1
|
Bæch‐Laursen C, Ehrenreich RK, Modvig IM, Veedfald S, Holst JJ. Glucose absorption by isolated, vascularly perfused rat intestine: A significant paracellular contribution augmented by SGLT1 inhibition. Acta Physiol (Oxf) 2025; 241:e70033. [PMID: 40186371 PMCID: PMC11971594 DOI: 10.1111/apha.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
AIM Intestinal glucose transport involves SGLT1 in the apical membrane of enterocytes and GLUT2 in the basolateral membrane. In vivo studies have shown that absorption rates appear to exceed the theoretical capacity of these transporters, suggesting that glucose transport may occur via additional pathways, which could include passive mechanisms. The aim of the study was to investigate glucose absorption in an in vitro model, which has proven useful for endocrine studies. METHODS We studied both transcellular and paracellular glucose absorption in the isolated vascularly perfused rat small intestine. Glucose absorbed from the lumen was traced with 14C-d-glucose, allowing sensitive and accurate quantification. SGLT1 and GLUT2 activities were blocked with phlorizin and phloretin. 14C-d-mannitol was used as an indicator of paracellular absorption. RESULTS Our results indicate that glucose absorption in this model involves two transport mechanisms: transport mediated by SGLT1/GLUT2 and a paracellular transport mechanism. Glucose absorption was reduced by 60% when SGLT1 transport was blocked and by 80% when GLUT2 was blocked. After combined luminal SGLT1 and GLUT2 blockade, ~30% of glucose absorption remained. d-mannitol absorption was greater in the proximal small intestine compared to the distal small intestine. Unexpectedly, mannitol absorption increased markedly when SGLT1 transport was blocked. CONCLUSION In this model, glucose absorption occurs via both active transcellular and passive paracellular transport, particularly in the proximal intestine, which is important for the understanding of, for example, hormone secretion related to glucose absorption. Interference with SGLT1 activity may lead to enhanced paracellular transport, pointing to a role in the regulation of the latter.
Collapse
Affiliation(s)
- Cecilie Bæch‐Laursen
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Centre for Physical Activity ResearchRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Rune Kuhre Ehrenreich
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Obesity Pharmacology, Global Drug DiscoveryNovo NordiskMåløvDenmark
| | - Ida Marie Modvig
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Transplantation and Digestive DiseasesRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Zaffer S, Kiran Reddy VS, Shikari AB, Ray A. Rice with a healthier glycaemic profile: Unveiling the molecular mechanisms and breeding strategies for the future. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109543. [PMID: 39952157 DOI: 10.1016/j.plaphy.2025.109543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
Rice is a staple food crop consumed by billions globally. However, rice consumption is associated with a high glycaemic response, which has negative health implications. Identifying rice varieties with intrinsically lower glycaemic responses would benefit public health. Recent research has uncovered genomic loci in rice associated with glycaemic response in rice. However, diagnostic assays are needed to efficiently characterize these loci in rice germplasm and breeding populations. This review summarizes current knowledge on low glycaemic rice genetics and proposes strategies for diagnostic assay development. Specific loci implicated in modulating starch digestion and glycaemic response are highlighted. Developing robust, high-throughput molecular marker platform for low glycaemic rice loci will accelerate varietal improvement and enhance the nutritional qualities and health benefits of this essential crop. The review also explores the role of other grain components, such as lipids and proteins, and their interactions with starch in influencing the glycaemic index (GI).
Collapse
Affiliation(s)
- Shafia Zaffer
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - V Shasi Kiran Reddy
- Division of Genetics & Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Wadura, J&K, 193 201, India
| | - Asif Bashir Shikari
- Division of Genetics & Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Wadura, J&K, 193 201, India.
| | - Anuprita Ray
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| |
Collapse
|
3
|
Lanza U, Alongi M, Frossi B, Pucillo C, Anese M, Nicoli MC. Investigating the hypoglycaemic potential of processed apple and acarbose combination in vitro, ex vivo, and in vivo: the role of quercetin-3-glucoside in steering α-glucosidase inhibition. Food Funct 2025; 16:1772-1780. [PMID: 39927822 DOI: 10.1039/d4fo06307d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
This study investigated the interaction between apple juice (AJ) and acarbose (A) in modulating glycaemic responses, with the aim of validating in vivo results previously observed in vitro. When administered to rats, AJ alone reduced the glycemic curve, but the combination of AJ with increasing doses of A resulted in higher glycemic responses, suggesting an antagonistic interaction in α-glucosidase inhibition. To explore this mechanism, quercetin-3-glucoside (Q-3-G), a major phenolic compound in AJ, was tested for α-glucosidase inhibition in vitro. Q-3-G and A together showed reduced inhibitory efficacy compared to either compound alone, consistent with in vivo findings. Ex vivo studies in Caco-2 cells further supported this antagonism. Sucrose hydrolysis experiments showed that low concentrations of Q-3-G increased residual sucrose when combined with moderate concentrations of A, but higher concentrations of Q-3-G favoured sucrose hydrolysis regardless of A levels. The results highlight the antagonistic interaction between Q-3-G and A in inhibiting α-glucosidase and emphasise the need to combine in vitro, ex vivo and in vivo studies to evaluate food-drug interactions. This comprehensive approach is essential before advocating the use of functional foods alongside pharmacological therapies.
