1
|
Okasha H, Nasr SM, Hafiz E, Samir S. Investigating the anticancer effect of purified rCec-B peptide in a DEN murine model: Insights into tumorigenesis prevention, bioavailability, and molecular mechanisms. Arch Biochem Biophys 2025; 770:110468. [PMID: 40383465 DOI: 10.1016/j.abb.2025.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/25/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Anticancer peptides (ACPs) are considered cancer therapeutic candidates through decreasing tumor cell proliferation, migration, and angiogenesis. OBJECTIVES Determine the therapeutic potential of purified recombinant cecropin-B (rCec-B) peptide in vivo on HCC murine model and its effect, particularly on the activation of apoptotic pathways. METHODS Intact mass analysis of rCec-B was confirmed using mass spectrometry, molecular docking on epidermal growth factor receptor (EGFR) apoptosis was studied, and an in vivo acute toxicity study, followed by establishing the HCC model using diethylnitrosamine (DEN) was performed. Biochemical, molecular, and immunohistochemical parameters were detected in serum and liver samples. RESULTS A molecular docking study on EGFR showed a predicted binding model of rCec-B as a ligand with a high binding affinity equal to -50.167 kcal/mol. The peptide showed remarkable safety in the studied high doses. The liver of the HCC untreated model had a distorted lobular pattern with minimal to mild nuclear atypia. In HCC treated with rCec-B, liver sections had periportal inflammation, hydropic degeneration with focal cholestasis, and apoptotic hepatocellular bodies. Molecular detection and immunohistochemical analysis showed an upregulation of the oncogenic marker, Bcl-2, and a downregulation of apoptotic markers (FAS, FAS-L, Cas-8, BAX, and BID) in the untreated DEN group. Treated groups had a significant increase in all the detected apoptotic markers. CONCLUSION This study sheds light on the potential rCec-B's role in suppressing HCC progression. Hence, this peptide could be considered a promising therapeutic drug alone or in combination with other drugs to alleviate HCC treatment.
Collapse
Affiliation(s)
- Hend Okasha
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, 12411, Giza, Egypt.
| | - Sami Mohamed Nasr
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, 12411, Giza, Egypt; School of Biotechnology, Badr University in Cairo, Cairo, Badr City, 11829, Egypt.
| | - Ehab Hafiz
- Electron Microscopy Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, 12411, Giza, Egypt.
| | - Safia Samir
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, 12411, Giza, Egypt.
| |
Collapse
|
2
|
Jadhav K, Abhang A, Kole EB, Gadade D, Dusane A, Iyer A, Sharma A, Rout SK, Gholap AD, Naik J, Verma RK, Rojekar S. Peptide-Drug Conjugates as Next-Generation Therapeutics: Exploring the Potential and Clinical Progress. Bioengineering (Basel) 2025; 12:481. [PMID: 40428099 PMCID: PMC12108627 DOI: 10.3390/bioengineering12050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Peptide-drug conjugates (PDCs) have emerged as a next-generation therapeutic platform, combining the target specificity of peptides with the pharmacological potency of small-molecule drugs. As an evolution beyond antibody-drug conjugates (ADCs), PDCs offer distinct advantages, including enhanced cellular permeability, improved drug selectivity, and versatile design flexibility. This review provides a comprehensive analysis of the fundamental components of PDCs, including homing peptide selection, linker engineering, and payload optimization, alongside strategies to address their inherent challenges, such as stability, bioactivity, and clinical translation barriers. Therapeutic applications of PDCs span oncology, infectious diseases, metabolic disorders, and emerging areas like COVID-19, with several conjugates advancing in clinical trials and achieving regulatory milestones. Innovations, including bicyclic peptides, supramolecular architectures, and novel linker technologies, are explored as promising avenues to enhance PDC design. Additionally, this review examines the clinical trajectory of PDCs, emphasizing their therapeutic potential and highlighting ongoing trials that exemplify their efficacy. By addressing limitations and leveraging emerging advancements, PDCs hold immense promise as targeted therapeutics capable of addressing complex disease states and driving progress in precision medicine.
Collapse
Affiliation(s)
- Krishna Jadhav
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali 140306, Punjab, India; (K.J.); (R.K.V.)
| | - Ashwin Abhang
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, USA;
| | - Eknath B. Kole
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, Maharashtra, India; (E.B.K.); (J.N.)
| | - Dipak Gadade
- Department of Pharmaceutical Sciences, Delhi Skill and Entrepreneurship University, Dwarka Campus, Sector 9 Dwarka, New Delhi 110077, Delhi, India;
| | - Apurva Dusane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA;
| | - Aditya Iyer
- Biopharmaceutics Department, Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore 560099, Karnataka, India;
| | | | - Saroj Kumar Rout
- Research and Development, LNK International Inc., New York, NY 11788, USA;
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India;
| | - Jitendra Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, Maharashtra, India; (E.B.K.); (J.N.)
| | - Rahul K. Verma
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali 140306, Punjab, India; (K.J.); (R.K.V.)
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Han X, Zhang X, Kang L, Feng S, Li Y, Zhao G. Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers. Int J Biol Macromol 2025; 299:140143. [PMID: 39855525 DOI: 10.1016/j.ijbiomac.2025.140143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Ge Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Nie F, Li L, Bai Y, Yang J. Early Detection of Brain Metastases from Triple-Negative Breast Cancer with a Tumor-Targeting Dual-Modal MR/NIRF Imaging Probe. Int J Nanomedicine 2025; 20:3697-3712. [PMID: 40134526 PMCID: PMC11932937 DOI: 10.2147/ijn.s498629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Objective Imaging early-stage brain metastases from triple-negative breast cancer (TNBC) is challenging due to the blood-brain barrier (BBB). To address this issue, we developed Den-Angio-GE11, a nanoprobe engineered to traverse the BBB and selectively target metastatic cells. Methods A TNBC brain metastasis model was established in mice through intracardiac injection of MDA-MB-231 brain-seeking cells (MDA-MB-231-BR). Metastatic lesions were longitudinally monitored using T2-weighted magnetic resonance imaging (MRI) and confirmed through contrast-enhanced MRI with Gadolinium-DTPA (Gd-DTPA). The Den-Angio-GE11 nanoprobe was synthesized on a polyamidoamine (PAMAM)-G5 dendrimer platform, incorporating Angiopep-2 and GE11 peptides for BBB traversal and metastatic cell targeting. Dual-modal imaging capability was achieved by conjugating Gd-DTPA for MRI and NIR783 for near-infrared fluorescence (NIRF) imaging. Results Den-Angio-GE11 demonstrated significantly enhanced affinity to EGFR compared to controls, as confirmed by immunofluorescence staining and flow cytometry assays. Brain metastases appeared on T2-weighted MRI three weeks post-injection of MDA-MB-231BR cells and maintained uncompromised BBB function for another one or two weeks, as demonstrated by a lack of enhancement in Gd-DTPA-enhanced MRI. Compared to control nanoparticles, Den-Angio-GE11 remarkably enhanced T1 and NIRF signals of lesions after administration. Histological analysis confirmed Den-Angio-GE11 targeting brain metastatic cells. For lesions in extreme-early stage (undetectable by T2-weighted imaging), NIRF imaging post-Den-Angio-GE11 administration successfully indicated potential lesions. Fluorescence imaging analyses further verified Den-Angio-GE11 targeted sporadically metastatic cells in the brain parenchyma. Conclusion Early brain metastases of TNBC can be detected by Den-Angio-GE11 through T1-weighted MRI or NIRF imaging.
Collapse
Affiliation(s)
- Fang Nie
- Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, State Key Laboratory of Digital Medical Engineering, Zhongda Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China
| | - Lin Li
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yingying Bai
- Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, State Key Laboratory of Digital Medical Engineering, Zhongda Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China
| | - Jian Yang
- Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, State Key Laboratory of Digital Medical Engineering, Zhongda Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China
- Department of Physiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, State Key Laboratory of Digital Medical Engineering, Zhongda Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
5
|
Mi Y, Jiang P, Luan J, Feng L, Zhang D, Gao X. Peptide‑based therapeutic strategies for glioma: Current state and prospects. Peptides 2025; 185:171354. [PMID: 39922284 DOI: 10.1016/j.peptides.2025.171354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Glioma is a prevalent form of primary malignant central nervous system tumor, characterized by its cellular invasiveness, rapid growth, and the presence of the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB). Current therapeutic approaches, such as chemotherapy and radiotherapy, have shown limited efficacy in achieving significant antitumor effects. Therefore, there is an urgent demand for new treatments. Therapeutic peptides represent an innovative class of pharmaceutical agents with lower immunogenicity and toxicity. They are easily modifiable via chemical means and possess deep tissue penetration capabilities which reduce side effects and drug resistance. These unique pharmacokinetic characteristics make peptides a rapidly growing class of new therapeutics that have demonstrated significant progress in glioma treatment. This review outlines the efforts and accomplishments in peptide-based therapeutic strategies for glioma. These therapeutic peptides can be classified into four types based on their anti-tumor function: tumor-homing peptides, inhibitor/antagonist peptides targeting cell surface receptors, interference peptides, and peptide vaccines. Furthermore, we briefly summarize the results from clinical trials of therapeutic peptides in glioma, which shows that peptide-based therapeutic strategies exhibit great potential as multifunctional players in glioma therapy.
Collapse
Affiliation(s)
- Yajing Mi
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lin Feng
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Dian Zhang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xingchun Gao
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
6
|
Ramírez MDLA, Bou-Gharios J, Freis B, Draussin J, Cheignon C, Charbonnière LJ, Laurent S, Gevart T, Gasser A, Jung S, Rossetti F, Tillement O, Noel G, Pivot X, Detappe A, Bégin-Colin S, Harlepp S. Spacer engineering in nanoparticle-peptide conjugates boosts targeting specificity for tumor-associated antigens. NANOSCALE 2025; 17:5021-5032. [PMID: 39903198 DOI: 10.1039/d4nr02931c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Developing and synthesizing nano-objects capable of enabling early targeted diagnosis and ensuring effective tumor treatment represents a significant challenge in the theranostic field. Among various nanoparticles (NPs), iron oxide nanoparticles (IONPs) have made significant contributions to advancing this field. However, a key challenge lies in achieving selective recognition of specific cell types. In oncology, the primary goal is to develop innovative strategies to enhance NP uptake by tumors, primarily through active targeting. This involves adding targeting ligands (TL) to the NP surface to facilitate tumor accumulation and increase retention within the tumor microenvironment. Despite biofunctionalization strategies, overall tumor uptake remains modest at only 5-7% of the injected dose per gram. In this work, we demonstrate the effect of spacing between the NPs and the TL to improve their availability and thus the tumor uptake of the complex. This proof-of-concept study targets the epidermal growth factor receptor (EGFR) using a peptide as a targeting ligand. Specifically, we characterized the PEG-peptide coupled to dendronized IONPs, including the density of grafted TL. These nano-objects underwent in vitro evaluation to assess their ability to specifically target and be internalized by tumor cells. Therapeutically, compared to non-functionalized NPs, the presence of the TL with a PEG linker enhanced targeting efficacy and increased internalization, leading to improved photothermal efficacy.
