1
|
Chintala NK, Choe JK, McGee E, Bellis R, Saini JK, Banerjee S, Moreira AL, Zauderer MG, Adusumilli PS, Rusch VW. Correlative analysis from a phase I clinical trial of intrapleural administration of oncolytic vaccinia virus (Olvi-vec) in patients with malignant pleural mesothelioma. Front Immunol 2023; 14:1112960. [PMID: 36875061 PMCID: PMC9977791 DOI: 10.3389/fimmu.2023.1112960] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Background The attenuated, genetically engineered vaccinia virus has been shown to be a promising oncolytic virus for the treatment of patients with solid tumors, through both direct cytotoxic and immune-activating effects. Whereas systemically administered oncolytic viruses can be neutralized by pre-existing antibodies, locoregionally administered viruses can infect tumor cells and generate immune responses. We conducted a phase I clinical trial to investigate the safety, feasibility and immune activating effects of intrapleural administration of oncolytic vaccinia virus (NCT01766739). Methods Eighteen patients with malignant pleural effusion due to either malignant pleural mesothelioma or metastatic disease (non-small cell lung cancer or breast cancer) underwent intrapleural administration of the oncolytic vaccinia virus using a dose-escalating method, following drainage of malignant pleural effusion. The primary objective of this trial was to determine a recommended dose of attenuated vaccinia virus. The secondary objectives were to assess feasibility, safety and tolerability; evaluate viral presence in the tumor and serum as well as viral shedding in pleural fluid, sputum, and urine; and evaluate anti-vaccinia virus immune response. Correlative analyses were performed on body fluids, peripheral blood, and tumor specimens obtained from pre- and post-treatment timepoints. Results Treatment with attenuated vaccinia virus at the dose of 1.00E+07 plaque-forming units (PFU) to 6.00E+09 PFU was feasible and safe, with no treatment-associated mortalities or dose-limiting toxicities. Vaccinia virus was detectable in tumor cells 2-5 days post-treatment, and treatment was associated with a decrease in tumor cell density and an increase in immune cell density as assessed by a pathologist blinded to the clinical observations. An increase in both effector (CD8+, NK, cytotoxic cells) and suppressor (Tregs) immune cell populations was observed following treatment. Dendritic cell and neutrophil populations were also increased, and immune effector and immune checkpoint proteins (granzyme B, perforin, PD-1, PD-L1, and PD-L2) and cytokines (IFN-γ, TNF-α, TGFβ1 and RANTES) were upregulated. Conclusion The intrapleural administration of oncolytic vaccinia viral therapy is safe and feasible and generates regional immune response without overt systemic symptoms. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT01766739, identifier NCT01766739.
Collapse
Affiliation(s)
- Navin K Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jennie K Choe
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Erin McGee
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Rebecca Bellis
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jasmeen K Saini
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Srijita Banerjee
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Andre L Moreira
- Department of Pathology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Marjorie G Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Valerie W Rusch
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
2
|
Ogawa K, Yamada K, Etoh T, Kitagawa M, Shirasaka Y, Noguchi K, Kobayashi T, Nishizono A, Inomata M. Development of an Oncolytic Mammalian Orthoreovirus Expressing the Near-Infrared Fluorescent Protein iRFP720. J Virol Methods 2022; 308:114574. [DOI: 10.1016/j.jviromet.2022.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
|
3
|
Woo Y, Reid V, Kelly KJ, Carlson D, Yu Z, Fong Y. Oncolytic Herpes Simplex Virus Prevents Premalignant Lesions from Progressing to Cancer. Mol Ther Oncolytics 2020; 16:1-6. [PMID: 31909180 PMCID: PMC6940689 DOI: 10.1016/j.omto.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/27/2019] [Indexed: 12/20/2022] Open
Abstract
Early detection and timely treatment of precancerous lesions are hallmarks of successful strategies to prevent deaths due to cancer. Oncolytic viruses are a group of promising anti-cancer agents with wide-ranging experimental and clinical efficacy against solid tumors. Previously, we have shown that NV1066, an oncolytic herpes simplex-1 virus encoding enhanced green fluorescent protein, selectively infects, replicates in, and kills various cancer types. In this study, we sought to determine whether this oncolytic agent can treat precancerous lesions to prevent cancer formation. Using an oral chemical carcinogenesis model in hamsters, we assessed the ability of NV1066 to infect precancerous and cancerous lesions. NV1066 consistently infected dysplastic cells, carcinoma in situ, and squamous cell carcinoma. Animals receiving an intramucosal injection of NV1066 for 7 weeks showed significantly fewer (3-fold) and smaller (4-fold) lesions compared to animals that did not receive viral treatment. Results indicate that infectivity might be dependent on the herpes simplex virus 1 receptor, nectin-1. This study demonstrates that not only can NV1066 treat oral squamous cell carcinoma, but it can also infect and treat premalignant lesions, thus delaying cancer progression. Overall, our study shows the potential of the oncolytic virus NV1066 as a cancer prevention tool.
Collapse
Affiliation(s)
- Yanghee Woo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Vincent Reid
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Surgery, Mercy Medical Center, Cedar Rapids, IA 52403, USA
| | - Kaitlyn J. Kelly
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Surgery, UC San Diego Health, San Diego, CA 92093, USA
| | - Diane Carlson
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhenkun Yu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Otorhinolaryngology and Head and Neck Surgery Department, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing 211100, China
| | - Yuman Fong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Sakuda T, Kubo T, Johan MP, Furuta T, Sakaguchi T, Nakanishi M, Ochi M, Adachi N. Novel Near-Infrared Fluorescence-Guided Surgery With Vesicular Stomatitis Virus for Complete Surgical Resection of Osteosarcomas in Mice. J Orthop Res 2019; 37:1192-1201. [PMID: 30839125 DOI: 10.1002/jor.24277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/20/2019] [Indexed: 02/04/2023]
Abstract
Attempts have been made to visualize tumor cells intraoperatively with fluorescence guidance. However, the clear demarcation and complete tumor resection have always been a challenging task. To address this, we have developed a novel fluorescence bioimaging system with vesicular stomatitis virus (VSV) incorporating Katushka, near-infrared fluorescent protein. VSV is tumor-specific owing to the deficiency of antiviral interferon signaling pathways in tumor cells. We aimed to evaluate the tumor specificity of the recombinant VSV-Katushka (rVSV-K) in osteosarcoma cells and to assess the feasibility of complete tumor resection by the rVSV-K fluorescence guidance. In in vitro experiments, mouse and human osteosarcoma cell lines and normal human mesenchymal stem cells were infected with rVSV-K and observed by fluorescence microscopy. Near-infrared fluorescence was observed only in osteosarcoma cells, even at a low-concentration of virus infections. In in vivo experiments, mouse osteosarcoma (LM8) cells were transplanted subcutaneously into the back of immune-competent mice to produce an osteosarcoma, which was then injected with rVSV-K. The areas emitting fluorescence were resected using a bioimaging system. The distance between the surgical and tumor margins of the fluorescence-guided resection with rVSV-K group was significantly larger than that of the non-guided resection groups. The local recurrence rate was significantly lower in the fluorescence-guided resection with rVSV-K group than in the non-guided resection groups. The distant metastasis rate and average survival rate were not significantly different between all groups. These results suggest that the rVSV-K is specific to osteosarcoma cells and enables complete tumor resection of osteosarcomas in mice. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Tomohiko Sakuda
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tadahiko Kubo
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Muhammad Phetrus Johan
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Department of Orthopedic and Traumatology, Faculty of Medicine, Hasanuddin University, Tamalanrea Makassar, Indonesia
| | - Taisuke Furuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Mahito Nakanishi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Mitsuo Ochi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
5
|
Lwin TM, Hoffman RM, Bouvet M. Advantages of patient-derived orthotopic mouse models and genetic reporters for developing fluorescence-guided surgery. J Surg Oncol 2018; 118:253-264. [PMID: 30080930 PMCID: PMC6146062 DOI: 10.1002/jso.25150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022]
Abstract
Fluorescence-guided surgery can enhance the surgeon's ability to achieve a complete oncologic resection. There are a number of tumor-specific probes being developed with many preclinical mouse models to evaluate their efficacy. The current review discusses the different preclinical mouse models in the setting of probe evaluation and highlights the advantages of patient-derived orthotopic xenografts (PDOX) mouse models and genetic reporters to develop fluorescence-guided surgery.