Collapse
Affiliation(s)
- Umberto Lanza
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - Marilisa Alongi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - Barbara Frossi
- Department of Medicine, University of Udine, Udine, Italy
| | - Carlo Pucillo
- Department of Medicine, University of Udine, Udine, Italy
| | - Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - Maria Cristina Nicoli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| |
Collapse
|
4
|
Lykkesfeldt J, Carr AC, Tveden-Nyborg P. The pharmacology of vitamin C. Pharmacol Rev 2025; 77:100043. [PMID: 39986139 DOI: 10.1016/j.pharmr.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025] Open
Abstract
Ascorbic acid, the reduced form of vitamin C, is a ubiquitous small carbohydrate. Despite decades of focused research, new metabolic functions of this universal electron donor are still being discovered and add to the complexity of our view of vitamin C in human health. Although praised as an unsurpassed water-soluble antioxidant in plasma and cells, the most interesting functions of vitamin C seem to be its roles as specific electron donor in numerous biological reactions ranging from the well-known hydroxylation of proline to cofactor for the epigenetic master regulators ten-eleven translocation enzymes and Jumonji domain-containing histone-lysine demethylases. Some of these functions may have important implications for disease prevention and treatment and have spiked renewed interest in, eg, vitamin C's potential in cancer therapy. Moreover, some fundamental pharmacokinetic properties of vitamin C remain to be established including if other mechanisms than passive diffusion governs the efflux of ascorbate anions from the cell. Taken together, there still seems to be much to learn about the pharmacology of vitamin C and its role in health and disease. This review explores new avenues of vitamin C and integrates our present knowledge of its pharmacology. SIGNIFICANCE STATEMENT: Vitamin C is involved in multiple biological reactions of which most are essential to human health. Hundreds of millions of people are considered deficient in vitamin C according to accepted guidelines, but little is known about the long-term consequences. Although the complexity of vitamin C's physiology and pharmacology has been widely disregarded in clinical studies for decades, it seems clear that a deeper understanding of particularly its pharmacology holds the key to unravel and possibly exploit the potential of vitamin C in disease prevention and therapy.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pernille Tveden-Nyborg
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Visvanathan R, Houghton MJ, Williamson G. Impact of Glucose, Inflammation and Phytochemicals on ACE2, TMPRSS2 and Glucose Transporter Gene Expression in Human Intestinal Cells. Antioxidants (Basel) 2025; 14:253. [PMID: 40227199 PMCID: PMC11939507 DOI: 10.3390/antiox14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
Inflammation is associated with the pathophysiology of type 2 diabetes and COVID-19. Phytochemicals have the potential to modulate inflammation, expression of SARS-CoV-2 viral entry receptors (angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2)) and glucose transport in the gut. This study assessed the impact of phytochemicals on these processes. We screened 12 phytochemicals alongside 10 pharmaceuticals and three plant extracts, selected for known or hypothesised effects on the SARS-CoV-2 receptors and COVID-19 risk, for their effects on the expression of ACE2 or TMPRSS2 in differentiated Caco-2/TC7 human intestinal epithelial cells. Genistein, apigenin, artemisinin and sulforaphane were the most promising ones, as assessed by the downregulation of TMPRSS2, and thus they were used in subsequent experiments. The cells were then co-stimulated with pro-inflammatory cytokines interleukin-1 beta (IL-1β) and tumour necrosis factor-alpha (TNF-α) for ≤168 h to induce inflammation, which are known to induce multiple pathways, including the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Target gene expression (ACE2, TMPRSS2, SGLT1 (sodium-dependent glucose transporter 1) and GLUT2 (glucose transporter 2)) was measured by droplet digital PCR, while interleukin-1 (IL-6), interleukin-1 (IL-8) and ACE2 proteins were assessed using ELISA in both normal and inflamed cells. IL-1β and TNF-α treatment upregulated ACE2, TMPRSS2 and SGLT1 gene expression. ACE2 increased with the duration of cytokine exposure, coupled with a significant decrease in IL-8, SGLT1 and TMPRSS2 over time. Pearson correlation analysis revealed that the increase in ACE2 was strongly associated with a decrease in IL-8 (r = -0.77, p < 0.01). The regulation of SGLT1 gene expression followed the same pattern as TMPRSS2, implying a common mechanism. Although none of the phytochemicals decreased inflammation-induced IL-8 secretion, genistein normalised inflammation-induced increases in SGLT1 and TMPRSS2. The association between TMPRSS2 and SGLT1 gene expression, which is particularly evident in inflammatory conditions, suggests a common regulatory pathway. Genistein downregulated the inflammation-induced increase in SGLT1 and TMPRSS2, which may help lower the postprandial glycaemic response and COVID-19 risk or severity in healthy individuals and those with metabolic disorders.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Michael J. Houghton
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| |
Collapse
|
6
|
Köpsel M, Kostka T, Rodriguez-Werner M, Esatbeyoglu T. The influence of fruit juice extracts on glucose intestinal transporters and antioxidant genes in a Caco-2 and HT29-MTX co-culture cell system. Food Funct 2025; 16:1423-1441. [PMID: 39895307 DOI: 10.1039/d4fo03950e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In recent years, the interest of consumers in fruit juice extracts as nutraceuticals has increased. Fruits, especially red berries, contain valuable bioactive compounds such as polyphenols. Polyphenols are often associated with anti-oxidant, anti-inflammatory, anti-diabetic, anti-cancer, cardioprotective and gastroprotective properties. However, the relationship between the various effects of fruit juice extracts and their influence on the permeability of the intestinal barrier, as well as their influence on glucose transport across the intestinal membrane, is not known. Therefore, in the present study, anthocyanins and copigments were obtained from 11 fruit juice extracts by XAD7 column chromatography and characterized their health-promoting effects, as well as their influence on the intestinal membrane. Chokeberry, pomegranate and blueberry extracts showed the highest antioxidant activity, but showed incomplete regeneration of the intestinal membrane upon treatment-induced higher permeability. This may depended on the high anthocyanin level of these extracts. Treatments with gojiberry extract, elderberry extract and the copigment fraction of apple achieved the best suitable regeneration of the intestinal barrier. The transcription of epithelial glucose transporters GLUT1 und GLUT2 as well as for the oxidative stress genes catalase (CAT) and superoxide dismutase (SOD) were most effectively reduced by chokeberry extract. To sum up, fruit juice extracts possess high antioxidant potentials and can reduce the expression of antioxidant enzymes and glucose transporters in colon cells. While the glucose uptake may be reduced, the intestinal permeability is increased, which varies due to the extract composition. Therefore, fruit juice extracts need to be fractionated and characterized in more detail to identify the health-beneficial compounds.