Collapse
Affiliation(s)
- María de Los Angeles Ramírez
- Université de Strasbourg, CNRS, Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504, 67087 Strasbourg, Cedex 2, France.
| | - Jolie Bou-Gharios
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), UMR 7357, University of Strasbourg, 67000 Strasbourg, France
| | - Barbara Freis
- Université de Strasbourg, CNRS, Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504, 67087 Strasbourg, Cedex 2, France.
| | - Julien Draussin
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Clémence Cheignon
- Equipe de Synthèse Pour l'Analyse, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, Strasbourg, Cedex 2 67087, France
| | - Loic J Charbonnière
- Equipe de Synthèse Pour l'Analyse, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, Strasbourg, Cedex 2 67087, France
| | - Sophie Laurent
- Service de Chimie Générale, Organique et Biomédicale, Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Thomas Gevart
- Service de Chimie Générale, Organique et Biomédicale, Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Adeline Gasser
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Sebastian Jung
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Fabien Rossetti
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France
| | - Georges Noel
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), UMR 7357, University of Strasbourg, 67000 Strasbourg, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Alexandre Detappe
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Sylvie Bégin-Colin
- Université de Strasbourg, CNRS, Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504, 67087 Strasbourg, Cedex 2, France.
| | - Sébastien Harlepp
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| |
Collapse
|
7
|
Hallaji M, Allahyari M, Teimoori-Toolabi L, Yasami-Khiabani S, Golkar M, Fard-Esfahani P. Targeted cancer treatment using a novel EGFR-specific Fc-fusion peptide based on GE11 peptide. Sci Rep 2025; 15:5107. [PMID: 39934226 PMCID: PMC11814073 DOI: 10.1038/s41598-025-89143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Fc-fusion peptides, also known as peptibodies, are a promising new category of targeted therapeutics that offer alternatives to monoclonal antibodies (mAbs) for cancer treatment. This study focuses on an Fc-fusion peptide consisting of the Fc region of IgG1 and an epidermal growth factor receptor (EGFR)-targeting peptide, GE11, which was identified using the phage display method and demonstrated high affinity for the receptor. The fusion peptide (FcIgG-GE11) was successfully expressed in Escherichia coli and purified using ion-exchange chromatography. Flow cytometry confirmed its specific binding to EGFR. Like Cetuximab, the FcIgG-GE11 peptibody exhibited effective, dose- and time-dependent growth inhibition of EGFR-overexpressing cancer cell lines. Additionally, the results showed that the FcIgG-GE11 peptibody induced cell death or cycle arrest in certain cancer cell lines, with varying responses depending on the cancer type. The results of In-Cell ELISA when comparing the effects of the FcIgG-GE11 peptibody to Cetuximab on Tyr 1173 phosphorylation were similar. In addition, the relative potency of the FcIgG-GE11 peptibody compared to Cetuximab was assessed using the MTT results by Slope Ratio Analysis. These findings suggest that FcIgG-GE11 peptibody can provide a specific and efficient tool for both targeting and treating cancer cells.
Collapse
Affiliation(s)
- Malihe Hallaji
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Allahyari
- Recombinant Protein Production Department, Research and Production Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Majid Golkar
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
8
|
Than PP, Yao SJ, Althagafi E, Kaur K. A Conjugate of an EGFR-Binding Peptide and Doxorubicin Shows Selective Toxicity to Triple-Negative Breast Cancer Cells. ACS Med Chem Lett 2025; 16:109-115. [PMID: 39811122 PMCID: PMC11726362 DOI: 10.1021/acsmedchemlett.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Selective targeting of cancer cells via overexpressed cell-surface receptors is a promising strategy to enhance chemotherapy efficacy and minimize off-target side effects. In this study, we designed peptide 31 (YHWYGYTPERVI) to target the overexpressed epidermal growth factor receptor (EGFR) in triple-negative breast cancer (TNBC) cells. Peptide 31 is internalized by TNBC cells through EGFR-mediated endocytosis and shares sequence and structural similarities with human EGF (hEGF), a natural EGFR ligand. Unlike hEGF, peptide 31 does not induce cell migration in TNBC cells. A novel conjugate of peptide 31 with doxorubicin (Dox) retains selectivity for TNBC cells and exhibits significant toxicity comparable to that of unconjugated Dox. Importantly, this conjugate shows no toxicity toward normal breast epithelial cells up to a high concentration (25 μM). Thus, peptide 31 serves as a versatile targeting ligand for developing novel conjugates with high selectivity for EGFR-positive cancers.
Collapse
Affiliation(s)
- Phi-Phung Than
- Chapman
University School of Pharmacy, Irvine, California 92618, United States
| | - Shih-Jing Yao
- Chapman
University School of Pharmacy, Irvine, California 92618, United States
| | - Emad Althagafi
- Chapman
University School of Pharmacy, Irvine, California 92618, United States
| | - Kamaljit Kaur
- Chapman
University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
9
|
Gé LG, Danielsen MB, Nielsen AY, Skavenborg ML, Langkjær N, Thisgaard H, McKenzie CJ. Radiocobalt-Labeling of a Polypyridylamine Chelate Conjugated to GE11 for EGFR-Targeted Theranostics. Molecules 2025; 30:212. [PMID: 39860082 PMCID: PMC11767697 DOI: 10.3390/molecules30020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The overexpression of the epidermal growth factor receptor (EGFR) in certain types of prostate cancers and glioblastoma makes it a promising target for targeted radioligand therapy. In this context, pairing an EGFR-targeting peptide with the emerging theranostic pair comprising the Auger electron emitter cobalt-58m (58mCo) and the Positron Emission Tomography-isotope cobalt-55 (55Co) would be of great interest for creating novel radiopharmaceuticals for prostate cancer and glioblastoma theranostics. In this study, GE11 (YHWYGYTPQNVI) was investigated for its EGFR-targeting potential when conjugated using click chemistry to N1-((triazol-4-yl)methyl)-N1,N2,N2-tris(pyridin-2-ylmethyl)ethane-1,2-diamine (TZTPEN). This chelator is suitable for binding Co2+ and Co3+. With cobalt-57 (57Co) serving as a surrogate radionuclide for 55/58mCo, the novel GE11-TZTPEN construct was successfully radiolabeled with a high radiochemical yield (99%) and purity (>99%). [57Co]Co-TZTPEN-GE11 showed high stability in PBS (pH 5) and specific uptake in EGFR-positive cell lines. Disappointingly, no tumor uptake was observed in EGFR-positive tumor-bearing mice, with most activity being accumulated predominantly in the liver, gall bladder, kidneys, and spleen. Some bone uptake was also observed, suggesting in vivo dissociation of 57Co from the complex. In conclusion, [57Co]Co-TZTPEN-GE11 shows poor pharmacokinetics in a mouse model and is, therefore, not deemed suitable as a targeting radiopharmaceutical for EGFR.
Collapse
Affiliation(s)
- Lorraine Gaenaelle Gé
- Department of Nuclear Medicine, Odense University Hospital, Kloevervaenget 47, 5000 Odense C, Denmark; (L.G.G.); (A.Y.N.); (N.L.)
- Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mathias Bogetoft Danielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (M.B.D.); (M.L.S.)
| | - Aaraby Yoheswaran Nielsen
- Department of Nuclear Medicine, Odense University Hospital, Kloevervaenget 47, 5000 Odense C, Denmark; (L.G.G.); (A.Y.N.); (N.L.)
| | - Mathias Lander Skavenborg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (M.B.D.); (M.L.S.)
| | - Niels Langkjær
- Department of Nuclear Medicine, Odense University Hospital, Kloevervaenget 47, 5000 Odense C, Denmark; (L.G.G.); (A.Y.N.); (N.L.)
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Kloevervaenget 47, 5000 Odense C, Denmark; (L.G.G.); (A.Y.N.); (N.L.)
- Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Christine J. McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (M.B.D.); (M.L.S.)
| |
Collapse
|
10
|
Awuah WA, Ahluwalia A, Tan JK, Sanker V, Roy S, Ben-Jaafar A, Shah DM, Tenkorang PO, Aderinto N, Abdul-Rahman T, Atallah O, Alexiou A. Theranostics Advances in the Treatment and Diagnosis of Neurological and Neurosurgical Diseases. Arch Med Res 2025; 56:103085. [PMID: 39369666 DOI: 10.1016/j.arcmed.2024.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Theranostics represents a significant advance in the fields of neurology and neurosurgery, offering innovative approaches that combine the diagnosis and treatment of various neurological disorders. This innovation serves as a cornerstone of personalized medicine, where therapeutic strategies are closely integrated with diagnostic tools to enable precise and targeted interventions. Primary research results emphasize the profound impact of theranostics in Neuro Oncol. In this context, it has provided valuable insights into the complexity of the tumor microenvironment and mechanisms of resistance. In addition, in the field of neurodegenerative diseases (NDs), theranostics has facilitated the identification of distinct disease subtypes and novel therapeutic targets. It has also unravelled the intricate pathophysiology underlying conditions such as cerebrovascular disease (CVD) and epilepsy, setting the stage for more refined treatment approaches. As theranostics continues to evolve through ongoing research and refinement, its goals include further advancing the field of precision medicine, developing practical biomarkers for clinical use, and opening doors to new therapeutic opportunities. Nevertheless, the integration of these approaches into clinical settings presents challenges, including ethical considerations, the need for advanced data interpretation, standardization of procedures, and ensuring cost-effectiveness. Despite these obstacles, the promise of theranostics to significantly improve patient outcomes in the fields of neurology and neurosurgery remains a source of optimism for the future of healthcare.
Collapse
Affiliation(s)
| | - Arjun Ahluwalia
- School of Medicine, Queen's University Belfast, Belfast, United Kingdom
| | | | - Vivek Sanker
- Department of Neurosurgery, Stanford University, CA, USA
| | - Sakshi Roy
- School of Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Adam Ben-Jaafar
- University College Dublin, School of Medicine, Belfield, Dublin 4, Ireland
| | - Devansh Mitesh Shah
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | | | - Nicholas Aderinto
- Internal Medicine Department, LAUTECH Teaching Hospital, Ogbomoso, Nigeria
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research and Development, Funogen, Athens, Greece; Department of Research and Development, AFNP Med, Wien, Austria; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.
| |
Collapse
|
11
|
Wang Y, Chen Q, Luo Y, Qu Y, Li X, Song H, Li C, Zhang Y, Sun T, Jiang C. Metabolic Nanoregulators Induce Ferroptosis and Change Metabolite Flow to Reverse Immunosuppressive Tumor Microenvironment. ACS NANO 2024; 18:34996-35012. [PMID: 39666893 DOI: 10.1021/acsnano.4c13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Aberrant energy and substance metabolic pathways of tumor cells critically support tumor cell proliferation by hijacking the resources from nonmalignant cells, thereby establishing a metabolite flow favorable to tumor progression. This metabolic adaptation of tumor cells further modulates the immune landscape, ultimately creating a tumor microenvironment characterized by drug resistance and immunosuppression. The synergistic regulation of energy and substance metabolic pathways might be a good antitumor therapeutic paradigm. However, due to the metabolic convergence, it is crucial to selectively modulate the aberrant metabolism of tumor cells without compromising the functionality of other cells. Small-molecule drugs have the ability to target a wide range of biomolecules for antitumor therapy, but their application is limited by undesirable toxicities. Constructing nanodrug delivery systems can improve their properties and allow for the inclusion of multiple drugs, thereby exerting synergistic antitumor effects. In this study, we developed a two-drug codelivery system using drugs-conjugated multibranched polymers to modulate tumor cell metabolism by exploiting synthetic lethal pathways for safe and effective antitumor therapy. By delivery of adapalene and erastin simultaneously through nanoparticles, the material and energy metabolism of tumor cells can be regulated. This nanoparticle construction achieves tumor tissue targeting and responsive drug release, alters metabolite flow within tumor cells, and effectively kills tumor cells. Additionally, the nanoparticles can reverse the tumor immunosuppressive microenvironment, starting from single-cell regulation to whole-lesion control.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Yifan Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Yangqi Qu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Xuwen Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Haolin Song
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Chufeng Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Yiwen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
- Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| |
Collapse
|
12
|
Lin Z, Assaraf YG, Kwok HF. Peptides for microbe-induced cancers: latest therapeutic strategies and their advanced technologies. Cancer Metastasis Rev 2024; 43:1315-1336. [PMID: 39008152 DOI: 10.1007/s10555-024-10197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Cancer is a significant global health concern associated with multiple distinct factors, including microbial and viral infections. Numerous studies have elucidated the role of microorganisms, such as Helicobacter pylori (H. pylori), as well as viruses for example human papillomavirus (HPV), hepatitis B virus (HBV), and hepatitis C virus (HCV), in the development of human malignancies. Substantial attention has been focused on the treatment of these microorganism- and virus-associated cancers, with promising outcomes observed in studies employing peptide-based therapies. The current paper provides an overview of microbe- and virus-induced cancers and their underlying molecular mechanisms. We discuss an assortment of peptide-based therapies which are currently being developed, including tumor-targeting peptides and microbial/viral peptide-based vaccines. We describe the major technological advancements that have been made in the design, screening, and delivery of peptides as anticancer agents. The primary focus of the current review is to provide insight into the latest research and development in this field and to provide a realistic glimpse into the future of peptide-based therapies for microbe- and virus-induced neoplasms.