Collapse
Affiliation(s)
- Thinzar M. Lwin
- Department of Surgery, University of California San Diego, San Diego, CA
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA
- AntiCancer, Inc., San Diego, CA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA
- Department of Surgery, VA Medical Center, San Diego, CA
| |
Collapse
|
6
|
Kim MH, Kim SG, Kim DW. Tc-99m and Fluorescence-Labeled Anti-Flt1 Peptide as a Multimodal Tumor Imaging Agent Targeting Vascular Endothelial Growth Factor-Receptor 1. Nucl Med Mol Imaging 2018; 52:359-367. [PMID: 30344784 DOI: 10.1007/s13139-018-0535-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/13/2018] [Accepted: 07/11/2018] [Indexed: 01/03/2023] Open
Abstract
Purpose We developed a Tc-99m and fluorescence-labeled peptide, Tc-99m TAMRA-GHEG-ECG-GNQWFI, to target tumor cells, and evaluated the diagnostic performance as a dual-modality imaging agent for tumor in a murine model. Methods TAMRA-GHEG-ECG-GNQWFI was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling of TAMRA-GHEG-ECG-GNQWFI with Tc-99m was done using ligand exchange via tartrate. Binding affinity and in vitro cellular uptake studies were performed. Gamma camera imaging, biodistribution, and ex vivo imaging studies were performed in murine models with U87MG tumors. Tumor tissue slides were prepared and analyzed with immunohistochemistry using confocal microscopy. Results After radiolabeling procedures with Tc-99m, Tc-99m TAMRA-GHEG-ECG-GNQWFI complexes were prepared in high yield (> 95%). The K d of Tc-99m TAMRA-GHEG-ECG-GNQWFI determined by saturation binding was 29.5 ± 4.5 nM. Confocal microscopy images of U87MG cells incubated with TAMRA-GHEG-ECG-GNQWFI showed strong fluorescence in the cytoplasm. Gamma camera imaging revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-GNQWFI in tumors. Tumor uptake was effectively blocked by the co-injection of an excess concentration of GNQWFI. Specific uptake of Tc-99m TAMRA-GHEG-ECG-GNQWFI was assessed by biodistribution, ex vivo imaging, and immunohistochemistry stain studies. Conclusions In vivo and in vitro studies revealed substantial and specific uptake of Tc-99m TAMRA-GHEG-ECG-GNQWFI in tumor cells. Tc-99m TAMRA-GHEG-ECG-GNQWFI could be a good candidate dual-modality imaging agent for tumors.
Collapse
Affiliation(s)
- Myoung Hyoun Kim
- 1Department of Nuclear Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, 344-2 Shinyong-Dong, Iksan, Jeollabuk-do 570-711 Republic of Korea
| | - Seul-Gi Kim
- 2Research Unit of Molecular Imaging Agent (RUMIA), Wonkwang University School of Medicine, 344-2 Shinyong-Dong, Iksan, Jeollabuk-do 570-711 Republic of Korea
| | - Dae-Weung Kim
- 1Department of Nuclear Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, 344-2 Shinyong-Dong, Iksan, Jeollabuk-do 570-711 Republic of Korea.,2Research Unit of Molecular Imaging Agent (RUMIA), Wonkwang University School of Medicine, 344-2 Shinyong-Dong, Iksan, Jeollabuk-do 570-711 Republic of Korea
| |
Collapse
|
7
|
Kim MH, Kim CG, Kim SG, Kim DW. Synthesis and evaluation of Tc-99m and fluorescence-labeled elastin-derived peptide, VAPG for multimodal tumor imaging in murine tumor model. J Labelled Comp Radiopharm 2017; 60:649-658. [DOI: 10.1002/jlcr.3572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Myoung Hyoun Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science; Wonkwang University School of Medicine; Iksan South Korea
| | - Chang Guhn Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science; Wonkwang University School of Medicine; Iksan South Korea
| | - Seul-Gi Kim
- Research Unit of Molecular Imaging Agent (RUMIA); Wonkwang University School of Medicine; Iksan South Korea
| | - Dae-Weung Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science; Wonkwang University School of Medicine; Iksan South Korea
- Research Unit of Molecular Imaging Agent (RUMIA); Wonkwang University School of Medicine; Iksan South Korea
| |
Collapse
|
8
|
Hyoun Kim M, Kim SG, Guhn Kim C, Kim DW. A novel Tc-99m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine hindlimb ischemia model. Appl Radiat Isot 2016; 121:22-27. [PMID: 28013153 DOI: 10.1016/j.apradiso.2016.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/09/2016] [Accepted: 12/18/2016] [Indexed: 12/25/2022]
Abstract
The serine-aspartic acid-valine (SDV) peptide binds specifically to integrin αvβ3. We developed a Tc-99m and TAMRA labeled peptide, Tc-99m SDV-ECG-K-TAMRA for multimodal imaging of angiogenesis. Tc-99m SDV-ECG-K-TAMRA was prepared in high yield (>96%) and showed low cytotoxicity. Tc-99m tetrofosmin images 1 week after operation, revealed significantly decreased perfusion of the ischemic hindlimb, and the perfusion recovered gradually for 4 weeks. In contrast, Tc-99m SDV-ECG-K-TAMRA uptake was maximal 1 week after the operation (ischemic-to-non-ischemic uptake ratio =5.03±1.01) and decreased gradually. The ischemic-to-non-ischemic ratio of Tc-99m SDV-ECG-K-TAMRA and Tc-99m tetrofosmin was strongly negatively correlated (r =-0.94). A postmortem analysis revealed increased angiogenesis markers and uptake of Tc-99m SDV-ECG-K-TAMRA by ischemic tissue. Our in vivo and in vitro studies revealed substantial uptake of Tc-99m SDV-ECG-K-TAMRA by ischemic tissue. Tc-99m SDV-ECG-K-TAMRA could be a good candidate dual-modality imaging agent to assess angiogenesis.