Collapse
Affiliation(s)
- Magdalena Köpsel
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Tina Kostka
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Strasse 52, 67663 Kaiserslautern, Germany.
| | | | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| |
Collapse
|
7
|
de Assis Braga DC, Carlos Batista MA, Guerra-Sá R, Alves da Silva TC, Carneiro MAA, da Silva Lanna MC, Azevedo VA, de Oliveira Carvalho RD, Souza GHBD, Antunes VR, Aparecida Lima de Moura S, Ceron CS, Cardoso LM. Psidium guajava leaves extract alters colonic microbiome composition and reduces intestinal sodium absorption in rats exposed to a high-sodium diet. J Pharm Pharmacol 2025; 77:111-126. [PMID: 39509435 DOI: 10.1093/jpp/rgae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVES High sodium intake is a major risk factor for hypertension and renal diseases. Previous studies have shown that a suspension of ethanolic extract of Psidium guajava (guava) leaves (PsE) has antihypertensive effects in rats on a high-sodium diet (HSD), but some mechanisms to that remain unexplored. This study explored whether oral PsE treatment affects sodium handling by the intestine and alters the gut microbiome in HSD-fed rats. METHODS Male Wistar rats were divided into two groups: standard salt diet (SSD) and HSD (0.9% Na+), from weaning. After 12 weeks, both groups received PsE (200 mg/kg) or a vehicle for an additional 4 weeks. KEY FINDINGS Sodium excretion was measured using flame photometry, and sodium absorption was assessed by intestinal perfusion technique. The gut microbiome was analysed through 16S ribosomal gene sequencing. HSD increased faecal sodium, further elevated by PsE, which inhibited intestinal sodium absorption in HSD rats. HSD altered the abundance of specific bacterial families, which PsE partially reversed. No changes in alpha diversity were noted among groups. CONCLUSIONS These findings suggest that PsE inhibited intestinal sodium handling and that PsE, combined with increased faecal sodium, may reshape the gut microbiome of HSD rats to resemble that of SSD rats.
Collapse
Affiliation(s)
- Daiane Cristina de Assis Braga
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG 35,402-136, Brazil
| | - Marcos Adriano Carlos Batista
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG 35,402-136, Brazil
| | - Renata Guerra-Sá
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG 35,402-136, Brazil
| | - Thayane Christine Alves da Silva
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG 35,402-136, Brazil
| | - Marco Antônio Alves Carneiro
- Department of Biodiversity, Evolution and Environment, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG 35,402-136, Brazil
| | - Maria Célia da Silva Lanna
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG 35,402-136, Brazil
| | - Vasco Ariston Azevedo
- Department of Genetic, Evolution and Ecology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31,270-901, Brazil
| | - Rodrigo Dias de Oliveira Carvalho
- Department of Genetic, Evolution and Ecology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31,270-901, Brazil
| | | | - Vagner Roberto Antunes
- Department of Physiology and Biophysics, Institute of Biological Sciences, University of São Paulo, São Paulo, SP 05,508-000, Brazil
| | - Sandra Aparecida Lima de Moura
- Department of Environmental Engineering, Mines School, Federal University of Ouro Preto, Ouro Preto, MG 35,402-163, Brazil
| | - Carla Speroni Ceron
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG 35,402-136, Brazil
| | - Leonardo Máximo Cardoso
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG 35,402-136, Brazil
| |
Collapse
|
8
|
Tomabechi R, Saito N, Saito D, Kishimoto H, Higuchi K, Inoue K. Exploring flavonoids as potent SLC46A3 inhibitors: Insights from the structural characteristics of flavonoid-SLC46A3 interactions. Biochem Pharmacol 2025; 231:116647. [PMID: 39579794 DOI: 10.1016/j.bcp.2024.116647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
SLC46A3, a transporter for lysosomal steroid conjugates and bile acids, plays a pivotal role in the pharmacological effects of noncleavable antibody-drug conjugates using maytansine as a payload. SLC46A3 may exert negative effects on various phenomena, including copper homeostasis, mitochondrial function in the liver, and the uptake of lipid-based nanoparticles (NPs) in tumor cells. Consequently, inhibiting SLC46A3 may be a promising strategy for treating hepatic disease or enhancing lipid NP delivery to tumor cells, although the underlying mechanisms remain unknown. This study investigates flavonoids, the largest subgroup of polyphenols characterized by a simple C6-C3-C6 structure, as potential SLC46A3 inhibitors and provides insights into the structural requirements for flavonoid-SLC46A3 interactions. Screening revealed several flavonoids, including dihydrochalcones, flavonols, isoflavones, flavanones, and flavones, as effective inhibitors of 5-carboxyfluorescein (5-CF) uptake in MDCKII (Mardin-Darby canine kidney type II) cells stably expressing a mutant SLC46A3 localized to the plasma membrane. Notably, apigenin and luteolin exhibited marked 5-CF uptake inhibition, with IC50 values of 10.8 and 8.7 µM, respectively. Additionally, 4',7-dihydroxyflavone significantly inhibited 5-CF uptake, exhibiting an IC50 value of 9.3 µM, whereas acacetin and genkwanin possessing methoxy group substitutions for the hydroxy group at the 4'- or 7-position of apigenin, respectively, did not affect the uptake. Luteolin's inhibition mechanism was found to be of a mixed type involving increased Km and decreased Vmax. These findings emphasize the importance of hydroxy groups at 4'- and 7-positions in flavone-SLC46A3 interactions.