Collapse
Affiliation(s)
- Ziqi Lin
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Instituteof Technology, Haifa, 3200003, Israel
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
13
|
Wang H, Zhang Y, Wang W, Shao J, Khan RU, Zeng S, Qian L. Fluorescent labeling of live-cell surfaceome and its application in antibody-target interaction analysis. Anal Chim Acta 2024; 1330:343296. [PMID: 39489976 DOI: 10.1016/j.aca.2024.343296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Cell-surface proteins play key roles in the communication between external stimuli and internal signaling. As protein types and expression levels vary in different cells, in-situ visualization of the whole surface proteome (surfaceome) may facilitate the study of their functions in homeostasis maintenance or response to environmental changes (e.g., drug treatment). However, there lacks easily-prepared and universal labeling probes to visualize them in living cells. RESULTS We designed and synthesized a small-molecule fluorescent probe, SRB-NHS, for one-step labeling of surfaceome. Live-cell imaging results exhibited the plasma membrane localization of the fluorescent signal from SRB-NHS and SDS-PAGE/fluorescence scanning results confirmed the covalent labeling of proteins by SRB-NHS, indicating the suitability of SRB-NHS for surfaceome labeling towards different cell lines. SIGNIFICANCE Upon labeling by SRB-NHS, the cellular internalization of surfaceome was studied under different stimuli (e.g., nutritional deprivation, drug treatments). Intriguingly, specific monitoring of the interaction between antibody drugs and related cell-surface targets can be achieved when the probe is used in combination with fluorescently labeled antibodies and imaged via Förster resonance energy transfer (FRET), offering a new method compatible with various cell lines to monitor the surfaceome or a specific drug-target interaction in situ.
Collapse
Affiliation(s)
- Haoting Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, 313100, China
| | - Ying Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Wenchao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinning Shao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, 313100, China.
| |
Collapse
|
14
|
Yang Y, Wang F, Li Y, Chen R, Wang X, Chen J, Lin X, Zhang H, Huang Y, Wang R. Engineered extracellular vesicles with polypeptide for targeted delivery of doxorubicin against EGFR‑positive tumors. Oncol Rep 2024; 52:154. [PMID: 39329273 PMCID: PMC11465103 DOI: 10.3892/or.2024.8813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Lack of effective tumor‑specific delivery systems remains an unmet clinical challenge for the employment of chemotherapy using cytotoxic drugs. Extracellular vesicles (EVs) have recently been investigated for their potential as an efficient drug‑delivery platform, due to their good biodistribution, biocompatibility and low immunogenicity. In the present study, the formulation of GE11 peptide‑modified EVs (GE11‑EVs) loaded with doxorubicin (Dox‑GE11‑EVs), was developed to target epidermal growth factor receptor (EGFR)‑positive tumor cells. The results obtained demonstrated that GE11‑EVs exhibited highly efficient targeting and drug delivery to EGFR‑positive tumor cells compared with non‑modified EVs. Furthermore, treatment with Dox‑GE11‑EVs led to a significantly inhibition of cell proliferation and increased apoptosis of EGFR‑positive tumor cells compared with Dox‑EVs and free Dox treatments. In addition, it was observed that treatment with either free Dox or Dox‑EVs exhibited a high level of cytotoxicity to normal cells, whereas treatment with Dox‑GE11‑EVs had only a limited effect on cell viability of normal cells. Taken together, the findings of the present study demonstrated that the engineered Dox‑GE11‑EVs can treat EGFR‑positive tumors more accurately and have higher safety than traditional tumor therapies.
Collapse
Affiliation(s)
- Yuqing Yang
- Department of Pharmacology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fang Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuqin Li
- Department of Pharmacology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ruxi Chen
- Department of Pharmacology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiangyu Wang
- Institute of Evolution and Marine Biodiversity, Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P.R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P.R. China
| | - Jiahong Chen
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, P.R. China
| | - Xi Lin
- Department of Pharmacology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Haipeng Zhang
- Department of Pharmacology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Youwei Huang
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China
- Department of Oncology, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, P.R. China
| | - Rui Wang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
15
|
Vartak R, Patel K. Targeted nanoliposomes of oncogenic protein degraders: Significant inhibition of tumor in lung-cancer bearing mice. J Control Release 2024; 376:502-517. [PMID: 39406280 DOI: 10.1016/j.jconrel.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
With 60 % of non-small cell lung cancer (NSCLC) expressing epidermal growth factor receptor (EGFR), it has been explored as an important therapeutic target for lung tumors. However, even the well-established EGFR inhibitors tend to promptly develop resistance over time. Moreover, strategies that could impede resistance development and be advantageous for both EGFR-Tyrosine kinase inhibitor (TKI)-sensitive and mutant NSCLC patients are constrained. Based on the critical relationship between EGFR, c-MYC, and Kirsten rat sarcoma virus (K-Ras), simultaneous degradation of EGFR and Bromodomain-containing protein 4 (BRD4) using "Proteolysis Targeting Chimeras (PROTACs)" could be a promising approach. PROTACs are emerging class of oncoprotein degraders but very challanging to deliver in vivo. Compared to individual IC50s, strong synergism was observed at 1:1 ratio of BPRO and EPRO in NSCLC cell lines with diverse mutation. Significant inhibition of cell growth with higher cellular apoptosis was observed in 2D and 3D-based cell assays in nanomolar concentrations. EGFR activation assay revealed 47.60 % EGFR non-expressing cells confirming EGFR-degrading potential of EPRO. A lung cancer specific nanoliposomal formulation of EGFR and BRD4-degrading PROTACs (EPRO and BPRO) was prepared and characetrized. Successful encapsulation of the two highly lipophilic molecules was achieved in EGFR-targeting nanoliposomal carriers (T-BEPRO) using a modified hydration technique. T-BEPRO revealed a particle size of 109.22 ± 0.266 nm with enhanced cellular uptake and activity. Remarkably, parenterally delivered T-BEPRO in tumor-bearing mice showed a substantially higher % tumor growth inhibition (TGI) of 77.6 % with long-lasting tumor inhibitory potential as opposed to individual drugs.
Collapse
Affiliation(s)
- Richa Vartak
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
16
|
Zhao Y, Le TMD, Hong J, Jiao A, Yoon AR, Yun CO. Smart Accumulating Dual-Targeting Lipid Envelopes Equipping Oncolytic Adenovirus for Enhancing Cancer Gene Therapeutic Efficacy. ACS NANO 2024; 18:27869-27890. [PMID: 39356167 DOI: 10.1021/acsnano.4c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Systemic delivery of oncolytic adenovirus (oAd) for cancer gene therapy must overcome several limitations such as rapid clearance from the blood, nonspecific accumulation in the liver, and insufficient delivery to the tumor tissues. In the present report, a tumor microenvironment-triggered artificial lipid envelope composed of a pH-responsive sulfamethazine-based polymer (PUSSM)-conjugated phospholipid (DOPE-HZ-PUSSM) and another lipid decorated with epidermal growth factor receptor (EGFR) targeting peptide (GE11) (GE11-DOPE) was utilized to encapsulate replication-incompetent Ad (dAd) or oAd coexpressing short-hairpin RNA (shRNA) against Wnt5 (shWnt5) and decorin (dAd/LP-GE-PS or oAd/LP-GE-PS, respectively). In vitro studies demonstrated that dAd/LP-GE-PS transduced breast cancer cells in a pH-responsive and EGFR-specific manner, showing a higher level of transduction than naked Ad under a mildly acidic pH of 6.0 in EGFR-positive cell lines. In vivo biodistribution analyses revealed that systemic administration of oAd/LP-GE-PS leads to a significantly higher level of intratumoral virion accumulation compared to naked oAd, oAd encapsulated in a liposome without PUSSM or EGFR targeting peptide moiety (oAd/LP), or oAd encapsulated in a liposome with EGFR targeting peptide alone (oAd/LP-GE) in an EGFR overexpressing MDA-MB-468 breast tumor xenograft model, showing that both pH sensitivity and EGFR targeting ability were integral to effective systemic delivery of oAd. Further, systemic administration of all liposomal oAd formulations (oAd/LP, oAd/LP-GE, and oAd/LP-GE-PS) showed significantly attenuated hepatic accumulation of the virus compared to naked oAd. Collectively, our findings demonstrated that pH-sensitive and EGFR-targeted liposomal systemic delivery of oAd can be a promising strategy to address the conventional limitations of oAd to effectively treat EGFR-positive cancer in a safe manner.
Collapse
Affiliation(s)
- Yuebin Zhao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Thai Minh Duy Le
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jinwoo Hong
- GeneMedicine CO., Ltd., Seoul 04763, South Korea
| | - Ao Jiao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, South Korea
- GeneMedicine CO., Ltd., Seoul 04763, South Korea
| |
Collapse
|
17
|
Li H, Wang J, Zhang B, Guo Y. Preliminary exploration of the anti-ovarian cancer activity of peptides derived from bovine bone collagen hydrolysate and its related mechanisms. Int J Biol Macromol 2024; 277:134198. [PMID: 39084419 DOI: 10.1016/j.ijbiomac.2024.134198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Ovarian cancer, a malignant tumor that poses a significant threat to women's health, has seen a rise in incidence, prompting the urgent need for more effective treatment. This study primarily aimed to explore the potential of bovine collagen peptides in inhibiting ovarian cancer. The investigation in this study began with the identification of 268 peptide sequences through LC-MS/MS, followed by a screening process using molecular docking techniques to identify potential peptides capable of binding to EGFR. Subsequently, a series of experiments were performed, demonstrating the inhibitory effects of the peptide GPAGADGDRGEAGPAGPAGPAGPR on the proliferation of ovarian cancer cells. Transcriptomic analysis further revealed that this peptide can regulate cholesterol metabolism in ovarian cancer cells. Finally, a combination of time-resolved fluorescence resonance energy transfer, isothermal titration calorimetry, molecular docking, and molecular dynamics simulations were utilized to validate the ability of this peptide to bind to the epidermal growth factor receptor (EGFR) and impede the binding of epidermal growth factor (EGF) and EGFR.