Collapse
Affiliation(s)
- Myoung Hyoun Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Seul-Gi Kim
- Research Unit of Molecular Imaging Agent (RUMIA), Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Chang Guhn Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Dae-Weung Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea; Research Unit of Molecular Imaging Agent (RUMIA), Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea.
| |
Collapse
|
9
|
Kim MH, Kim CG, Kim SG, Kim DW. A novel Tc-99 m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine tumor model. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:527-534. [PMID: 27739174 DOI: 10.1002/cmmi.1714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 11/06/2022]
Abstract
The serine-aspartic acid-valine (SDV) peptide binds specifically to integrin αV β3 . In the present study, we successfully developed a TAMRA-GHEG-ECG-SDV peptide labeled with both Tc-99 m and TAMRA to target the integrin αV β3 of tumor cells; furthermore, we evaluated the diagnostic performance of Tc-99 m TAMRA-GHEG-ECG-SDV as a dual-modality imaging agent for tumor of the murine model. TAMRA-GHEG-ECG-SDV was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling of TAMRA-GHEG-ECG-SDV with Tc-99 m was done using ligand exchange methods. Labeling stability and cytotoxicity studies were performed. Gamma camera imaging, biodistribution and ex vivo imaging studies were performed in murine models with HT-1080 and HT-29 tumors. A tumor tissue slide was prepared and analyzed using confocal microscopy. After radiolabeling procedures with Tc-99 m, the Tc-99 m TAMRA-GHEG-ECG-SDV complexes were prepared in high yield (>99%). In the gamma camera imaging study, a substantial uptake of Tc-99 m TAMRA-GHEG-ECG-SDV into HT-1080 tumor (integrin αV β3 positive) and low uptake of Tc-99 m TAMRA-GHEG-ECG-SDV into HT-29 tumor (integrin αV β3 negative) were demonstrated. A competition study revealed that HT-1080 tumor uptake was effectively blocked by the co-injection of an excess concentration of SDV. Specific uptake of Tc-99 m TAMRA-GHEG-ECG-SDV was confirmed by biodistribution, ex vivo imaging and confocal microscopy studies. Our in vivo and in vitro studies revealed substantial uptake of Tc-99 m TAMRA-GHEG-ECG-SDV in the integrin αV β3 -positive tumor. Tc-99 m TAMRA-GHEG-ECG-SDV could be a good candidate for a dual-modality imaging agent targeting tumor angiogenesis. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Myoung Hyoun Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Chang Guhn Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Seul-Gi Kim
- Research Unit of Molecular Imaging Agent (RUMIA), Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Dae-Weung Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea.,Research Unit of Molecular Imaging Agent (RUMIA), Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| |
Collapse
|
10
|
Zhang YM, Shi R, Hou JC, Liu ZR, Cui ZL, Li Y, Wu D, Shi Y, Shen ZY. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging. J Cancer Res Clin Oncol 2016; 143:51-58. [PMID: 27629877 PMCID: PMC5222935 DOI: 10.1007/s00432-016-2267-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023]
Abstract
Purpose Clear delineation between tumors and normal tissues is ideal for real-time surgical navigation imaging. We investigated applying indocyanine green (ICG) fluorescence imaging navigation using an intraoperative administration method in liver resection. Methods Fifty patients who underwent liver resection were divided into two groups based on clinical situation and operative purpose. In group I, sizes of superficial liver tumors were determined; tiny tumors were identified. In group II, the liver resection margin was determined; real-time navigation was performed. ICG was injected intravenously at the beginning of the operation; the liver surface was observed with a photodynamic eye (PDE). Results Liver resection margins were determined using PDE. Fluorescence contrast between normal liver and tumor tissues was obvious in 32 of 35 patients. A boundary for half the liver or specific liver segments was determined in nine patients by examining the portal vein anatomy after ICG injection. Eight small tumors not observed preoperatively were detected; the smallest was 2 mm. Conclusions ICG fluorescence imaging navigation is a promising, simple, and safe tool for routine real-time intraoperative imaging during hepatic resection and clinical exploration in hepatocellular carcinoma, enabling high sensibility for identifying liver resection margins and detecting tiny superficial tumors.
Collapse
Affiliation(s)
- Ya-Min Zhang
- Department of Hepatobiliary Surgery, First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China.
| | - Rui Shi
- Department of Hepatobiliary Surgery, First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Jian-Cun Hou
- Department of Hepatobiliary Surgery, First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Zi-Rong Liu
- Department of Hepatobiliary Surgery, First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Zi-Lin Cui
- Department of Hepatobiliary Surgery, First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Yang Li
- Department of Hepatobiliary Surgery, First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Di Wu
- Department of Hepatobiliary Surgery, First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Yuan Shi
- Department of Hepatobiliary Surgery, First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Zhong-Yang Shen
- Department of Hepatobiliary Surgery, First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
| |
Collapse
|
11
|
Oncolytic herpes simplex virus kills stem-like tumor-initiating colon cancer cells. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16013. [PMID: 27347556 PMCID: PMC4909096 DOI: 10.1038/mto.2016.13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
Stem-like tumor-initiating cells (TICs) are implicated in cancer progression and recurrence, and can be identified by sphere-formation and tumorigenicity assays. Oncolytic viruses infect, replicate in, and kill a variety of cancer cells. In this study, we seek proof of principle that TICs are susceptible to viral infection. HCT8 human colon cancer cells were subjected to serum-free culture to generate TIC tumorspheres. Parent cells and TICs were infected with HSV-1 subtype NV1066. Cytotoxicity, viral replication, and Akt1 expression were assessed. TIC tumorigenicity was confirmed and NV1066 efficacy was assessed in vivo. NV1066 infection was highly cytotoxic to both parent HCT8 cells and TICs. In both populations, cell-kill of >80% was achieved within 3 days of infection at a multiplicity of infection (MOI) of 1.0. However, the parent cells required 2-log greater viral replication to achieve the same cytotoxicity. TICs overexpressed Akt1 in vitro and formed flank tumors from as little as 100 cells, growing earlier, faster, larger, and with greater histologic atypia than tumors from parent cells. Treatment of TIC-induced tumors with NV1066 yielded tumor regression and slowed tumor growth. We conclude that colon TICs are selected for by serum-free culture, overexpress Akt1, and are susceptible to oncolytic viral infection.
Collapse
|
12
|
Peters C, Rabkin SD. Designing Herpes Viruses as Oncolytics. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30012-2. [PMID: 26462293 PMCID: PMC4599707 DOI: 10.1038/mto.2015.10] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because herpes simplex virus (HSV) is a natural human pathogen that can cause serious disease, it is incumbent that it be genetically-engineered or significantly attenuated for safety. Here we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are non-essential for growth in tissue culture cells but are important for growth in post-mitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be 'armed' with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate anti-tumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity.