Collapse
Affiliation(s)
- Ryuto Tomabechi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan; Laboratory of Pharmaceutics, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naoki Saito
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Daisuke Saito
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
9
|
Wang L, Ma R, Tian Y. Quercetin slow-release system delays starch digestion via inhibiting transporters and enzymes. Food Chem 2024; 461:140855. [PMID: 39167947 DOI: 10.1016/j.foodchem.2024.140855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
This study investigates the potential of a quercetin-based emulsion system to moderate starch digestion and manage blood glucose levels, addressing the lack of in vivo research. By enhancing quercetin bioaccessibility and targeting release in the small intestine, the emulsion system demonstrates significant inhibition of starch digestion and glucose spikes through both in vitro and in vivo experiments. The system inhibits α-amylase and α-glucosidase via competitive and mixed inhibition mechanisms, primarily involving hydrogen bonds and van der Waals forces, leading to static fluorescence quenching. Additionally, this system downregulates the protein expression and gene transcription of SGLT1 and GLUT2. These findings offer a novel approach to sustaining glucose equilibrium, providing a valuable foundation for further application of quercetin emulsion in food science.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; Analysis and Testing Center, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
10
|
Afzal NU, Kabir ME, Barman H, Sharmah B, Roy MK, Kalita J, Manna P. The role of lipid-soluble vitamins on glucose transporter. VITAMINS AND HORMONES 2024; 128:123-153. [PMID: 40097248 DOI: 10.1016/bs.vh.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Glucose is the primary source of energy for most of the cells and essential for basic functionalities of life's biochemical processes. Transportation of glucose via biological membranes is essential for life mediated by glucose transporters (GLUT) through facilitated diffusion. Glucose transporters perform a crucial role in maintaining normal health as they transfer the most essential molecules of life, glucose. There are 14 various types of glucose transporters that transport primarily glucose and fructose. GUTTs are trans-membrane proteins expressed in the plasma membrane that facilitate the entry of carbohydrate molecules inside the cells. These transporters provide the passage for the carbohydrate molecules, which undergo oxidation inside the cells and provide essential energy in the form of ATPs. Lipid-soluble vitamins, namely A, D, E, and K have been reported to play a key role in stimulating several glucose transporters. Supplementation of lipid-soluble vitamins stimulates the expression of glucose transporters, most importantly GLUT4, GLUT2, GLUT1, and GLUT3, which play a critical role in regulating glucose metabolism in muscle, liver, brain, and RBCs. For their ability to increase the expression of GLUTs, the lipid-soluble vitamins can be the potential micronutrient for combating various non-communicable diseases. The present article discusses the essential role of lipid-soluble vitamins in the regulation of glucose transporters.
Collapse
Affiliation(s)
- Nazim Uddin Afzal
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Mir Ekbal Kabir
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Hiranmoy Barman
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Bhaben Sharmah
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Monojit Kumar Roy
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Jatin Kalita
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Prasenjit Manna
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India.
| |
Collapse
|
11
|
Anandika Lestari O, Sri Palupi N, Setiyono A, Kusnandar F, Dewi Yuliana N. LC-MS metabolomics and molecular docking approaches to identify antihyperglycemic and antioxidant compounds from Melastoma malabathricum L. Leaf. Saudi J Biol Sci 2024; 31:104047. [PMID: 38983129 PMCID: PMC11231536 DOI: 10.1016/j.sjbs.2024.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
The dried leaves of Melastoma malabathricum L., locally named Karamunting or Senduduk, is traditionally consumed in many regions in Indonesia as herbal tea to cure different illnesses, including diabetes. To date, information on the compounds responsible for their antidiabetic activity is still very rare. The study aimed to identify bioactive compounds of M. malabathricum L. leaves using LC-MS based metabolomics and molecular docking approaches. The leaves brewed with different methods were subjected to LC-MS measurements and several bioactivity tests (in vivo and in vitro antihyperglycemic, and in vitro antioxidant). LC-MS data were linked to the activity data using multivariate data analysis. Molecular docking using alpha-glucosidase, alpha-amylase, and insulin receptor as protein targets was used to verify the results and study the interaction between the identified compound and protein targets. As results, isoquercetin and myricitrin were identified as compounds strongly associated with alpha-amylase inhibitors, while rutin and epicatechin were identified as alpha-glucosidase inhibitors. Quercitrin, citric acid, quercetin, epicatechin, isoquercitrin, and 7-hydroxycoumarine were strongly correlated with both antihyperglycemic and antioxidant activities. The results of metabolomics were confirmed with molecular docking studies, which showed that some of these compounds acted as competitive inhibitors, while others acted as non-competitive ones. Possible synergism between epicatechin and citric acid in their interaction with IR was detected. Metabolomics combined with molecular docking efficiently identified and confirmed several antihyperglycemic and antioxidant compounds from M. malabathricum L., leaf. This study provides scientific evidence for the traditional use of M. malabathricum L. as an antidiabetic herbal.