Collapse
Affiliation(s)
- Hanfeng Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| | - Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Bing Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| |
Collapse
|
18
|
Khan A, Tripathi A, Gandhi M, Bellare J, Srivastava R. Development of injectable upconversion nanoparticle-conjugated doxorubicin theranostics electrospun nanostructure for targeted photochemotherapy in breast cancer. J Biomed Mater Res A 2024; 112:1612-1626. [PMID: 38545952 DOI: 10.1002/jbm.a.37713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 07/12/2024]
Abstract
Nanotheranostic-based photochemotherapies with targeted drug delivery have considerably surfaced in cancer therapy. In the presented work, polyethyleneimine-coated upconversion nanoparticles were engineered to conjugate covalently with doxorubicin. Upconversion nanoparticles (UCNP)-Doxorubicin (DOX)/synthesized epidermal growth factor receptor-targeting peptide blended with polymer composite was electrospun and formulated as the injectable dosage form. The size of the UCNP and the nanofiber diameter were assessed as 26.75 ± 1.54 and 162 ± 2.82 nm, respectively. The optimized ratio of dopants resulted in UCNP photoluminescence with maximum emission intensity at around 800 nm upon 980 nm excitation wavelength. The paramagnetic nature of UCNPs and amide conjugation with the drug was confirmed analytically. The loading capacity of UCNP for doxorubicin was determined to be 54.56%, while nanofibers exhibited 98.74% capacity to encapsulate UCNP-DOX. The release profile of UCNP-DOX from nanofiber formulation ranged from sustained to controlled, with relative enhancement in acidic conditions. The nanofiber demonstrated good mechanical strength, robust swelling, and degradation rate. Biocompatibility tests showed more than 90% cell viability on L929 and NIH/3T3 cell lines with UCNP-DOX@NF/pep nanoformulation. The IC50 values of 2.15 ± 0.54, 2.87 ± 0.67, and 3.42 ± 0.45 μg/mL on MDA-MB-231, 4T1, and MCF-7 cancer cell line, respectively, with a significant cellular uptake, has been reported. The UCNP protruded a ≈62.7°C temperature rise within 5 min of 980 nm laser irradiation and a power density of 0.5 W cm-2. The nanoformulation induced reactive oxygen species of 65.67% ± 3.21% and apoptosis by arresting the cell cycle sub-G1 phase. The evaluation conveys the effectiveness of the developed injectable theranostic delivery system in cancer therapy.
Collapse
Affiliation(s)
- Amreen Khan
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Mayuri Gandhi
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
19
|
Tong JTW, Sarwar M, Ahangarpour M, Hume PA, Williams GM, Brimble MA, Kavianinia I. Use of a Cyclic α-Alkylidene-β-Diketone as a Cleavable Linker Strategy for Antibody-Drug Conjugates. J Am Chem Soc 2024; 146:23717-23728. [PMID: 39143910 DOI: 10.1021/jacs.4c04567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the fast-evolving landscape of targeted cancer therapies, the revolutionary class of biotherapeutics known as antibody-drug conjugates (ADCs) are taking center stage. Most clinically approved ADCs utilize cleavable linkers to temporarily attach potent cytotoxic payloads to antibodies, allowing selective payload release under tumor-specific conditions. In this study, we explored the utilization of 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), a cyclic β-diketone featuring an active alkylidene group, to develop a novel chemically labile linker. This linker was designed to exploit the difference in reduction potential between the intracellular compartment and plasma. Upon reduction of an azido trigger strategically installed neighboring the cyclic β-diketone, the resulting nucleophilic primary amine reacts with the alkylidene group facilitated by a favorable ring closure reaction in accordance with Baldwin's rules. Consequently, this reaction enables the simultaneous release of the attached cytotoxic payload. The therapeutic utility of this novel linker strategy was demonstrated by separate conjugation of the linker to two epidermal growth factor receptor (EGFR)-targeting ligands to afford a peptide-drug conjugate and an ADC. This work comprises a significant contribution to the bioconjugation field by introducing the alkylidene cyclic β-diketone as a tunable scaffold used for the temporary conjugation of therapeutic agents to peptides and proteins.
Collapse
Affiliation(s)
- Juliana T W Tong
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Makhdoom Sarwar
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, Christchurch 8011, New Zealand
| | - Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Paul A Hume
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, Christchurch 8011, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Geoffrey M Williams
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Iman Kavianinia
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
20
|
Wu S, Shang Y, Yan Y, Zhou A, Bing T, Zhao Z, Tan W. Aptamer-Based Enforced Phosphatase-Recruiting Chimeras Inhibit Receptor Tyrosine Kinase Signal Transduction. J Am Chem Soc 2024; 146:22445-22454. [PMID: 39087949 DOI: 10.1021/jacs.4c05665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Aberrant phosphorylation of receptor tyrosine kinases (RTKs) is usually involved in tumor initiation, progression, and metastasis. However, developing specific and efficient molecular tools to regulate RTK phosphorylation remains a considerable challenge. In this study, we reported novel aptamer-based chimeras to inhibit the phosphorylation of RTKs, such as c-Met and EGFR, by enforced recruitment of a protein tyrosine phosphatase receptor type F (PTPRF). Our studies revealed that aptamer-based chimeras displayed a generic and potent inhibitory effect on RTK phosphorylation induced by growth factor or auto-dimerization in different cell lines and modulated cell biological behaviors by recruiting PTPRF. Furthermore, based on angstrom accuracy of the DNA duplex, the maximum catalytic radius of PTPRF was determined as ∼25.84 nm, providing a basis for the development of phosphatase-recruiting strategies. Taken together, our study provides a generic methodology not only for selectively mediating RTK phosphorylation and cellular biological processes but also for developing novel therapeutic drugs.
Collapse
Affiliation(s)
- Shanchao Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yanxue Shang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yuping Yan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Aili Zhou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Tao Bing
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
21
|
Rodrigues Toledo C, Tantawy AA, Lima Fuscaldi L, Malavolta L, de Aguiar Ferreira C. EGFR- and Integrin α Vβ 3-Targeting Peptides as Potential Radiometal-Labeled Radiopharmaceuticals for Cancer Theranostics. Int J Mol Sci 2024; 25:8553. [PMID: 39126121 PMCID: PMC11313252 DOI: 10.3390/ijms25158553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The burgeoning field of cancer theranostics has witnessed advancements through the development of targeted molecular agents, particularly peptides. These agents exploit the overexpression or mutations of specific receptors, such as the Epidermal Growth Factor receptor (EGFR) and αVβ3 integrin, which are pivotal in tumor growth, angiogenesis, and metastasis. Despite the extensive research into and promising outcomes associated with antibody-based therapies, peptides offer a compelling alternative due to their smaller size, ease of modification, and rapid bioavailability, factors which potentially enhance tumor penetration and reduce systemic toxicity. However, the application of peptides in clinical settings has challenges. Their lower binding affinity and rapid clearance from the bloodstream compared to antibodies often limit their therapeutic efficacy and diagnostic accuracy. This overview sets the stage for a comprehensive review of the current research landscape as it relates to EGFR- and integrin αVβ3-targeting peptides. We aim to delve into their synthesis, radiolabeling techniques, and preclinical and clinical evaluations, highlighting their potential and limitations in cancer theranostics. This review not only synthesizes the extant literature to outline the advancements in peptide-based agents targeting EGFR and integrin αVβ3 but also identifies critical gaps that could inform future research directions. By addressing these gaps, we contribute to the broader discourse on enhancing the diagnostic precision and therapeutic outcomes of cancer treatments.
Collapse
Affiliation(s)
- Cibele Rodrigues Toledo
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
| | - Ahmed A. Tantawy
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Leonardo Lima Fuscaldi
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo 01221-020, Brazil; (L.L.F.); (L.M.)
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo 01221-020, Brazil; (L.L.F.); (L.M.)
| | - Carolina de Aguiar Ferreira
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
22
|
Wang J, Yin B, Lian J, Wang X. Extracellular Vesicles as Drug Delivery System for Cancer Therapy. Pharmaceutics 2024; 16:1029. [PMID: 39204374 PMCID: PMC11359799 DOI: 10.3390/pharmaceutics16081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
In recent decades, the pursuit of drug delivery systems has led to the development of numerous synthetic options aimed at enhancing drug efficacy while minimizing side effects. However, the practical application of these systems is often hindered by challenges such as inefficiency, cytotoxicity, and immunogenicity. Extracellular vesicles, natural carriers for drugs, emerge as promising alternatives with distinct advantages over synthetic carriers. Notably, EVs exhibit biocompatibility, low immunogenicity, and inherent tissue-targeting capabilities, thus opening new avenues for drug delivery strategies. This review provides an overview of EVs, including their biogenesis and absorption mechanisms. Additionally, we explore the current research efforts focusing on harnessing their potential as drug carriers, encompassing aspects such as purification techniques, drug loading, and bioengineering for targeted delivery. Finally, we discuss the existing challenges and future prospects of EVs as therapeutic agents in clinical settings. This comprehensive analysis aims to shed light on the potential of EVs as versatile and effective tools for drug delivery, particularly in the realm of cancer therapy.
Collapse
Affiliation(s)
- Jin Wang
- School of Life Sciences, Liaoning University, Shenyang 110036, China; (J.W.); (J.L.)
| | - Bohang Yin
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Jiabing Lian
- School of Life Sciences, Liaoning University, Shenyang 110036, China; (J.W.); (J.L.)
| | - Xia Wang
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenyang 110122, China
| |
Collapse
|
23
|
Travassos R, Martins SA, Fernandes A, Correia JDG, Melo R. Tailored Viral-like Particles as Drivers of Medical Breakthroughs. Int J Mol Sci 2024; 25:6699. [PMID: 38928403 PMCID: PMC11204272 DOI: 10.3390/ijms25126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.
Collapse
Affiliation(s)
- Rafael Travassos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Ana Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| |
Collapse
|
24
|
Xiang K, Li Y, Cong H, Yu B, Shen Y. Peptide-based non-viral gene delivery: A comprehensive review of the advances and challenges. Int J Biol Macromol 2024; 266:131194. [PMID: 38554914 DOI: 10.1016/j.ijbiomac.2024.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Gene therapy is the most effective treatment option for diseases, but its effectiveness is affected by the choice and design of gene carriers. The genes themselves have to pass through multiple barriers in order to enter the cell and therefore require additional vectors to carry them inside the cell. In gene therapy, peptides have unique properties and potential as gene carriers, which can effectively deliver genes into specific cells or tissues, protect genes from degradation, improve gene transfection efficiency, and enhance gene targeting and biological responsiveness. This paper reviews the research progress of peptides and their derivatives in the field of gene delivery recently, describes the obstacles encountered by foreign materials to enter the interior of the cell, and introduces the following classes of functional peptides that can carry materials into the interior of the cell, and assist in transmembrane translocation of carriers, thus breaking through endosomal traps to enable successful entry of genetic materials into the nucleus of the cell. The paper also discusses the combined application of peptide vectors with other vectors to enhance its transfection ability, explores current challenges encountered by peptide vectors, and looks forward to future developments in the field.