Collapse
Affiliation(s)
- Cole Peters
- Program in Virology, Harvard Medical School, Boston, MA, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston MA
| | - Samuel D Rabkin
- Program in Virology, Harvard Medical School, Boston, MA, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston MA
| |
Collapse
|
13
|
Metildi CA, Kaushal S, Pu M, Messer KA, Luiken GA, Moossa AR, Hoffman RM, Bouvet M. Fluorescence-guided surgery with a fluorophore-conjugated antibody to carcinoembryonic antigen (CEA), that highlights the tumor, improves surgical resection and increases survival in orthotopic mouse models of human pancreatic cancer. Ann Surg Oncol 2014; 21:1405-11. [PMID: 24499827 DOI: 10.1245/s10434-014-3495-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND We have developed a method of distinguishing normal tissue from pancreatic cancer in vivo using fluorophore-conjugated antibody to carcinoembryonic antigen (CEA). The objective of this study was to evaluate whether fluorescence-guided surgery (FGS) with a fluorophore-conjugated antibody to CEA, to highlight the tumor, can improve surgical resection and increase disease-free survival (DFS) and overall survival (OS) in orthotopic mouse models of human pancreatic cancer. METHODS We established nude-mouse models of human pancreatic cancer with surgical orthotopic implantation of the human BxPC-3 pancreatic cancer. Orthotopic tumors were allowed to develop for 2 weeks. Mice then underwent bright-light surgery (BLS) or FGS 24 h after intravenous injection of anti-CEA-Alexa Fluor 488. Completeness of resection was assessed from postoperative imaging. Mice were followed postoperatively until premorbid to determine DFS and OS. RESULTS Complete resection was achieved in 92 % of mice in the FGS group compared to 45.5 % in the BLS group (p = 0.001). FGS resulted in a smaller postoperative tumor burden (p = 0.01). Cure rates with FGS compared to BLS improved from 4.5 to 40 %, respectively (p = 0.01), and 1-year postoperative survival rates increased from 0 % with BLS to 28 % with FGS (p = 0.01). Median DFS increased from 5 weeks with BLS to 11 weeks with FGS (p = 0.0003). Median OS increased from 13.5 weeks with BLS to 22 weeks with FGS (p = 0.001). CONCLUSIONS FGS resulted in greater cure rates and longer DFS and OS using a fluorophore-conjugated anti-CEA antibody. FGS has potential to improve the surgical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Cristina A Metildi
- Department of Surgery, University of California San Diego, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Maitland NJ. The Future: What's in the Toolkit for Prostate Cancer Diagnosis and Treatment? Prostate Cancer 2014. [DOI: 10.1002/9781118347379.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
15
|
Brader P, Wong RJ, Horowitz G, Gil Z. Combination of pet imaging with viral vectors for identification of cancer metastases. Adv Drug Deliv Rev 2012; 64:749-55. [PMID: 21565234 DOI: 10.1016/j.addr.2011.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/22/2011] [Accepted: 04/24/2011] [Indexed: 02/05/2023]
Abstract
There are three main ways for dissemination of solid tumors: direct invasion, lymphatic spread and hematogenic spread. The presence of metastases is the most significant factor in predicting prognosis and therefore evidence of metastases will influence decision-making regarding treatment. Conventional imaging techniques are limited in the evaluation and localization of metastases due to their restricted ability to identify subcentimeter neoplastic disease. Hence, there is a need for an effective noninvasive modality that can accurately identify occult metastases in cancer patients. One such method is the combination of positron emission tomography (PET) with vectors designed for delivery of reporter genes into target cells. Vectors expressing the herpes simplex virus-1 thymidine kinase (HSV1-tk) reporter system have recently been shown to allow localization of micrometastases in animal models of cancer using non invasive imaging. Combination of HSV1-tk and PET imaging is based on the virtues of vectors which can carry and selectively express the HSV1-tk reporter gene in a variety of cancer cells but not in normal tissue. A radioactive tracer which is applied systemically is phosphorylated by the HSV1-tk enzyme, and as a consequence, the tracer accumulates in proportion to the level of HSV1-tk expression which can be imaged by PET. In this paper we review the recent developments in molecular imaging of micrometastases using replication-competent viral or nonviral vectors carrying the HSV1-tk gene using PET imaging. These diagnostic paradigms introduce an advantageous new concept in noninvasive molecular imaging with the potential benefits for improving patient care by providing guidance for therapy to patients with risk for metastases.
Collapse
Affiliation(s)
- Peter Brader
- Molecular and Gender Imaging, Universitätsklinik für Radiologie, Medical University Vienna, General Hospital Vienna, Austria
| | | | | | | |
Collapse
|
16
|
Image-enhanced laparoscopy: A promising technology for detection of peritoneal micrometastases. Surgery 2012; 151:345-50. [DOI: 10.1016/j.surg.2011.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 12/09/2011] [Indexed: 01/09/2023]
|
17
|
Carpenter S, Fong Y. Real-time fluorescence imaging of abdominal, pleural, and lymphatic metastases. Methods Mol Biol 2012; 872:141-157. [PMID: 22700409 DOI: 10.1007/978-1-61779-797-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Virally-directed fluorescence imaging has the potential to revolutionize intra-operative oncologic staging and tumor resection. Many viruses genetically engineered to specifically infect tumor cells as cancer therapy can be further modified to have a visible marker gene for cancer staging. In this chapter, we describe such a herpes simplex virus (HSV) modified to be detected by fluorescence. Other viruses so designed can be similarly used in cancer detection and staging. Replication-competent, tumor-specific HSV NV1066 expresses green fluorescent protein (GFP) in infected cancer cells. One single dose of NV1066 administered via intratumor, intracavitary, or systemic injection can spread within and across body cavities to target tumor cells while sparing normal tissue cells from infection. Tumors otherwise invisible by conventional laparoscopy appear green with the use of an endoscope equipped with a fluorescent filter. Furthermore, with GFP expression easily visualized by stereomicroscopy, microscopic, and pathologic analysis is significantly enhanced. This chapter addresses NV1066-directed visualization of peritoneal, pleural, and lymphatic metastases. This chapter also provides protocols for the production of tumor models in various body cavities in rodents.
Collapse
Affiliation(s)
- Susanne Carpenter
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
18
|
Bograd AJ, Suzuki K, Vertes E, Colovos C, Morales EA, Sadelain M, Adusumilli PS. Immune responses and immunotherapeutic interventions in malignant pleural mesothelioma. Cancer Immunol Immunother 2011; 60:1509-27. [PMID: 21913025 DOI: 10.1007/s00262-011-1103-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/19/2011] [Indexed: 12/20/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive, primary pleural malignancy with poor prognosis, hypothesized to originate from a chronic inflammatory state within the pleura. Similar to what has been observed in other solid tumors (melanoma, ovarian and colorectal cancer), clinical and pre-clinical MPM investigations have correlated anti-tumor immune responses with improved survival. As such, a better understanding of the complex MPM tumor microenvironment is imperative in strategizing successful immunotherapies. Herein, we review the immune responses vital to the development and progression of MPM, as well as assess the role of immunomodulatory therapies, highlighting recent pre-clinical and clinical immunotherapy investigations.