Collapse
Affiliation(s)
- Oke Anandika Lestari
- Department of Food Science and Technology, IPB University, Bogor 16680, Indonesia
- Department of Food Technology, Faculty of Agriculture, Tanjungpura University, Pontianak 78124, Indonesia
| | - Nurheni Sri Palupi
- Department of Food Science and Technology, IPB University, Bogor 16680, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Bogor 16680, Indonesia
| | - Agus Setiyono
- Department of Clinic, Reproduction and Pathology, IPB University, Bogor, Indonesia
| | - Feri Kusnandar
- Department of Food Science and Technology, IPB University, Bogor 16680, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Bogor 16680, Indonesia
| | - Nancy Dewi Yuliana
- Department of Food Science and Technology, IPB University, Bogor 16680, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Bogor 16680, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
12
|
Venugopal G, Dash R, Agrawal S, Ray S, Kumar Sahoo P, Ramadass B. A Novel Nutraceutical Supplement Lowers Postprandial Glucose and Insulin Levels upon a Carbohydrate-Rich Meal or Sucrose Drink Intake in Healthy Individuals-A Randomized, Placebo-Controlled, Crossover Feeding Study. Nutrients 2024; 16:2237. [PMID: 39064681 PMCID: PMC11280099 DOI: 10.3390/nu16142237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Alkaloid- and polyphenol-rich white mulberry leaf and apple peel extracts have been shown to have potential glucose-lowering effects, benefitting the control of postprandial blood glucose levels. This study aimed to determine the effect of the combination of Malus domestica peel and Morus alba leaf extracts (GLUBLOCTM) on postprandial blood glucose and insulin-lowering effects in healthy adults after a carbohydrate-rich meal or sucrose drink intake. METHODS This study was designed as a randomized, crossover, single-blinded clinical trial. Out of 116 healthy participants, 85 subjects (aged 18-60 years) completed the day 1 and 5 crossover study. On day 1, subjects were supplemented with a placebo or GLUBLOCTM tablet 10 min before the carbohydrate-rich meal (300 g of tomato rice) or sucrose drink intake (75 g of sucrose dissolved in 300 mL water). On day 5, the treatments were crossed over, and the same diet was followed. Postprandial blood glucose and insulin levels were measured on days 1 and 5 (baseline 0, post-meal 30, 60, 90, and 120 min). Differences in iAUC, Cmax, and Tmax were determined between the placebo and GLUBLOCTM-treated cohorts. RESULTS Significant changes in total iAUC (0-120 min), Cmax, and Tmax of postprandial blood glucose and insulin levels were noticed upon GLUBLOCTM supplementation. The percentage reduction in the iAUC of blood glucose levels was 49.78% (iAUC0-60min) and 43.36% (iAUC0-120min), respectively, compared with the placebo in the sucrose drink intake study. Similarly, there was a 41.13% (iAUC0-60min) and 20.26% (iAUC0-120min) glucose-lowering effect compared with the placebo in the carbohydrate-rich meal intake study. CONCLUSIONS Premeal supplementation with GLUBLOCTM significantly reduced the postprandial surge in blood glucose and insulin levels after a carbohydrate-rich meal or sucrose drink intake over 120 min in healthy individuals. This study proves that GLUBLOCTM can manage steady postprandial blood glucose levels.
Collapse
Affiliation(s)
- Giriprasad Venugopal
- Center of Excellence for Clinical Microbiome Research, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar 751019, India; (G.V.); (R.D.)
| | - Rishikesh Dash
- Center of Excellence for Clinical Microbiome Research, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar 751019, India; (G.V.); (R.D.)
| | - Siwani Agrawal
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar 751019, India;
| | - Sayantan Ray
- Department of Endocrinology, All India Institute of Medical Sciences, Bhubaneswar 751019, India;
| | - Prasanta Kumar Sahoo
- Department of Ayurveda (AYUSH), All India Institute of Medical Sciences, Bhubaneswar 751019, India;
| | - Balamurugan Ramadass
- Center of Excellence for Clinical Microbiome Research, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar 751019, India; (G.V.); (R.D.)