Collapse
Affiliation(s)
- Kai Xiang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
25
|
Lyu M, Yazdi M, Lin Y, Höhn M, Lächelt U, Wagner E. Receptor-Targeted Dual pH-Triggered Intracellular Protein Transfer. ACS Biomater Sci Eng 2024; 10:99-114. [PMID: 35802884 DOI: 10.1021/acsbiomaterials.2c00476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein therapeutics are of widespread interest due to their successful performance in the current pharmaceutical and medical fields, even though their broad applications have been hindered by the lack of an efficient intracellular delivery approach. Herein, we fabricated an active-targeted dual pH-responsive delivery system with favorable tumor cell entry augmented by extracellular pH-triggered charge reversal and tumor receptor targeting and pH-controlled endosomal release in a traceless fashion. As a traceable model protein, the enhanced green fluorescent protein (eGFP) bearing a nuclear localization signal was covalently coupled with a pH-labile traceless azidomethyl-methylmaleic anhydride (AzMMMan) linker followed by functionalization with different molar equivalents of two dibenzocyclooctyne-octa-arginine-cysteine (DBCO-R8C)-modified moieties: polyethylene glycol (PEG)-GE11 peptide for epidermal growth factor receptor-mediated targeting and melittin for endosomal escape. The cationic melittin domain was masked with tetrahydrophthalic anhydride revertible at mild acidic pH 6.5. At the optimally balanced ratio of functional units, the on-demand charge conversion at tumoral extracellular pH 6.5 in combination with GE11-mediated targeting triggered enhanced electrostatic cellular attraction by the R8C cell-penetrating peptides and melittin, as demonstrated by strongly enhanced cellular uptake. Successful endosomal release followed by nuclear localization of the eGFP cargo was obtained by taking advantage of melittin-mediated endosomal escape and rapid traceless release from the AzMMMan linker. The effectiveness of this multifunctional bioresponsive system suggests a promising strategy for delivery of protein drugs toward intracellular targets. A possible therapeutic relevance was indicated by an example of cytosolic delivery of cytochrome c initiating the apoptosis pathway to kill cancer cells.
Collapse
Affiliation(s)
- Meng Lyu
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Yi Lin
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
26
|
Chen W, Sullivan MO. Unnatural Amino Acid Engineering for Intracellular Delivery of Protein Therapeutics. Methods Mol Biol 2024; 2720:151-164. [PMID: 37775664 DOI: 10.1007/978-1-0716-3469-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Protein drugs are a critically important therapeutic modality due to the sophisticated binding recognition, catalytic properties, and disease relevance of proteins. There is a clear need for new strategies able to improve pharmacokinetics, bioavailability, and/or intracellular delivery of therapeutic proteins, as stability limitations have significantly hindered clinical advancement, and most proteins are membrane impermeable. Bioconjugation strategies able to site-specifically modify proteins with cell binding, and other ligands offer a particularly valuable approach to facilitate protein delivery due to the importance of ligand presentation on protein bioactivity and cellular uptake. We explored unnatural amino acid (UAA) incorporation as a novel strategy to tunably incorporate clustered cell-binding ligands in fluorescent proteins and suicide enzymes, resulting in substantial increases in cell-specific uptake and targeted cell-killing activity. These approaches offer a valuable and versatile method to modify a variety of proteins and enable improved clinical potential.
Collapse
Affiliation(s)
- Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
27
|
Sullivan MO, Chen W. Engineering Hepatitis B Virus (HBV) Protein Particles for Therapeutic Delivery. Methods Mol Biol 2024; 2720:115-126. [PMID: 37775661 DOI: 10.1007/978-1-0716-3469-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Nature provides an abundance of proteins whose structures and reactivity have been perfected through evolution to perform specific tasks necessary for biological function. The structural and functional properties of many natural proteins are quite valuable for the construction and customization of drug delivery vehicles. Self-assembling protein nanoparticle platforms are particularly useful scaffolds, as their multi-subunit designs allow the attachment of a high density of modifying molecules such as cell-binding ligands that provide avidity for targeting and facilitate encapsulation of large quantities of therapeutic payload. We explored SpyCatcher/SpyTag conjugation as a system to modify hepatitis B virus (HBV)-like particles (HBV VLPs). Using this simple decoration strategy, we demonstrated efficient and cell-selective killing of inflammatory breast cancer cells via delivery of yeast cytosine deaminase suicide enzymes combined with 5-fluoro-cytosine prodrugs.
Collapse
Affiliation(s)
- Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
28
|
Woodward EA, Wang E, Wallis C, Sharma R, Tie AWJ, Murthy N, Blancafort P. Protocol for Delivery of CRISPR/dCas9 Systems for Epigenetic Editing into Solid Tumors Using Lipid Nanoparticles Encapsulating RNA. Methods Mol Biol 2024; 2842:267-287. [PMID: 39012601 DOI: 10.1007/978-1-0716-4051-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Genome editing tools, particularly the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems (e.g., CRISPR/Cas9), and their repurposing into epigenetic editing platforms, offer enormous potential as safe and customizable therapies for cancer. Specifically, various transcriptional abnormalities in human malignancies, such as silencing of tumor suppressors and ectopic re-expression of oncogenes, have been successfully targeted with virtually no off-target effects using CRISPR activation and repression systems. In these systems, the nuclease-deactivated Cas9 protein (dCas9) is fused to one or more domains inducing selective activation or repression of the targeted genes. Despite these advances, the efficient in vivo delivery of these molecules into the target cancer cells represents a critical barrier to accomplishing translation into a clinical therapy setting for cancer. Major obstacles include the large size of dCas9 fusion proteins, the necessity of multimodal delivery of protein and gRNAs, and the potential of these formulations to elicit detrimental immune responses.In this context, viral methods for delivering CRISPR face several limitations, such as the packaging capacity of the viral genome, the potential for integration of the nucleic acids into the host cells genome, and immunogenicity of viral proteins, posing serious safety concerns. The rapid development of mRNA vaccines in response to the COVID-19 pandemic has rekindled interest in mRNA-based approaches for CRISPR/dCas9 delivery. Simultaneously, due to their high loading capacity, scalability, customizable surface modification for cell targeting, and low immunogenicity, lipid nanoparticles (LNPs) have been widely explored as nonviral vectors. In this chapter, we first describe the design of optimized dCas9-effector mRNAs and gRNAs for epigenetic editing. We outline formulations of LNPs suitable for dCas9 mRNA delivery. Additionally, we provide a protocol for the co-encapsulation of the dCas9-effector mRNAs and gRNA into these LNPs, along with detailed methods for delivering these formulations to both cell lines (in vitro) and mouse models of breast cancer (in vivo).
Collapse
Affiliation(s)
- Eleanor A Woodward
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Edina Wang
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Christopher Wallis
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Rohit Sharma
- Department of Bioengineering, University of California, Berkeley, CA, USA
- The Innovative Genomics Institute, Berkeley, CA, USA
| | - Ash W J Tie
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, CA, USA
- The Innovative Genomics Institute, Berkeley, CA, USA
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA, Australia.
- Centre for Medical Research, University of Western Australia, Perth, WA, Australia.
- The Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
29
|
Zhang S, Chen M, Geng Z, Liu T, Li S, Yu Q, Cao L, Liu D. Potential Application of Self-Assembled Peptides and Proteins in Breast Cancer and Cervical Cancer. Int J Mol Sci 2023; 24:17056. [PMID: 38069380 PMCID: PMC10706889 DOI: 10.3390/ijms242317056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Ongoing research is gradually broadening the idea of cancer treatment, with attention being focused on nanoparticles to improve the stability, therapeutic efficacy, targeting, and other important metrics of conventional drugs and traditional drug delivery methods. Studies have demonstrated that drug delivery carriers based on biomaterials (e.g., protein nanoparticles and lipids) and inorganic materials (e.g., metal nanoparticles) have potential anticancer effects. Among these carriers, self-assembled proteins and peptides, which are highly biocompatible and easy to standardize and produce, are strong candidates for the preparation of anticancer drugs. Breast cancer (BC) and cervical cancer (CC) are two of the most common and deadly cancers in women. These cancers not only threaten lives globally but also put a heavy burden on the healthcare system. Despite advances in medical care, the incidence of these two cancers, particularly CC, which is almost entirely preventable, continues to rise, and the mortality rate remains steady. Therefore, there is still a need for in-depth research on these two cancers to develop more targeted, efficacious, and safe therapies. This paper reviews the types of self-assembling proteins and peptides (e.g., ferritin, albumin, and virus-like particles) and natural products (e.g., soy and paclitaxel) commonly used in the treatment of BC and CC and describes the types of drugs that can be delivered using self-assembling proteins and peptides as carriers (e.g., siRNAs, DNA, plasmids, and mRNAs). The mechanisms (including self-assembly) by which the natural products act on CC and BC are discussed. The mechanism of action of natural products on CC and BC and the mechanism of action of self-assembled proteins and peptides have many similarities (e.g., NF-KB and Wnt). Thus, natural products using self-assembled proteins and peptides as carriers show potential for the treatment of BC and CC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lingling Cao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.Z.); (M.C.); (Z.G.); (T.L.); (S.L.); (Q.Y.)
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.Z.); (M.C.); (Z.G.); (T.L.); (S.L.); (Q.Y.)
| |
Collapse
|
30
|
Verimli N, Goralı Sİ, Abisoglu B, Altan CL, Sucu BO, Karatas E, Tulek A, Bayraktaroglu C, Beker MC, Erdem SS. Development of light and pH-dual responsive self-quenching theranostic SPION to make EGFR overexpressing micro tumors glow and destroy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112797. [PMID: 37862898 DOI: 10.1016/j.jphotobiol.2023.112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Drug resistant and undetectable tumors easily escape treatment leading metastases and/or recurrence of the lethal disease. Therefore, it is vital to diagnose and destroy micro tumors using simple yet novel approaches. Here, we present fluorescence-based detection and light-based destruction of cancer cells that are known to be resistant to standard therapies. We developed a superparamagnetic iron oxide nanoparticle (SPION)-based theranostic agent that is composed of self-quenching light activated photosensitizer (BPD) and EGFR targeting ligand (Anti-EGFR ScFv or GE11 peptide). Photosensitizer (BPD) was immobilized to PEG-PEI modified SPION with acid-labile linker. Prior to stimulation of the theranostic system by light its accumulation within cancer cells is vital since BPD phototoxicity and fluorescence is activated by lysosomal proteolysis. As BPD is cleaved, the system switches from off to on position which triggers imaging and therapy. Targeting, therapeutic and diagnostic features of the theranostic system were evaluated in high and moderate level EGFR expressing pancreatic cancer cell lines. Our results indicate that the system distinguishes high and moderate EGFR expression levels and yields up to 4.3-fold increase in intracellular fluorescence intensity. Amplification of fluorescence signal was as low as 1.3-fold in the moderate or no EGFR expressing cell lines. Anti-EGFR ScFv targeted SPION caused nearly 2-fold higher cell death via apoptosis in high EGFR expressing Panc-1 cell line. The developed system, possessing advanced targeting, enhanced imaging and effective therapeutic features, is a promising candidate for multi-mode detection and destruction of residual drug-resistant cancer cells.