Collapse
Affiliation(s)
- Adam J Bograd
- Division of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Themelis G, Harlaar NJ, Kelder W, Bart J, Sarantopoulos A, van Dam GM, Ntziachristos V. Enhancing Surgical Vision by Using Real-Time Imaging of αvβ3-Integrin Targeted Near-Infrared Fluorescent Agent. Ann Surg Oncol 2011; 18:3506-13. [DOI: 10.1245/s10434-011-1664-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Indexed: 02/02/2023]
|
20
|
Adusumilli PS, Gholami S, Chun YS, Mullerad M, Chan MK, Yu Z, Ben-Porat L, Rusch VW, Fong Y. Fluorescence-assisted cytological testing (FACT): Ex Vivo viral method for enhancing detection of rare cancer cells in body fluids. Mol Med 2011; 17:628-34. [PMID: 21487639 DOI: 10.2119/molmed.2011.00078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 04/07/2011] [Indexed: 01/27/2023] Open
Abstract
Cytological analysis of body fluids is currently used for detecting cancer. The objective of this study was to determine if the herpes virus carrying an enhanced green fluorescent protein (EGFP) could detect rare cancer cells in body fluids against millions of normal cells. Human cancer cells suspended with normal murine cells were infected with NV1066 at a multiplicity of infection (MOI) of 0.5 and 1.0 for 18 h. Fluorescent microscopy and flow cytometry were used for EGFP detection of cancer cells. EGFP-expressing cells were confirmed as cancer cells with specific markers by immunohistochemistry staining. Limits of detection of cancer cells in body fluid were measured by serial dilutions. Applicability of technique was confirmed with samples from patients with malignant pleural effusions. NV1066 expressed EGFP in 111 human cancer cell lines detected by fluorescent microscopy at an MOI of 0.5. NV1066 selectively infected cancer cells and spared normal cells as confirmed by immunohistochemistry. Sensitivity of detecting fluorescent green cells was 92% (confidence interval [CI] 83% to 97%) at a ratio of 1 cancer cell to 1 million normal cells. EGFP-positive cells were detected by fluorescent microscopy in patients' malignant pleural effusion samples. Our data show proof of the concept that NV1066-induced EGFP expression allows detection of a single cancer cell against a background of 1 million normal cells. This method was demonstrated to be a reliable screening tool for human cancer cells in a suspension of normal murine cells as well as clinical specimens of malignant pleural effusions.
Collapse
Affiliation(s)
- Prasad S Adusumilli
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ntziachristos V, Yoo JS, van Dam GM. Current concepts and future perspectives on surgical optical imaging in cancer. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:066024. [PMID: 21198198 DOI: 10.1117/1.3523364] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There are vibrant developments of optical imaging systems and contrast-enhancing methods that are geared to enhancing surgical vision and the outcome of surgical procedures. Such optical technologies designed for intraoperative use can offer high integration in the operating room compared to conventional radiological modalities adapted to intraoperative applications. Simple fluorescence epi-illumination imaging, in particular, appears attractive but may lead to inaccurate observations due to the complex nature of photon-tissue interaction. Of importance therefore are emerging methods that account for the background optical property variation in tissues and can offer accurate, quantitative imaging that eliminates the appearance of false negatives or positives. In parallel, other nonfluorescent optical imaging methods are summarized and overall progress in surgical optical imaging applications is outlined. Key future directions that have the potential to shift the paradigm of surgical health care are also discussed.
Collapse
|
22
|
Eisenberg DP, Carpenter SG, Adusumilli PS, Chan MK, Hendershott KJ, Yu Z, Fong Y. Hyperthermia potentiates oncolytic herpes viral killing of pancreatic cancer through a heat shock protein pathway. Surgery 2010; 148:325-34. [PMID: 20633729 DOI: 10.1016/j.surg.2010.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/14/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND Oncolytic herpes simplex virus-1 (HSV-1) is designed to specifically infect, replicate in, and lyse cancer cells. This study investigates a novel therapeutic regimen, combining the effects of NV1066 (a recombinant HSV-1) and hyperthermia in the treatment of pancreatic cancer. METHODS NV1066 is an attenuated HSV-1 that replicates in cells resistant to apoptosis. Heat shock protein 72 (Hsp72) is a member of a family of proteins that is upregulated after hyperthermic insult, lending cellular protection by inhibiting apoptosis. In these experiments, we test the hypothesis that increased Hsp72 expression in response to hyperthermia enhances anti-apoptotic mechanisms, thereby increasing viral replication and tumor cell kill. Hs 700T pancreatic cancer cells were treated with hyperthermia alone (42 degrees C), NV1066 alone, and combination therapy. Cell survival and viral growth were measured. The effect of siRNA-directed Hsp72 knockdown was also measured. RESULTS Combining hyperthermia and viral treatment produced a synergistic effect on cell kill. Viral growth increased greater than 6-fold in the presence of hyperthermia (P < .05). Hyperthermia alone showed minimal cytotoxic activity against Hs 700T cells, while NV1066 infection resulted in approximately 50% cell kill. The combination of hyperthermia and viral infection significantly increased cell kill to approximately 80% (P < .01). Hsp72 knockdown attenuated this synergistic effect. CONCLUSION Hyperthermia enhances NV1066 replication, thereby potentiating the viral oncolytic response against pancreatic cancer cells. This finding has potential clinical application in the use of heated perfusion or permissive hyperthermia for delivery of oncolytic viral therapies.
Collapse
|
23
|
Kachala SS, Servais EL, Park BJ, Rusch VW, Adusumilli PS. Therapeutic sentinel lymph node imaging. Semin Thorac Cardiovasc Surg 2010; 21:327-38. [PMID: 20226346 DOI: 10.1053/j.semtcvs.2009.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2009] [Indexed: 11/11/2022]
Abstract
Improving existing means of sentinel lymph node identification in non-small cell lung cancer will allow for molecular detection of occult micrometastases that may cause recurrence in early stage non-small cell lung cancer. Furthermore, targeted application of chemical and biological cytotoxic agents can potentially improve outcomes in patients with lymph node (LN) metastases. "Therapeutic Sentinel Lymph Node Imaging" incorporates these modalities into a single agent thereby identifying which LNs harbor tumor cells and simultaneously eradicating metastatic disease. In this review, we summarize the novel preclinical agents for identification and treatment of tumor bearing LNs and discuss their potential for clinical translation.