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar 751019, India;
| |
Collapse
|
13
|
Tahmasebi A, Jamali B, Atabaki V, Sarker SD, Nahar L, Min HJ, Lee CW. A comprehensive review of the botany, ethnopharmacology, phytochemistry, and pharmacological activities of two Iranian Rydingia species (Lamiaceae). Fitoterapia 2024; 176:106026. [PMID: 38768794 DOI: 10.1016/j.fitote.2024.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Rydingia michauxii and R. persica, respectively, known as Kase Gol and Goldar in Persian, belong to the family Lamiaceae and they are well known herbal medicine in Iran for the treatment of various diseases, particularly diabetes. This review aims to appraise the phytochemistry, ethnopharmacology, and pharmacological activities of Rydingia species growing in Iran and assess their potential in clinical applications. Besides, it critically evaluates existing literature and looks into the perspective for further research and utilization. All available scientific literature was consulted using the database searches involving Google Scholar, PubMed, and Web of Science applying the keyword Rydingia and its Syn; Otostegia. Only the search results that are associated with the Iranian species R. michauxii and R. persica are included in this review. α-pinene, carvacrol, caryophyllene oxide, diisooctyl phthalate, dillapiole, eugenol, hexadecanoic acid, and pentacosane are the major constituents of the essential oils of the Rydingia species. Additionally, these species produce bioactive flavonoids, phenolic acids, steroids, and terpenoids. Extracts and active compounds from Rydingia species have been reported to possess various pharmacological activities including antidiabetic, anti-inflammatory, antimalarial, antimicrobial, antioxidant, cytotoxic, and lipid-lowering properties. Based on the information available to date on the Iranian Rydingia species, it will be worth subjecting these species to further developmental work involving preclinical and clinical trials.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran; Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran; Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea.
| | - Babak Jamali
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Vahideh Atabaki
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - Hye Jung Min
- Department of Cosmetic Science, Gwangju Women's University, Gwangju 62396, Republic of Korea.
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
14
|
Yadav D, Yadav A, Bhattacharya S, Dagar A, Kumar V, Rani R. GLUT and HK: Two primary and essential key players in tumor glycolysis. Semin Cancer Biol 2024; 100:17-27. [PMID: 38494080 DOI: 10.1016/j.semcancer.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Cancer cells reprogram their metabolism to become "glycolysis-dominant," which enables them to meet their energy and macromolecule needs and enhancing their rate of survival. This glycolytic-dominancy is known as the "Warburg effect", a significant factor in the growth and invasion of malignant tumors. Many studies confirmed that members of the GLUT family, specifically HK-II from the HK family play a pivotal role in the Warburg effect, and are closely associated with glucose transportation followed by glucose metabolism in cancer cells. Overexpression of GLUTs and HK-II correlates with aggressive tumor behaviour and tumor microenvironment making them attractive therapeutic targets. Several studies have proven that the regulation of GLUTs and HK-II expression improves the treatment outcome for various tumors. Therefore, small molecule inhibitors targeting GLUT and HK-II show promise in sensitizing cancer cells to treatment, either alone or in combination with existing therapies including chemotherapy, radiotherapy, immunotherapy, and photodynamic therapy. Despite existing therapies, viable methods to target the glycolysis of cancer cells are currently lacking to increase the effectiveness of cancer treatment. This review explores the current understanding of GLUT and HK-II in cancer metabolism, recent inhibitor developments, and strategies for future drug development, offering insights into improving cancer treatment efficacy.
Collapse
Affiliation(s)
- Dhiraj Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India; Drug Discovery, Jubilant Biosys, Greater Noida, Noida, Uttar Pradesh, India
| | - Anubha Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Akansha Dagar
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Reshma Rani
- Drug Discovery, Jubilant Biosys, Greater Noida, Noida, Uttar Pradesh, India.
| |
Collapse
|
15
|
De Silva ND, Attanayake AP, Karunaratne DN, Arawwawala LDAM, Pamunuwa GK. Synthesis and bioactivity assessment of Coccinia grandis L. extract encapsulated alginate nanoparticles as an antidiabetic drug lead. J Microencapsul 2024; 41:1-17. [PMID: 37966469 DOI: 10.1080/02652048.2023.2282964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
AIM This study aimed to prepare, characterise, and evaluate the antidiabetic activity of Coccinia grandis (L.) extracts encapsulated alginate nanoparticles. METHODS Alginate nanoparticles were prepared using the ionic gelation method and characterised by encapsulation efficiency %w/w, loading capacity %w/w, particle size analysis, zeta potential, Fourier transform infra-red spectroscopy (FTIR), and scanning electron microscopy (SEM). In vitro antidiabetic activity was also evaluated. RESULTS Encapsulation efficiency %w/w, loading capacity %w/w, mean diameter, zeta potential of C. grandis encapsulated alginate nanoparticles ranged from 10.51 ± 0.51 to 62.01 ± 1.28%w/w, 0.39 ± 0.04 to 3.12 ± 0.11%w/w, 191.9 ± 76.7 to 298.9 ± 89.6 nm, -21.3 ± 3.3 to -28.4 ± 3.4 mV, respectively. SEM and FTIR confirmed that particles were in nano range with spherical shape and successful encapsulation of plant extracts into an alginate matrix. The antidiabetic potential of aqueous extract of C. grandis encapsulated alginate nanoparticles (AqCG-ANP) exhibited inhibition in α-amylase, α-glucosidase and dipeptidyl peptidase IV enzymes of 60.8%c/c, 19.1%c/c, and 30.3%c/c, respectively, compared to the AqCG. CONCLUSION The AqCG-ANP exerted promising antidiabetic potential as an antidiabetic drug lead.