Collapse
Affiliation(s)
- Nihan Verimli
- Research Institute for Health Science and Technologies (SABITA), 34810 Istanbul, Turkey; International School of Medicine, Medical Biochemistry, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - S İrem Goralı
- Research Institute for Health Science and Technologies (SABITA), 34810 Istanbul, Turkey; International School of Medicine, Medical Biochemistry, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Beyza Abisoglu
- Department of Chemical Engineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Cem Levent Altan
- Department of Chemical Engineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Bilgesu Onur Sucu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul Medipol University, Istanbul, Turkey; Center of Drug Discovery and Development, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Ersin Karatas
- Ağrı İbrahim Çeçen University, Patnos Vocational School, Department of Medical Services and Techniques, Ağrı, Turkey
| | - Ahmet Tulek
- Iğdır University, Vocational School of Health Services, Department of Care Services, Iğdır, Turkey
| | - Cigdem Bayraktaroglu
- Research Institute for Health Science and Technologies (SABITA), 34810 Istanbul, Turkey
| | - Mustafa Caglar Beker
- Research Institute for Health Science and Technologies (SABITA), 34810 Istanbul, Turkey
| | - S Sibel Erdem
- Research Institute for Health Science and Technologies (SABITA), 34810 Istanbul, Turkey; International School of Medicine, Medical Biochemistry, Istanbul Medipol University, 34810 Istanbul, Turkey.
| |
Collapse
|
31
|
Ge M, Zhu Y, Wei M, Piao H, He M. Improving the efficacy of anti-EGFR drugs in GBM: Where we are going? Biochim Biophys Acta Rev Cancer 2023; 1878:188996. [PMID: 37805108 DOI: 10.1016/j.bbcan.2023.188996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
The therapies targeting mutations of driver genes in cancer have advanced into clinical trials for a variety of tumors. In glioblastoma (GBM), epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene, and targeting EGFR has been widely investigated as a promising direction. However, the results of EGFR pathway inhibitors have not been satisfactory. Limited blood-brain barrier (BBB) permeability, drug resistance, and pathway compensation mechanisms contribute to the failure of anti-EGFR therapies. This review summarizes recent research advances in EGFR-targeted therapy for GBM and provides insight into the reasons for the unsatisfactory results of EGFR-targeted therapy. By combining the results of preclinical studies with those of clinical trials, we discuss that improved drug penetration across the BBB, the use of multi-target combinations, and the development of peptidomimetic drugs under the premise of precision medicine may be promising strategies to overcome drug resistance in GBM.
Collapse
Affiliation(s)
- Manxi Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Yan Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, China.
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| |
Collapse
|
32
|
Singh S, Sadhukhan S, Sonawane A. 20 years since the approval of first EGFR-TKI, gefitinib: Insight and foresight. Biochim Biophys Acta Rev Cancer 2023; 1878:188967. [PMID: 37657684 DOI: 10.1016/j.bbcan.2023.188967] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) actively involves in modulation of various cancer progression related mechanisms including angiogenesis, differentiation and migration. Therefore, targeting EGFR has surfaced as a prominent approach for the treatment of several types of cancers, including non-small cell lung cancer (NSCLC), pancreatic cancer, glioblastoma. Various first, second and third generation of EGFR tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated effectiveness as an anti-cancer therapeutics. However, rapid development of drug resistance and mutations still remains a major challenge for the EGFR-TKIs therapy. Overcoming from intrinsic and acquired resistance caused by EGFR mutations warrants the further exploration of alternative strategies and discovery of novel inhibitors. In this review, we delve into the breakthrough discoveries have been made in previous 20 years, and discuss the currently ongoing efforts aimed to circumvent the chemo-resistance. We also highlight the new challenges, limitations and future directions for the development of improved therapeutic approaches such as fourth-generation EGFR-TKIs, peptides, nanobodies, PROTACs etc.
Collapse
Affiliation(s)
- Satyam Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453 552, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678 623, India.
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453 552, India.
| |
Collapse
|
33
|
Malekian F, Shamsian A, Kodam SP, Ullah M. Exosome engineering for efficient and targeted drug delivery: Current status and future perspective. J Physiol 2023; 601:4853-4872. [PMID: 35570717 DOI: 10.1113/jp282799] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2023] Open
Abstract
Exosomes are membrane-bound vesicles that are released by most cells. They carry nucleic acids, cytokines, growth factors, proteins, lipids, and metabolites. They are responsible for inter- and intracellular communications and their role in drug delivery is well defined. Exosomes have great potential for therapeutic applications, but the clinical use is restricted because of limitations in standardized procedures for isolation, purification, and drug delivery. Bioengineering of exosomes could be one approach to achieve standardization and reproducible isolation for clinical use. Exosomes are important transporters for targeted drug delivery because of their small size, stable structure, non-immunogenicity, and non-toxic nature, as well as their ability to carry a wide variety of compounds. These features of exosomes can be enhanced further by bioengineering. In this review, possible exosome bioengineering approaches, their biomedical applications, and targeted drug delivery are discussed.
Collapse
Affiliation(s)
- Farzaneh Malekian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Alireza Shamsian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
34
|
Li H, Peng W, Zhen Z, Zhang W, Liao S, Wu X, Wang L, Xuan A, Gao Y, Xu J. Integrin α vβ 3 and EGFR dual-targeted [ 64Cu]Cu-NOTA-RGD-GE11 heterodimer for PET imaging in pancreatic cancer mouse model. Nucl Med Biol 2023; 124-125:108364. [PMID: 37591041 DOI: 10.1016/j.nucmedbio.2023.108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE Radiolabeled heterodimeric peptide has emerged as a highly promising targeting strategy for PET imaging due to their superior properties. RGD and GE11 are two peptides binding to receptor integrin αvβ3 and EGFR, respectively, which both overexpress in many different types of tumors. This study focuses on the synthesis and evaluation of a RGD and GE11-containing heterodimeric radiotracer [64Cu]Cu-NOTA-RGD-GE11 for PET imaging of tumors that simultaneously overexpress integrin αvβ3 and EGFR. PROCEDURES [64Cu]Cu-NOTA-RGD-GE11 was prepared by the conjugation of RGD-PEG4-NOTA-N3 and GE11-PEG4-BCN via metal-free click chemistry, followed by radiolabeling with 64Cu. Cell uptake and efflux studies, saturation binding assay, the animal PET/CT and biodistribution studies were conducted to characterize the biological properties of [64Cu]Cu-NOTA-RGD-GE11. RESULTS [64Cu]Cu-NOTA-RGD-GE11 was synthesized with a radiochemical purity of >97 % and molar activity of 23 GBq/μmol at the end of synthesis. [64Cu]Cu-NOTA-RGD-GE11 showed moderate hydrophilicity, good stability in mouse serum and high specific uptake by the human pancreatic cancer cell line (BxPC3) in the in vitro studies. Compared to the two monomeric counterparts [64Cu]Cu-NOTA-RGD and [64Cu]Cu-NOTA-GE11, [64Cu]Cu-NOTA-RGD-GE11 demonstrated significantly improved tumor uptakes (e.g. 4.63 ± 0.25 %ID/g vs 1.24 ± 0.18 %ID/g and 0.77 ± 0.13 %ID/g, 2 h after injection, p < 0.05) in the subsequent in vivo evaluation in mice bearing BxPC3 xenograft. Tumor uptake could be blocked in the presence of both non-radioactive c(RGDyK) and GE11 peptides, indicating good tumor specificity of [64Cu]Cu-NOTA-RGD-GE11 in vivo. CONCLUSION The results suggested that the as-developed [64Cu]Cu-NOTA-RGD-GE11 could serve as a potential PET tracer for the noninvasive imaging of integrin αvβ3 and EGFR expression in tumors.
Collapse
Affiliation(s)
- Huiqiang Li
- Department of Nuclear Medicine, Henan Key Laboratory of Novel Molecular Probes and Clinical Translation in Nuclear Medicine, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Wenhua Peng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifei Zhen
- Department of Nuclear Medicine, Henan Key Laboratory of Novel Molecular Probes and Clinical Translation in Nuclear Medicine, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Weifeng Zhang
- Department of Nuclear Medicine, Henan Key Laboratory of Novel Molecular Probes and Clinical Translation in Nuclear Medicine, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Shuguang Liao
- Department of Nuclear Medicine, Henan Key Laboratory of Novel Molecular Probes and Clinical Translation in Nuclear Medicine, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xinyu Wu
- Department of Nuclear Medicine, Henan Key Laboratory of Novel Molecular Probes and Clinical Translation in Nuclear Medicine, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Li Wang
- Henan Academy of Medical Sciences, Zhengzhou, 450003, China
| | - Ang Xuan
- Department of Nuclear Medicine, Henan Key Laboratory of Novel Molecular Probes and Clinical Translation in Nuclear Medicine, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| | - Yongju Gao
- Department of Nuclear Medicine, Henan Key Laboratory of Novel Molecular Probes and Clinical Translation in Nuclear Medicine, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| | - Junling Xu
- Department of Nuclear Medicine, Henan Key Laboratory of Novel Molecular Probes and Clinical Translation in Nuclear Medicine, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
35
|
Qiao Y, Xu B. Peptide Assemblies for Cancer Therapy. ChemMedChem 2023; 18:e202300258. [PMID: 37380607 PMCID: PMC10613339 DOI: 10.1002/cmdc.202300258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Supramolecular assemblies made by the self-assembly of peptides are finding an increasing number of applications in various fields. While the early exploration of peptide assemblies centered on tissue engineering or regenerative medicine, the recent development has shown that peptide assemblies can act as supramolecular medicine for cancer therapy. This review covers the progress of applying peptide assemblies for cancer therapy, with the emphasis on the works appeared over the last five years. We start with the introduction of a few seminal works on peptide assemblies, then discuss the combination of peptide assemblies with anticancer drugs. Next, we highlight the use of enzyme-controlled transformation or shapeshifting of peptide assemblies for inhibiting cancer cells and tumors. After that, we provide the outlook for this exciting field that promises new kind of therapeutics for cancer therapy.
Collapse
Affiliation(s)
- Yuchen Qiao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
36
|
Kaps L, Limeres MJ, Schneider P, Svensson M, Zeyn Y, Fraude S, Cacicedo ML, Galle PR, Gehring S, Bros M. Liver Cell Type-Specific Targeting by Nanoformulations for Therapeutic Applications. Int J Mol Sci 2023; 24:11869. [PMID: 37511628 PMCID: PMC10380755 DOI: 10.3390/ijms241411869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocytes exert pivotal roles in metabolism, protein synthesis and detoxification. Non-parenchymal liver cells (NPCs), largely comprising macrophages, dendritic cells, hepatic stellate cells and liver sinusoidal cells (LSECs), serve to induce immunological tolerance. Therefore, the liver is an important target for therapeutic approaches, in case of both (inflammatory) metabolic diseases and immunological disorders. This review aims to summarize current preclinical nanodrug-based approaches for the treatment of liver disorders. So far, nano-vaccines that aim to induce hepatitis virus-specific immune responses and nanoformulated adjuvants to overcome the default tolerogenic state of liver NPCs for the treatment of chronic hepatitis have been tested. Moreover, liver cancer may be treated using nanodrugs which specifically target and kill tumor cells. Alternatively, nanodrugs may target and reprogram or deplete immunosuppressive cells of the tumor microenvironment, such as tumor-associated macrophages. Here, combination therapies have been demonstrated to yield synergistic effects. In the case of autoimmune hepatitis and other inflammatory liver diseases, anti-inflammatory agents can be encapsulated into nanoparticles to dampen inflammatory processes specifically in the liver. Finally, the tolerance-promoting activity especially of LSECs has been exploited to induce antigen-specific tolerance for the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Leonard Kaps
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - María José Limeres
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Paul Schneider
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Malin Svensson
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Silvia Fraude
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter R Galle
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
37
|
Sciscione F, Guillaumé S, Aliev AE, Cook DT, Bronstein H, Hailes HC, Beard PC, Kalber TL, Ogunlade O, Tabor AB. EGFR-targeted semiconducting polymer nanoparticles for photoacoustic imaging. Bioorg Med Chem 2023; 91:117412. [PMID: 37473615 DOI: 10.1016/j.bmc.2023.117412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Semiconducting polymer nanoparticles (SPN), formulated from organic semiconducting polymers and lipids, show promise as exogenous contrast agents for photoacoustic imaging (PAI). To fully realise the potential of this class of nanoparticles for imaging and therapeutic applications, a broad range of active targeting strategies, where ligands specific to receptors on the target cells are displayed on the SPN surface, are urgently needed. In addition, effective strategies for quantifying the level of surface modification are also needed to support development of ligand-targeted SPN. In this paper, we have developed methods to prepare SPN bearing peptides targeted to Epidermal Growth Factor Receptors (EGFR), which are overexpressed at the surface of a wide variety of cancer cell types. In addition to fully characterising these targeted nanoparticles by standard methods (UV-visible, photoacoustic absorption, dynamic light scattering, zeta potential and SEM), we have developed a powerful new NMR method to determine the degree of conjugation and the number of targeting peptides attached to the SPN. Preliminary in vitro experiments with the colorectal cancer cell line LIM1215 indicated that the EGFR-targeting peptide conjugated SPN were either ineffective in delivering the SPN to the cells, or that the targeting peptide itself destabilised the formulation. This in reinforces the need for effective characterisation techniques to measure the surface accessibility of targeting ligands attached to nanoparticles.
