Columbia University, 630 West 168th Street, New York, New York 10032, United States
| | | | | | | | | |
Collapse
|
48
|
4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase is degraded by cathepsin G in rat neutrophils. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:213686. [PMID: 21904640 PMCID: PMC3166769 DOI: 10.1155/2011/213686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 01/17/2011] [Indexed: 01/16/2023]
Abstract
Degradation of oxidized or oxidatively modified proteins is an essential part of the antioxidant defenses of cells. 4-Hydroxy-2-nonenal, a major reactive aldehyde formed by lipid peroxidation, causes many types of cellular damage. It has been reported that 4-hydroxy-2-nonenal-modified proteins are degraded by the ubiquitin-proteasome pathway or, in some cases, by the lysosomal pathway. However, our previous studies using U937 cells showed that 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase is degraded by cathepsin G. In the present study, we isolated the 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase-degrading enzyme from rat neutrophils to an active protein fraction of 28 kDa. Using the specific antibody, the 28 kDa protein was identified as cathepsin G. Moreover, the degradation activity was inhibited by cathepsin G inhibitors. These results suggest that cathepsin G plays a crucial role in the degradation of 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase.
Collapse
|
49
|
He LC, Xu HZ, Gu ZM, Liu CX, Chen GQ, Wang YF, Wen DH, Wu YL. Ikaros is degraded by proteasome-dependent mechanism in the early phase of apoptosis induction. Biochem Biophys Res Commun 2011; 406:430-4. [PMID: 21329675 DOI: 10.1016/j.bbrc.2011.02.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 02/10/2011] [Indexed: 11/27/2022]
Abstract
Ikaros is an important transcription factor involved in the development and differentiation of hematopoietic cells. In this work, we found that chemotherapeutic drugs or ultraviolet radiation (UV) treatment could reduce the expression of full-length Ikaros (IK1) protein in less than 3h in leukemic NB4, Kasumi-1 and Jurkat cells, prior to the activation of caspase-3. Etoposide treatment could not alter the mRNA level of IK1 but it could shorten the half-life of IK1. Co-treatment with the proteasome inhibitor MG132 or epoxomicin but not calpain inhibitor calpeptin inhibited etoposide-induced Ikaros downregulation. Overexpression of IK1 could accelerate etoposide-induced apoptosis in NB4 cells, as evidenced by the increase of Annexin V positive cells and the more early activation of caspase 3. To our knowledge, this is the first report to show that upon chemotherapy drugs or UV treatment, IK1 could be degraded via the proteasome system in the early phase of apoptosis induction. These data might shed new insight on the role of IK1 in apoptosis and the post-translational regulation of IK1.
Collapse
Affiliation(s)
- Li-Cai He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zheng J, Bizzozero OA. Decreased activity of the 20S proteasome in the brain white matter and gray matter of patients with multiple sclerosis. J Neurochem 2011; 117:143-53. [PMID: 21235577 DOI: 10.1111/j.1471-4159.2011.07182.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carbonylated (oxidized) proteins are known to accumulate in the cerebral white matter (WM) and gray matter (GM) of patients with multiple sclerosis (MS). Although oxidative stress is necessary for carbonyl generation, it is the failure of the degradation systems that ultimately leads to the build-up of carbonylated proteins within tissues. In this study, we measured the activity of the 20S proteasome and other proteolytic systems in the cerebral WM and GM of 13 MS patients and 13 controls. We report that the activities of the three peptidases of the 20S proteasome (i.e. chymotrypsin-like, caspase-like and trypsin-like) in both MS-WM and MS-GM are greatly reduced. Interestingly, neither the amount of proteasome nor the levels of the catalytic subunits (β1, β2, and β5) are diminished in this disease. Proteins containing Lys-48 poly-ubiquitin also accumulate in MS tissues, indicating failure of the 26S proteasome as well. Levels of the regulatory caps 11S α and 19S are also lower in MS than in controls, suggesting that the activity of the more complex proteasomes may be reduced further. Finally, the activities of other proteases that might also remove oxidized proteins (calpain, cathepsin B, mitochondrial LonP) are not lessened in MS. Together, these studies suggest that direct inactivation of proteolytic centers in the 20S particle and/or the presence of specific inhibitors is the underlying cause of proteasomal dysfunction in MS.
Collapse
Affiliation(s)
- Jianzheng Zheng
- Department of Cell Biology and Physiology, University of New Mexico, Health Sciences Center, Albuquerque, New Mexico, USA
| | | |
Collapse
|