Collapse
Affiliation(s)
- Stefan S Kachala
- Division of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
24
|
Murayama Y, Harada Y, Imaizumi K, Dai P, Nakano K, Okamoto K, Otsuji E, Takamatsu T. Precise detection of lymph node metastases in mouse rectal cancer by using 5-aminolevulinic acid. Int J Cancer 2009; 125:2256-63. [PMID: 19569177 DOI: 10.1002/ijc.24707] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accurate diagnosis of metastatic lymph nodes (LNs) is essential in choosing appropriate treatment for gastrointestinal carcinoma. Our aim was to evaluate the diagnostic power of 5-aminolevulinic acid (5-ALA) for LN metastasis in mouse rectal cancer. Colorectal cancer cell lines, isolated cells from normal LNs, and orthotopic mouse model incorporating enhanced green fluorescent protein-tagged and untagged human rectal cancer cells were studied after 5-ALA administration by using confocal microscopy, fluorescence stereomicroscopy, fluorescence lifetime imaging microscopy (FLIM), multichannel spectrophotometry and macroconfocal imaging system to precisely detect LN metastases. In vitro confocal microscopic analyses showed that all colorectal cancer cell lines tested were positive for 5-ALA-induced fluorescence, whereas isolated normal LN cells were negative. 5-ALA-induced protoporphyrin IX (PPIX) fluorescence, verified by FLIM and multichannel spectrophotometry, revealed LN metastases in mice-bearing human rectal cancer cells. Occult LN metastases, unrecognized on white-light imaging and simplified hematoxylin-eosin analyses, were readily detectable on 5-ALA-induced PPIX fluorescence imaging. In vivo macroconfocal images clearly revealed PPIX-fluorescence-positive cancer cells in draining lymph vessels and nodes. Together with specific speckled patterns of PPIX-fluorescence in metastatic lesions, the PPIX-fluorescence intensity ratio of metastatic and nonmetastatic lesions discriminated metastasis with 100% sensitivity and 100% specificity in excised whole LN samples. These results show that fluorescence diagnosis with 5-ALA is very accurate in the detection of LN micrometastases of mouse rectal cancer, suggesting that this feasible diagnostic approach is applicable to target sectioning of metastases of resected fresh whole node samples in pathology laboratories. (c) 2009 UICC.
Collapse
Affiliation(s)
- Yasutoshi Murayama
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Themelis G, Yoo JS, Soh KS, Schulz R, Ntziachristos V. Real-time intraoperative fluorescence imaging system using light-absorption correction. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:064012. [PMID: 20059250 DOI: 10.1117/1.3259362] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present a novel fluorescence imaging system developed for real-time interventional imaging applications. The system implements a correction scheme that improves the accuracy of epi-illumination fluorescence images for light intensity variation in tissues. The implementation is based on the use of three cameras operating in parallel, utilizing a common lens, which allows for the concurrent collection of color, fluorescence, and light attenuation images at the excitation wavelength from the same field of view. The correction is based on a ratio approach of fluorescence over light attenuation images. Color images and video is used for surgical guidance and for registration with the corrected fluorescence images. We showcase the performance metrics of this system on phantoms and animals, and discuss the advantages over conventional epi-illumination systems developed for real-time applications and the limits of validity of corrected epi-illumination fluorescence imaging.
Collapse
Affiliation(s)
- George Themelis
- Technische Universitat München, Institute for Biological and Medical Imaging, Arcisstrasse 21, 80333 München, Germany
| | | | | | | | | |
Collapse
|
26
|
Fong SMB, Lee MK, Adusumilli PS, Kelly KJ. Fluorescence-expressing viruses allow rapid identification and separation of rare tumor cells in spiked samples of human whole blood. Surgery 2009; 146:498-505. [PMID: 19715807 DOI: 10.1016/j.surg.2008.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 12/05/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND Finding and isolating rare tumor cells in blood allows for diagnosis of disseminated cancer and for molecular profiling to direct the choice of biologic therapy. We explored whether the candidate gene therapy virus NV1066-designed to specifically infect cancer cells and express green fluorescence protein (GFP)-can be used for rapid infection, identification, and isolation of rare circulating tumor cells (CTC) in human whole blood. METHODS Mixtures of human cancer cell lines and human whole blood were exposed to NV1066 or heat-inactivated virus, incubated, and then examined for GFP expression by fluorescence microscopy and flow cytometry. Fluorescence-assisted cell sorting (FACS) was used to determine the efficiency of virally assisted tumor cell isolation. Sorted cells were subsequently stained for carcinoembryonic antigen (CEA) to determine if cells isolated in this way would maintain sufficient cellular integrity for molecular characterization. RESULTS In our study, there was 100% specificity for detection of cancer cells. Detection was consistent even at the highest dilution tested (10 cancer cells in 10 ml whole blood). The processing involved simple incubation without the technical demands of immunohistochemistry. FACS allowed for rapid isolation of GFP-expressing cells. Cells isolated by this method can subsequently undergo molecular characterization. CONCLUSION Oncolytic herpes simplex virus mediated green fluorescence in combination with FACS is a novel technique for the identification and isolation of cancer cells in an experimental model of blood-borne metastases. This procedure is a promising method for improving our diagnosis, staging, and molecular profiling of cancer.
Collapse
Affiliation(s)
- Sandra M B Fong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | |
Collapse
|
27
|
Optical imaging in oncology. Urol Oncol 2009; 27:298-300. [PMID: 19414116 DOI: 10.1016/j.urolonc.2008.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/28/2008] [Accepted: 10/28/2008] [Indexed: 11/23/2022]
Abstract
Optical imaging is useful during preclinical drug development for monitoring biomarkers and molecular events in living tissue. In animal models, the technology has been used to monitor tumor growth and metastasis, determine biological effects of novel drugs, monitor tumor enzyme activity, and examine host-tumor interactions. Clinical application of optical imaging remains in the developmental stages. Fluorescence signals have a limited dept of penetration through tissue. Therefore, completely noninvasive application of optical imaging in humans is currently not possible. However, laparoscopy and endoscopy provide opportunities to apply optical imaging in patients.
Collapse
|
28
|
Dorer DE, Nettelbeck DM. Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv Drug Deliv Rev 2009; 61:554-71. [PMID: 19394376 DOI: 10.1016/j.addr.2009.03.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 03/05/2009] [Indexed: 01/02/2023]
Abstract
Cancer-specificity is the key requirement for a drug or treatment regimen to be effective against malignant disease--and has rarely been achieved adequately to date. Therefore, targeting strategies need to be implemented for future therapies to ensure efficient activity at the site of patients' tumors or metastases without causing intolerable side-effects. Gene therapy and viral oncolysis represent treatment modalities that offer unique opportunities for tumor targeting. This is because both the transfer of genes with anti-cancer activity and viral replication-induced cell killing, respectively, facilitate the incorporation of multiple mechanisms restricting their activity to cancer. To this end, cellular mechanisms of gene regulation have been successfully exploited to direct therapeutic gene expression and viral cell lysis to cancer cells. Here, transcriptional targeting has been the role model and most widely investigated. This approach exploits cellular gene regulatory elements that mediate cell type-specific transcription to restrict the expression of therapeutic genes or essential viral genes, ideally to cancer cells. In this review, we first discuss the rationale for such promoter targeting and its limitations. We then give an overview how tissue-/tumor-specific promoters are being identified and characterized. Strategies to apply and optimize such promoters for the engineering of targeted viral gene transfer vectors and oncolytic viruses-with respect to promoter size, selectivity and activity in the context of viral genomes-are described. Finally, we discuss in more detail individual examples for transcriptionally targeted virus drugs. First highlighting oncolytic viruses targeted by prostate-specific promoters and by the telomerase promoter as representatives of tissue-targeted and pan-cancer-specific virus drugs respectively, and secondly recent developments of the last two years.