Collapse
Affiliation(s)
- Fabiola Sciscione
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Simon Guillaumé
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Abil E Aliev
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Declan T Cook
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Hugo Bronstein
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Paul C Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, University College London, Paul O'Gorman Building, London WC1E 6DD, UK
| | - Olumide Ogunlade
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
38
|
Chinnadurai RK, Khan N, Meghwanshi GK, Ponne S, Althobiti M, Kumar R. Current research status of anti-cancer peptides: Mechanism of action, production, and clinical applications. Biomed Pharmacother 2023; 164:114996. [PMID: 37311281 DOI: 10.1016/j.biopha.2023.114996] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
The escalating rate of cancer cases, together with treatment deficiencies and long-term side effects of currently used cancer drugs, has made this disease a global burden of the 21st century. The number of breast and lung cancer patients has sharply increased worldwide in the last few years. Presently, surgical treatment, radiotherapy, chemotherapy, and immunotherapy strategies are used to cure cancer, which cause severe side effects, toxicities, and drug resistance. In recent years, anti-cancer peptides have become an eminent therapeutic strategy for cancer treatment due to their high specificity and fewer side effects and toxicity. This review presents an updated overview of different anti-cancer peptides, their mechanisms of action and current production strategies employed for their manufacture. In addition, approved and under clinical trials anti-cancer peptides and their applications have been discussed. This review provides updated information on therapeutic anti-cancer peptides that hold great promise for cancer treatment in the near future.
Collapse
Affiliation(s)
- Raj Kumar Chinnadurai
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed-to-be-University), Pondicherry 607402, India
| | - Nazam Khan
- Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra, Kingdom of Saudi Arabia
| | | | - Saravanaraman Ponne
- Department of Biotechnology, Pondicherry University, Pondicherry 605014, India
| | - Maryam Althobiti
- Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra, Kingdom of Saudi Arabia.
| | - Rajender Kumar
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden.
| |
Collapse
|
39
|
Patel U, Rathnayake K, Singh N, Hunt EC. Dual Targeted Delivery of Liposomal Hybrid Gold Nano-Assembly for Enhanced Photothermal Therapy against Lung Carcinomas. ACS APPLIED BIO MATERIALS 2023; 6:1915-1933. [PMID: 37083301 DOI: 10.1021/acsabm.3c00130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The delivery and accumulation of therapeutic drugs into cancer cells without affecting healthy cells are a major challenge for antitumor therapy. Here, we report the synthesis of a liposomal hybrid gold nano-assembly with enhanced photothermal activity for lung cancer treatment. The core components of the nano-assembly include gold nanorods coated with a mesoporous silica shell that offers an excellent drug-loading surface for encapsulation of doxorubicin. To enhance the photothermal capacity of nano-assembly, IR 780 dye was loaded inside a thermo-sensitive liposome, and then, the core nano-assembly was wrapped within the liposome, and GE-11 peptide and folic acid were conjugated onto the surface of the liposome to give the final nano-assembly [(GM@Dox) LI]-PF. The dual targeting approach of [(GM@Dox) LI]-PF leads to enhanced cellular uptake and improves the accumulation of nano-assemblies in cancer cells that overexpress the epidermal growth factor receptor and folate. The exposure of near-infrared laser irradiation can trigger photothermal-induced structural disruption of the nano-assembly, which allows for the precise and controllable release of Dox at targeted sites. Additionally, chemo-photothermal therapy was shown to be 11 times more effective in cancer cell treatment when compared to Dox alone. Our systematic study suggests that the nano-assemblies facilitate the cancer cells undergoing apoptosis via an intrinsic mitochondrial pathway that can be directly triggered by the chemo-photothermal treatment. This study offers an appealing candidate that holds great promise for synergistic cancer treatment.
Collapse
Affiliation(s)
- Unnati Patel
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Kavini Rathnayake
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Nirupama Singh
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Emily C Hunt
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| |
Collapse
|
40
|
Nisticò N, Aloisio A, Lupia A, Zimbo AM, Mimmi S, Maisano D, Russo R, Marino F, Scalise M, Chiarella E, Mancuso T, Fiume G, Omodei D, Zannetti A, Salvatore G, Quinto I, Iaccino E. Development of Cyclic Peptides Targeting the Epidermal Growth Factor Receptor in Mesenchymal Triple-Negative Breast Cancer Subtype. Cells 2023; 12:cells12071078. [PMID: 37048151 PMCID: PMC10093212 DOI: 10.3390/cells12071078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignancy characterized by the lack of expression of estrogen and progesterone receptors and amplification of human epidermal growth factor receptor 2 (HER2). Being the Epidermal Growth Factor Receptor (EGFR) highly expressed in mesenchymal TNBC and correlated with aggressive growth behavior, it represents an ideal target for anticancer drugs. Here, we have applied the phage display for selecting two highly specific peptide ligands for targeting the EGFR overexpressed in MDA-MB-231 cells, a human TNBC cell line. Molecular docking predicted the peptide-binding affinities and sites in the extracellular domain of EGFR. The binding of the FITC-conjugated peptides to human and murine TNBC cells was validated by flow cytometry. Confocal microscopy confirmed the peptide binding specificity to EGFR-positive MDA-MB-231 tumor xenograft tissues and their co-localization with the membrane EGFR. Further, the peptide stimulation did not affect the cell cycle of TNBC cells, which is of interest for their utility for tumor targeting. Our data indicate that these novel peptides are highly specific ligands for the EGFR overexpressed in TNBC cells, and thus they could be used in conjugation with nanoparticles for tumor-targeted delivery of anticancer drugs.
Collapse
Affiliation(s)
- Nancy Nisticò
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Annamaria Aloisio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Lupia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
- Net4Science srl, University “Magna Græcia”, 88100 Catanzaro, Italy
| | - Anna Maria Zimbo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Domenico Maisano
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Rossella Russo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Teresa Mancuso
- “Annunziata” Regional Hospital Cosenza, 87100 Cosenza, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela Omodei
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy
| | - Giuliana Salvatore
- Dipartimento di Scienze Motorie e del Benessere, Università degli studi di Napoli “Parthenope”, 80133 Naples, Italy
- CEINGE- Biotecnologie Avanzate S.C.A.R.L., 80145 Naples, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
41
|
Li D, Ma S, Xu D, Meng X, Lei N, Liu C, Zhao Y, Qi Y, Cheng Z, Wang F. Peptide-functionalized therapeutic nanoplatform for treatment orthotopic triple negative breast cancer and bone metastasis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 50:102669. [PMID: 36933756 DOI: 10.1016/j.nano.2023.102669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/26/2022] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) is a promising therapeutic target for triple-negative breast cancer (TNBC). Recently, specific EGFR-targeting peptide GE11-based delivery nano-system shows excellent potential because of its chemical versatility and good targeting ability. However, no further research focusing on the downstream of EGFR after binding with GE11 was explored. Hence, we tailor-designed a self-assembled nanoplatform named GENP using amphiphilic molecule of stearic acid-modified GE11. After loading doxorubicin (DOX), the resulted nanoplatform GENP@DOX demonstrated high loading efficiency and sustainable drug release. Importantly, our findings proved that GENP alone significantly suppressed the proliferation of MDA-MB-231 cells via EGFR-downstream PI3K/AKT signaling pathways, contributing to the synergistic treatment with its DOX release. Further work illustrated remarkable therapeutic efficacy both in orthotopic TNBC and its bone metastasis models with minimal biotoxicity. Together, the results highlight that our GENP-functionalized nanoplatform is a promising strategy for the synergistic therapeutic efficacy targeting EGFR-overexpressed cancer.
Collapse
Affiliation(s)
- Daifeng Li
- Department of Orthopedics, Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Shengnan Ma
- Department of Orthopedics, Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Denghui Xu
- Department of Orthopedics, Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaocao Meng
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ningjing Lei
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chen Liu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yingqiu Qi
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China; Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
| | - Fazhan Wang
- Department of Orthopedics, Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
42
|
Pan Q, Lu Y, Xie L, Wu D, Liu R, Gao W, Luo K, He B, Pu Y. Recent Advances in Boosting EGFR Tyrosine Kinase Inhibitors-Based Cancer Therapy. Mol Pharm 2023; 20:829-852. [PMID: 36588471 DOI: 10.1021/acs.molpharmaceut.2c00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a key role in signal transduction pathways associated with cell proliferation, growth, and survival. Its overexpression and aberrant activation in malignancy correlate with poor prognosis and short survival. Targeting inhibition of EGFR by small-molecular tyrosine kinase inhibitors (TKIs) is emerging as an important treatment model besides of chemotherapy, greatly reshaping the landscape of cancer therapy. However, they are still challenged by the off-targeted toxicity, relatively limited cancer types, and drug resistance after long-term therapy. In this review, we summarize the recent progress of oral, pulmonary, and injectable drug delivery systems for enhanced and targeting TKI delivery to tumors and reduced side effects. Importantly, EGFR-TKI-based combination therapies not only greatly broaden the applicable cancer types of EGFR-TKI but also significantly improve the anticancer effect. The mechanisms of TKI resistance are summarized, and current strategies to overcome TKI resistance as well as the application of TKI in reversing chemotherapy resistance are discussed. Finally, we provide a perspective on the future research of EGFR-TKI-based cancer therapy.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
43
|
Ahmadi M, Ahmadyousefi Y, Salimi Z, Mirzaei R, Najafi R, Amirheidari B, Rahbarizadeh F, Kheshti J, Safari A, Soleimani M. Innovative Diagnostic Peptide-Based Technologies for Cancer Diagnosis: Focus on EGFR-Targeting Peptides. ChemMedChem 2023; 18:e202200506. [PMID: 36357328 DOI: 10.1002/cmdc.202200506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Active targeting using biological ligands has emerged as a novel strategy for the targeted delivery of diagnostic agents to tumor cells. Conjugating functional targeting moieties with diagnostic probes can increase their accumulation in tumor cells and tissues, enhancing signal detection and, thus, the sensitivity of diagnosis. Due to their small size, ease of chemical synthesis and site-specific modification, high tissue penetration, low immunogenicity, rapid blood clearance, low cost, and biosafety, peptides offer several advantages over antibodies and proteins in diagnostic applications. Epidermal growth factor receptor (EGFR) is one of the most promising cancer biomarkers for actively targeting diagnostic and therapeutic agents to tumor cells due to its active involvement and overexpression in various cancers. Several peptides for EGFR-targeting have been identified in the last decades, which have been obtained by multiple means including derivation from natural proteins, phage display screening, positional scanning synthetic combinatorial library, and in silico screening. Many studies have used these peptides as a targeting moiety for diagnosing different cancers in vitro, in vivo, and in clinical trials. This review summarizes the progress of EGFR-targeting peptide-based assays in the molecular diagnosis of cancer.