Collapse
Affiliation(s)
| | | | | | | | - Geethi Kaushalya Pamunuwa
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Sri Lanka
| |
Collapse
|
16
|
Barreto-Peixoto JA, Silva C, Costa ASG, Álvarez-Rivera G, Cifuentes A, Ibáñez E, Oliveira MBPP, Alves RC, Martel F, Andrade N. A Prunus avium L. Infusion Inhibits Sugar Uptake and Counteracts Oxidative Stress-Induced Stimulation of Glucose Uptake by Intestinal Epithelial (Caco-2) Cells. Antioxidants (Basel) 2023; 13:59. [PMID: 38247483 PMCID: PMC10812648 DOI: 10.3390/antiox13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Sweet cherry (Prunus avium L.) is among the most valued fruits due to its organoleptic properties and nutritional worth. Cherry stems are rich in bioactive compounds, known for their anti-inflammatory and antioxidant properties. Innumerable studies have indicated that some bioactive compounds can modulate sugar absorption in the small intestine. In this study, the phenolic profile of a cherry stem infusion was investigated, as well as its capacity to modulate intestinal glucose and fructose transport in Caco-2 cells. Long-term (24 h) exposure to cherry stem infusion (25%, v/v) significantly reduced glucose (3H-DG) and fructose (14C-FRU) apical uptake, reduced the apical-to-basolateral Papp to 3H-DG, and decreased mRNA expression levels of the sugar transporters SGLT1, GLUT2 and GLUT5. Oxidative stress (induced by tert-butyl hydroperoxide) caused an increase in 3H-DG uptake, which was abolished by the cherry stem infusion. These findings suggest that cherry stem infusion can reduce the intestinal absorption of both glucose and fructose by decreasing the gene expression of their membrane transporters. Moreover, this infusion also appears to be able to counteract the stimulatory effect of oxidative stress upon glucose intestinal uptake. Therefore, it can be a potentially useful compound for controlling hyperglycemia, especially in the presence of increased intestinal oxidative stress levels.
Collapse
Affiliation(s)
- Juliana A. Barreto-Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Cláudia Silva
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Anabela S. G. Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, 4200-135 Porto, Portugal
| | - Nelson Andrade
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
17
|
Mase K, Hirayama C, Narukawa J, Kuwazaki S, Yamamoto K. Fine mapping of Green a, Ga, on chromosome 27 in Bombyx mori. Genes Genet Syst 2023; 98:239-247. [PMID: 37813645 DOI: 10.1266/ggs.23-00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Some strains of silkworms produce green cocoons of varying intensities. This results from quantitative and qualitative differences in flavonoid pigments, which are influenced by the environment and genetic background. We discovered that the appearance of a faint green cocoon is regulated by a gene (G27) located on chromosome 27. Through mating experiments, we found that G27 is identical to an essential flavonoid cocoon gene, Ga. This locus has not been previously described. Furthermore, we narrowed down the Ga region to 438 kbp using molecular markers. Within this region, several predicted genes for sugar transporters form a cluster structure, suggesting that Ga is among them.
Collapse
Affiliation(s)
- Keisuke Mase
- College of Humanities and Sciences, Nihon University
| | | | - Junko Narukawa
- National Agriculture and Food Research Organization, NARO
| | - Seigo Kuwazaki
- National Agriculture and Food Research Organization, NARO
| | | |
Collapse
|
18
|
Liu M, Shen J, Zhu X, Ju T, Willing BP, Wu X, Lu Q, Liu R. Peanut skin procyanidins reduce intestinal glucose transport protein expression, regulate serum metabolites and ameliorate hyperglycemia in diabetic mice. Food Res Int 2023; 173:113471. [PMID: 37803795 DOI: 10.1016/j.foodres.2023.113471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
One of diabetic characteristics is the postprandial hyperglycemia. Inhibiting glucose uptake may be beneficial for controlling postprandial blood glucose levels and regulating the glucose metabolism Peanut skin procyanidins (PSP) have shown a potential for lowering blood glucose; however, the underlying mechanism through which PSP regulate glucose metabolism remains unknown. In the current study, we investigated the effect of PSP on intestinal glucose transporters and serum metabolites using a mouse model of diabetic mice. Results showed that PSP improved glucose tolerance and systemic insulin sensitivity, which coincided with decreased expression of sodium-glucose cotransporter 1 and glucose transporter 2 in the intestinal epithelium induced by an activation of the phospholipase C β2/protein kinase C signaling pathway. Moreover, untargeted metabolomic analysis of serum samples revealed that PSP altered arachidonic acid, sphingolipid, glycerophospholipid, bile acids, and arginine metabolic pathways. The study provides new insight into the anti-diabetic mechanism of PSP and a basis for further research.