Collapse
Affiliation(s)
- Dominik E Dorer
- Helmholtz-University Group Oncolytic Adenoviruses, German Cancer Research Center (DKFZ) and Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
29
|
Gotoh K, Yamada T, Ishikawa O, Takahashi H, Eguchi H, Yano M, Ohigashi H, Tomita Y, Miyamoto Y, Imaoka S. A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation. J Surg Oncol 2009; 100:75-9. [PMID: 19301311 DOI: 10.1002/jso.21272] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES The clear delineation between tumor and normal tissue is ideal for real-time surgical navigation imaging. We present a novel indocyanine green (ICG) fluorescence imaging technique to visualize hepatocellular carcinoma (HCC). METHODS Ten patients with solitary HCC underwent hepatectomy between February and September 2007 at Osaka Medical Center for Cancer and Cardiovascular Diseases. ICG had been injected intravenously several days before surgery at a dose of 0.5 mg/kg body weight. After laparotomy, the liver was inspected with intraoperative ultrasonography (IOUS), and then with a near-infrared (NIR) fluorescence imaging system (PDE; Hamamatsu Photonics K.K. Hamamatsu, Japan). RESULTS All the 10 primary tumors showed bright fluorescent signals and could be completely removed with negative margins under the guide of PDE. In four cases (40.0%), new HCC nodules that were not detected by use of any preoperative examinations including IOUS were detected by PDE. These newly identified HCC nodules were very small in size and most of the tumors were well-differentiated HCCs. CONCLUSIONS This novel technique is simple and safe, and is therefore considered to be a promising tool for routine intraoperative imaging during a hepatic resection and further clinical exploration for HCC.
Collapse
Affiliation(s)
- Kunihito Gotoh
- Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Nakamichi, Higashinari-ku, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brader P, Kelly K, Gang S, Shah JP, Wong RJ, Hricak H, Blasberg RG, Fong Y, Gil Z. Imaging of lymph node micrometastases using an oncolytic herpes virus and [F]FEAU PET. PLoS One 2009; 4:e4789. [PMID: 19274083 PMCID: PMC2651472 DOI: 10.1371/journal.pone.0004789] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 02/02/2009] [Indexed: 12/11/2022] Open
Abstract
Background In patients with melanoma, knowledge of regional lymph node status provides important information on outlook. Since lymph node status can influence treatment, surgery for sentinel lymph node (SLN) biopsy became a standard staging procedure for these patients. Current imaging modalities have a limited sensitivity for detection of micrometastases in lymph nodes and, therefore, there is a need for a better technique that can accurately identify occult SLN metastases. Methodology/Principal Findings B16-F10 murine melanoma cells were infected with replication-competent herpes simplex virus (HSV) NV1023. The presence of tumor-targeting and reporter-expressing virus was assessed by [18F]-2′-fluoro-2′-deoxy-1-β-D-β-arabinofuranosyl-5-ethyluracil ([18F]FEAU) positron emission tomography (PET) and confirmed by histochemical assays. An animal foot pad model of melanoma lymph node metastasis was established. Mice received intratumoral injections of NV1023, and 48 hours later were imaged after i.v. injection of [18F]FEAU. NV1023 successfully infected and provided high levels of lacZ transgene expression in melanoma cells. Intratumoral injection of NV1023 resulted in viral trafficking to melanoma cells that had metastasized to popliteal and inguinal lymph nodes. Presence of virus-infected tumor cells was successfully imaged with [18F]FEAU-PET, that identified 8 out of 8 tumor-positive nodes. There was no overlap between radioactivity levels (lymph node to surrounding tissue ratio) of tumor-positive and tumor-negative lymph nodes. Conclusion/Significance A new approach for imaging SLN metastases using NV1023 and [18F]FEAU-PET was successful in a murine model. Similar studies could be translated to the clinic and improve the staging and management of patients with melanoma.
Collapse
Affiliation(s)
- Peter Brader
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Department of Radiology, Medical University Graz, Graz, Austria
| | - Kaitlyn Kelly
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Sheng Gang
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Jatin P. Shah
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ronald G. Blasberg
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Yuman Fong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ziv Gil
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- The Laboratory for Applied Cancer Research, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
31
|
Chen N, Zhang Q, Yu YA, Stritzker J, Brader P, Schirbel A, Samnick S, Serganova I, Blasberg R, Fong Y, Szalay AA. A novel recombinant vaccinia virus expressing the human norepinephrine transporter retains oncolytic potential and facilitates deep-tissue imaging. Mol Med 2009; 15:144-51. [PMID: 19287510 DOI: 10.2119/molmed.2009.00014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 01/27/2023] Open
Abstract
Noninvasive and repetitive monitoring of a virus in target tissues and/or specific organs of the body is highly desirable for the development of safe and efficient cancer virotherapeutics. We have previously shown that the oncolytic vaccinia virus GLV-1h68 can target and eradicate human tumors in mice and that its therapeutic effects can be monitored by using optical imaging. Here, we report on the development of a derivative of GLV-1h68, a novel recombinant vaccinia virus (VACV) GLV-1h99, which was constructed to carry the human norepinephrine transporter gene (hNET) under the VACV synthetic early promoter placed at the F14.5L locus for deep-tissue imaging. The hNET protein was expressed at high levels on the membranes of cells infected with this virus. Expression of the hNET protein did not negatively affect virus replication, cytolytic activity in cell culture, or in vivo virotherpeutic efficacy. GLV-1h99-mediated expression of the hNET protein in infected cells resulted in specific uptake of the radiotracer [131I]-meta-iodobenzylguanidine (MIBG). In mice, GLV-1h99-infected tumors were readily imaged by [124I]-MIBG positron emission tomography. To our knowledge, GLV-1h99 is the first oncolytic virus expressing the hNET protein that can efficiently eliminate tumors and simultaneously allow deep-tissue imaging of infected tumors.
Collapse
Affiliation(s)
- Nanhai Chen
- Genelux Corporation, San Diego Science Center, San Diego, California 92109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gil Z, Rein A, Brader P, Li S, Shah JP, Fong Y, Wong RJ. Nerve-sparing therapy with oncolytic herpes virus for cancers with neural invasion. Clin Cancer Res 2007; 13:6479-85. [PMID: 17975160 DOI: 10.1158/1078-0432.ccr-07-1639] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The invasion of cancer cells along nerves is an ominous pathologic finding associated with poor outcomes for a variety of tumors, including pancreatic and head and neck carcinomas. Peripheral nerves may serve as a conduit for these cancers to track into the central nervous system. Cancer progression within nerves and surgical resection of infiltrated nerves result in a permanent loss of neural function, potentially causing cosmetic and functional morbidity. Herpes simplex viruses (HSV) have utility for gene transfer into nerves and as oncolytic agents. We studied the use of an attenuated HSV, NV1023, as treatment for cancers with neural invasion. EXPERIMENTAL DESIGN AND RESULTS NV1023 injection into the sciatic nerves of nude mice had no toxic effect on nerve function, whereas similar doses of wild-type HSV-1 (F' strain) caused complete nerve paralysis within 4 days and 100% mortality at day 6. NV1023 showed effective cytotoxicity in vitro on three neurotrophic human carcinoma cell lines, including pancreatic (MiaPaCa2), squamous cell (QLL2), and adenoid cystic (ACC3) carcinomas. A model of neural invasion was established by implanting human carcinoma cells in the sciatic nerves of nude mice. All control group mice developed left hind limb paralysis 5 to 7 weeks after tumor injection, whereas animals treated with NV1023 maintained intact nerve function and showed significant tumor regression (P < 0.0001). CONCLUSIONS These results show that NV1023 oncolytic therapy may effectively treat cancers with neural invasion and preserve neural function. These findings hold significant clinical implications for patients with cancer neural invasion.