Collapse
Affiliation(s)
- Mohammad Ahmadi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Salimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Kheshti
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Safari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
44
|
Obozina AS, Komedchikova EN, Kolesnikova OA, Iureva AM, Kovalenko VL, Zavalko FA, Rozhnikova TV, Tereshina ED, Mochalova EN, Shipunova VO. Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo. Pharmaceutics 2023; 15:231. [PMID: 36678860 PMCID: PMC9861179 DOI: 10.3390/pharmaceutics15010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Targeted nanoparticles of different origins are considered as new-generation diagnostic and therapeutic tools. However, there are no targeted drug formulations within the composition of nanoparticles approved by the FDA for use in the clinic, which is associated with the insufficient effectiveness of the developed candidates, the difficulties of their biotechnological production, and inadequate batch-to-batch reproducibility. Targeted protein self-assembling nanoparticles circumvent this problem since proteins are encoded in DNA and the final protein product is produced in only one possible way. We believe that the combination of the endless biomedical potential of protein carriers as nanoparticles and the standardized protein purification protocols will make significant progress in "magic bullet" creation possible, bringing modern biomedicine to a new level. In this review, we are focused on the currently existing platforms for targeted self-assembling protein nanoparticles based on transferrin, lactoferrin, casein, lumazine synthase, albumin, ferritin, and encapsulin proteins, as well as on proteins from magnetosomes and virus-like particles. The applications of these self-assembling proteins for targeted delivery in vitro and in vivo are thoroughly discussed, including bioimaging applications and different therapeutic approaches, such as chemotherapy, gene delivery, and photodynamic and photothermal therapy. A critical assessment of these protein platforms' efficacy in biomedicine is provided and possible problems associated with their further development are described.
Collapse
Affiliation(s)
| | | | | | - Anna M. Iureva
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Fedor A. Zavalko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | | | - Elizaveta N. Mochalova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
45
|
Guo L, Wang J, Li N, Cui J, Su Y. Peptides for diagnosis and treatment of ovarian cancer. Front Oncol 2023; 13:1135523. [PMID: 37213272 PMCID: PMC10196167 DOI: 10.3389/fonc.2023.1135523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Ovarian cancer is the most deadly gynecologic malignancy, and its incidence is gradually increasing. Despite improvements after treatment, the results are unsatisfactory and survival rates are relatively low. Therefore, early diagnosis and effective treatment remain two major challenges. Peptides have received significant attention in the search for new diagnostic and therapeutic approaches. Radiolabeled peptides specifically bind to cancer cell surface receptors for diagnostic purposes, while differential peptides in bodily fluids can also be used as new diagnostic markers. In terms of treatment, peptides can exert cytotoxic effects directly or act as ligands for targeted drug delivery. Peptide-based vaccines are an effective approach for tumor immunotherapy and have achieved clinical benefit. In addition, several advantages of peptides, such as specific targeting, low immunogenicity, ease of synthesis and high biosafety, make peptides attractive alternative tools for the diagnosis and treatment of cancer, particularly ovarian cancer. In this review, we focus on the recent research progress regarding peptides in the diagnosis and treatment of ovarian cancer, and their potential applications in the clinical setting.
Collapse
|
46
|
Zhang L, Tang L, Jiang Y, Wang C, Huang L, Ding T, Zhang T, Li H, Xie L. GE11-antigen-loaded hepatitis B virus core antigen virus-like particles efficiently bind to TNBC tumor. Front Oncol 2023; 13:1110751. [PMID: 37020877 PMCID: PMC10067716 DOI: 10.3389/fonc.2023.1110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Purpose This study aimed to explore the possibility of utilizing hepatitis B core protein (HBc) virus-like particles (VLPs) encapsulate doxorubicin (Dox) to reduce the adverse effect caused by its off-target and toxic side effect. Methods Here, a triple-negative breast cancer (TNBC) tumor-targeting GE11-HBc VLP was constructed through genetic engineering. The GE11 peptide, a 12-amino-acid peptide targeting epidermal growth factor receptor (EGFR), was inserted into the surface protein loops of VLPs. The Dox was loaded into HBc VLPs by a thermal-triggered encapsulation strategy. The in vitro release, cytotoxicity, and cellular uptake of TNBC tumor-targeting GE11-HBc VLPs was then evaluated. Results These VLPs possessed excellent stability, DOX loading efficiency, and preferentially released drug payload at high GSH levels. The insertion of GE11 targeting peptide caused improved cellular uptake and enhanced cell viability inhibitory in EGFR high-expressed TNBC cells. Conclusion Together, these results highlight DOX-loaded, EGFR-targeted VLPs as a potentially useful therapeutic choice for EGFR-overexpressing TNBC.
Collapse
Affiliation(s)
- Long Zhang
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Lin Tang
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongsheng Jiang
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Chenou Wang
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Huang
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Ting Ding
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Tinghong Zhang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- *Correspondence: Tinghong Zhang, ; Huaqiong Li, ; Longteng Xie,
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Tinghong Zhang, ; Huaqiong Li, ; Longteng Xie,
| | - Longteng Xie
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- *Correspondence: Tinghong Zhang, ; Huaqiong Li, ; Longteng Xie,
| |
Collapse
|
47
|
Mahto AK, Kumari S, Akbar S, Paroha S, Sahoo PK, Kumar A, Dewangan RP. Peptide-Based Therapeutics and Drug Delivery Systems. DRUGS AND A METHODOLOGICAL COMPENDIUM 2023:173-211. [DOI: 10.1007/978-981-19-7952-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
48
|
Mansour S, Adhya I, Lebleu C, Dumpati R, Rehan A, Chall S, Dai J, Errasti G, Delacroix T, Chakrabarti R. Identification of a novel peptide ligand for the cancer-specific receptor mutation EGFRvIII using high-throughput sequencing of phage-selected peptides. Sci Rep 2022; 12:20725. [PMID: 36456600 PMCID: PMC9715707 DOI: 10.1038/s41598-022-25257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
We report here the selection and characterization of a novel peptide ligand using phage display targeted against the cancer-specific epidermal growth factor tyrosine kinase receptor mutation variant III (EGFRvIII). This receptor is expressed in several kinds of cancer: ovarian cancer, breast cancer and glioblastoma, but not in normal tissues. A 12-mer random peptide library was screened against EGFRvIII. Phage-selected peptides were sequenced in high-throughput by next generation sequencing (NGS), and their diversity was studied to identify highly abundant clones expected to bind with the highest affinities to EGFRvIII. The enriched peptides were characterized and their binding capacity towards stable cell lines expressing EGFRvIII, EGFR wild type (EGFR WT), or a low endogenous level of EGFR WT was confirmed by flow cytometry analysis. The best peptide candidate, VLGREEWSTSYW, was synthesized, and its binding specificity towards EGFRvIII was validated in vitro. Additionally, computational docking analysis suggested that the identified peptide binds selectively to EGFRvIII. The novel VLGREEWSTSYW peptide is thus a promising EGFRvIII-targeting agent for future applications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sourour Mansour
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Indranil Adhya
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Coralie Lebleu
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Rama Dumpati
- Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India
| | - Ahmed Rehan
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Santu Chall
- Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India
| | - Jingqi Dai
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Gauthier Errasti
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Thomas Delacroix
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Raj Chakrabarti
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France ,Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India ,Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Ste 110, Mount Laurel, NJ 08054 USA
| |
Collapse
|
49
|
Shrestha A, Lahooti B, Mikelis CM, Mattheolabakis G. Chlorotoxin and Lung Cancer: A Targeting Perspective for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122613. [PMID: 36559106 PMCID: PMC9786857 DOI: 10.3390/pharmaceutics14122613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In the generational evolution of nano-based drug delivery carriers, active targeting has been a major milestone for improved and selective drug accumulation in tissues and cell types beyond the existing passive targeting capabilities. Among the various active targeting moieties, chlorotoxin, a peptide extracted from scorpions, demonstrated promising tumor cell accumulation and selection. With lung cancer being among the leading diagnoses of cancer-related deaths in both men and women, novel therapeutic methodologies utilizing nanotechnology for drug delivery emerged. Given chlorotoxin's promising biological activity, we explore its potential against lung cancer and its utilization for active targeting against this cancer's tumor cells. Our analysis indicates that despite the extensive chlorotoxin's research against glioblastoma, lung cancer research with the molecule has been limited, despite some promising early results.
Collapse
Affiliation(s)
- Archana Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
- Correspondence:
| |
Collapse
|
50
|
Dzhumashev D, Timpanaro A, Ali S, De Micheli AJ, Mamchaoui K, Cascone I, Rössler J, Bernasconi M. Quantum Dot-Based Screening Identifies F3 Peptide and Reveals Cell Surface Nucleolin as a Therapeutic Target for Rhabdomyosarcoma. Cancers (Basel) 2022; 14:5048. [PMID: 36291832 PMCID: PMC9600270 DOI: 10.3390/cancers14205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Active drug delivery by tumor-targeting peptides is a promising approach to improve existing therapies for rhabdomyosarcoma (RMS), by increasing the therapeutic effect and decreasing the systemic toxicity, e.g., by drug-loaded peptide-targeted nanoparticles. Here, we tested 20 different tumor-targeting peptides for their ability to bind to two RMS cell lines, Rh30 and RD, using quantum dots Streptavidin and biotin-peptides conjugates as a model for nanoparticles. Four peptides revealed a very strong binding to RMS cells: NCAM-1-targeting NTP peptide, nucleolin-targeting F3 peptide, and two Furin-targeting peptides, TmR and shTmR. F3 peptide showed the strongest binding to all RMS cell lines tested, low binding to normal control myoblasts and fibroblasts, and efficient internalization into RMS cells demonstrated by the cytoplasmic delivery of the Saporin toxin. The expression of the nucleophosphoprotein nucleolin, the target of F3, on the surface of RMS cell lines was validated by competition with the natural ligand lactoferrin, by colocalization with the nucleolin-binding aptamer AS1411, and by the marked sensitivity of RMS cell lines to the growth inhibitory nucleolin-binding N6L pseudopeptide. Taken together, our results indicate that nucleolin-targeting by F3 peptide represents a potential therapeutic approach for RMS.
Collapse
Affiliation(s)
- Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Safa Ali
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Andrea J. De Micheli
- Department of Oncology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 3032 Zurich, Switzerland
| | - Kamel Mamchaoui
- Centre de Recherche en Myologie, Institut de Myologie, INSERM, Sorbonne Université, F-75013 Paris, France
| | - Ilaria Cascone
- IMRB, INSERM, University Paris Est Creteil, 94010 Creteil, France
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d’Investigation Clinique Biothérapie, 94010 Créteil, France
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 3032 Zurich, Switzerland
| |
Collapse
|