Collapse
Affiliation(s)
- Ziv Gil
- Head and Neck Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Yu Z, Li S, Huang YY, Fong Y, Wong RJ. Calcium depletion enhances nectin-1 expression and herpes oncolytic therapy of squamous cell carcinoma. Cancer Gene Ther 2007; 14:738-47. [PMID: 17525764 DOI: 10.1038/sj.cgt.7701062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Attenuated, replication-competent, oncolytic herpes simplex virus type 1 (HSV-1) are effective at infecting and lysing many human malignancies in preclinical studies. Nectin-1 is a cell-surface receptor for HSV-1 envelope glycoprotein D (gD) that also forms a component of intercellular adherens junctions (AJs). We sought to determine if the disruption of AJs in squamous cell carcinoma (SCC) through calcium depletion could be utilized to increase nectin-1 exposure and enhance HSV therapy. NV1023 is a single copy gamma(1)34.5-deleted, lacZ-expressing, oncolytic HSV-1. Calcium depletion caused cell separation and increased nectin-1 expression for three SCC cell lines growing at confluence. NV1023 viral entry, soluble gD protein binding and NV1023 cytotoxicity were all significantly enhanced for these cell lines at low calcium conditions. The increase in NV1023 entry at low calcium conditions was abrogated by nectin-1 antibody blockade. Murine SCC flank tumors treated with ethylenediaminetetraacetic acid (EDTA) showed increased nectin-1 expression and increased susceptibility to NV1023 infection. Combined NV1023 and EDTA intratumoral injections demonstrated significantly enhanced tumor regression as compared to NV1023 alone. These findings establish, as proof-of-principle, that herpes viral receptor expression may be modulated on cancer cells to enhance oncolytic therapy. This strategy might have future application toward improving therapy with a variety of herpes vectors.
Collapse
Affiliation(s)
- Z Yu
- Head and Neck Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
34
|
Chen Y, Ohkubo K, Zhang M, Wenbo E, Liu W, Pandey SK, Ciesielski M, Baumann H, Erin T, Fukuzumi S, Kadish KM, Fenstermaker R, Oseroff A, Pandey RK. Photophysical, electrochemical characteristics and cross-linking of STAT-3 protein by an efficient bifunctional agent for fluorescence image-guided photodynamic therapy. Photochem Photobiol Sci 2007; 6:1257-67. [DOI: 10.1039/b710395f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Adusumilli PS, Eisenberg DP, Stiles BM, Chung S, Chan MK, Rusch VW, Fong Y. Intraoperative localization of lymph node metastases with a replication-competent herpes simplex virus. J Thorac Cardiovasc Surg 2006; 132:1179-88. [PMID: 17059941 DOI: 10.1016/j.jtcvs.2006.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 07/07/2006] [Accepted: 07/12/2006] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Lymph node status is the most important prognostic factor determining recurrence and survival in patients with mesothelioma and other thoracic malignancies. Accurate localization of lymph node metastases is therefore necessary to improve selection of resectable and curable patients for surgical intervention. This study investigates the potential to identify lymph node metastases intraoperatively by using herpes-guided cancer cell-specific expression of green fluorescent protein. METHODS After infection with NV1066, a herpes simplex virus carrying green fluorescent protein transgene, human mesothelioma cancer cell lines were assessed for cancer cell-specific infection, green fluorescent protein expression, viral replication, and cytotoxicity. Murine models of lymphatic metastasis were established by means of surgical implantation of cancer cells into the preauricular (drainage to cervical lymph nodes) and pleural (mediastinal and retroperitoneal lymph nodes) spaces of athymic mice. Fluorescent thoracoscopy, laparoscopy, and stereomicroscopy were used to localize lymph node metastases that were confirmed by means of immunohistochemistry. RESULTS In vitro NV1066 infected, replicated (5- to 17,000-fold), and expressed green fluorescent protein in all cancer cells, even when infected at a low ratio of one viral plaque-forming unit per 100 tumor cells. In vivo NV1066 injected into primary tumors was able to locate and infect lymph node metastases producing green fluorescent protein that was visualized by means of fluorescent imaging. Histology confirmed lymphatic metastases, and immunohistochemistry confirmed viral presence in regions that expressed green fluorescent protein. CONCLUSIONS Herpes virus-guided cancer cell-specific production of green fluorescent protein can facilitate accurate localization of lymph node metastases. Fluorescent filters that detect green fluorescent protein can be incorporated into operative scopes to precisely localize and biopsy lymph node metastases.
Collapse
Affiliation(s)
- Prasad S Adusumilli
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Adusumilli PS, Chan MK, Hezel M, Yu Z, Stiles BM, Chou TC, Rusch VW, Fong Y. Radiation-induced cellular DNA damage repair response enhances viral gene therapy efficacy in the treatment of malignant pleural mesothelioma. Ann Surg Oncol 2006; 14:258-69. [PMID: 17080237 DOI: 10.1245/s10434-006-9127-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 06/02/2006] [Accepted: 06/26/2006] [Indexed: 02/04/2023]
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) treated with radiotherapy (RT) has incomplete responses as a result of radiation-induced tumoral stress response that repairs DNA damage. Such stress response is beneficial for oncolytic viral therapy. We hypothesized that a combination of RT and NV1066, an oncolytic herpes virus, might exert an additive or synergistic effect in the treatment of MPM. METHODS JMN, a MPM cell line, was infected with NV1066 at multiplicities of infection of .05 to .25 in vitro with and without radiation (1 to 5 Gy). Virus replication was determined by plaque assay, cell kill by lactate dehydrogenase assay, and GADD34 (growth arrest and DNA damage repair 34, a DNA damage-repair protein) by real-time reverse transcriptase-polymerase chain reaction and Western blot test. Synergistic cytotoxicity dependence on GADD34 upregulation was confirmed by GADD34 small inhibitory RNA (siRNA). RESULTS Synergism was demonstrated between RT and NV1066 across a wide range of doses. As a result of such synergism, a dose-reduction for each agent (up to 5500-fold) can be accomplished over a wide range of therapeutic-effect levels without sacrificing tumor cell kill. This effect is correlated with increased GADD34 expression and inhibited by transfection of siRNA directed against GADD34. CONCLUSIONS RT can be combined with oncolytic herpes simplex virus therapy in the treatment of malignant pleural mesothelioma to achieve synergistic efficacy while minimizing dosage and toxicity.
Collapse
Affiliation(s)
- Prasad S Adusumilli
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|