Collapse
Affiliation(s)
- Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Jinxin Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Xiaoling Zhu
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430070, China
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Xin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430000, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430000, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
19
|
Alfahel R, Sawicki T, Jabłońska M, Przybyłowicz KE. Anti-Hyperglycemic Effects of Bioactive Compounds in the Context of the Prevention of Diet-Related Diseases. Foods 2023; 12:3698. [PMID: 37835351 PMCID: PMC10572282 DOI: 10.3390/foods12193698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Diet-related diseases are health conditions primary caused by poor nutrition. These diseases encompass obesity, type 2 diabetes, cardiovascular diseases, osteoporosis, and certain types of cancer. Functional foods and nutraceuticals offer a promising dietary approach to addressing diet-related diseases across various clinical contexts. The bioactive compounds found in these foods are the subject of intensive studies aimed at discovering their anti-hyperglycemic effects, which are beneficial in alleviating chronic diseases and protecting human health. Hyperglycemia is a common risk factor for metabolic disease and mortality worldwide. Chronic hyperglycemic states can lead to many long-term complications, such as retinopathy, neuropathy, kidney disease, heart disease, cancer, and diabetes. This review explores the potential anti-hyperglycemic effects of bioactive compounds, specifically flavonoids and phenolic acids, and their proposed roles in mitigating chronic diseases and promoting human health. By thoroughly examining the existing literature, we investigated the potential anti-hyperglycemic effects of these bioactive compounds and their proposed roles in managing chronic diseases. The goal of this paper was to enhance our comprehension of how these compounds modulate glucose transporters, with the ultimate aim of identifying effective strategies for the prevention and treatment of diet-related diseases. Overall, this review investigated the use of bioactive compounds from functional foods as potential inhibitors of glucose transporters in the context of prevention/treatment of diet-related diseases.
Collapse
Affiliation(s)
| | | | | | - Katarzyna E. Przybyłowicz
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 45f Słoneczna Street, 10-718 Olsztyn, Poland; (R.A.); (T.S.); (M.J.)
| |
Collapse
|
20
|
Rana SS, Tiwari S, Gupta N, Tripathi MK, Tripathi N, Singh S, Bhagyawant SS. Validating the Nutraceutical Significance of Minor Millets by Employing Nutritional-Antinutritional Profiling. Life (Basel) 2023; 13:1918. [PMID: 37763321 PMCID: PMC10532853 DOI: 10.3390/life13091918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Millets are group of underutilized cereal crops with higher nutritional values. The present investigation used different classes of minor millets, including barnyard (sava), little (kutki), finger (ragi), kodo and foxtail millets, for evaluation of their nutritional parameters, i.e., the content of proteins, total amino acids, total sugars, insoluble fibers, soluble fibers, total dietary fibers, iron (Fe) and zinc (Zn), along with antinutritional and antioxidant parameters, viz., tannic acid, phytic acid, phenol, flavonoid, proline and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Alpha amylase and alpha glucosidase activity were also thought to elevate millets as a viable staple meal. Foxtail millet showed the maximum inhibition, with an IC50 value of 20.46 ± 1.80 µg mL-1 with respect to α-amylase. The coefficient of correlation between nutritional and antinutritional compositions showed that the starch content was significantly and positively correlated with insoluble fiber (r = 0.465) and dietary fiber (r = 0.487). Moreover, sugar was positively correlated with the phytic acid (r = 0.707), Fe and Zn (r = 0.681) contents. To determine the peptides responsible for anticancer activity, the foxtail protein was subjected to ultrafiltration; it was found that the 3 kDa fraction retained the greatest anticancer activity. Selected millet germplasm line(s) that have the best nutraceutical properties could be used in millet improvement programs.
Collapse
Affiliation(s)
- Shivani Singh Rana
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Vijayraje Scindia Agricultural University, Gwalior 474002, Madhya Pradesh, India; (S.S.R.); (N.G.)
| | - Sushma Tiwari
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Vijayraje Scindia Agricultural University, Gwalior 474002, Madhya Pradesh, India; (S.S.R.); (N.G.)
| | - Neha Gupta
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Vijayraje Scindia Agricultural University, Gwalior 474002, Madhya Pradesh, India; (S.S.R.); (N.G.)
- School of Studies in Biotechnology, Jiwaji University, Gwalior 474001, Madhya Pradesh, India;
| | - Manoj Kumar Tripathi
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Vijayraje Scindia Agricultural University, Gwalior 474002, Madhya Pradesh, India; (S.S.R.); (N.G.)
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Agricultural University, Jabalpur 482004, Madhya Pradesh, India;
| | - Sangeeta Singh
- National Institute of Plant Genome Research, New Delhi 110067, Delhi, India;
| | - Sameer S. Bhagyawant
- School of Studies in Biotechnology, Jiwaji University, Gwalior 474001, Madhya Pradesh, India;
| |
Collapse
|
21
|
Nakanishi Y, Iwai M, Hirotani Y, Kato R, Tanino T, Nishimaki‐watanabe H, Nozaki F, Ohni S, Tang X, Masuda S, Sasaki‐fukatsu K. Correlations between class I glucose transporter expression patterns and clinical outcomes in non-small cell lung cancer. Thorac Cancer 2023; 14:2761-2769. [PMID: 37549925 PMCID: PMC10518227 DOI: 10.1111/1759-7714.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Glucose transporters (GLUTs) are highly expressed in various cancers. However, the implications of these variable expression patterns are unclear. This study aimed to clarify the correlation between class I GLUT expression patterns and clinical outcomes in non-small cell lung cancer (NSCLC), including their potential role in inflammatory signaling. METHODS Biopsy tissues from 132 patients with NSCLC (92 adenocarcinomas [ADC] and 40 squamous cell carcinomas [SQCC]) were analyzed. mRNA expression levels of class I GLUTs (solute carrier 2A [SLC2A]1, SLC2A2, SLC2A3, and SLC2A4) and inflammation-related molecules (toll-like receptors TLR4, RelA/p65, and interleukins IL8 and IL6) were measured. Cellular localization of GLUT3 and GLUT4 was investigated using immunofluorescence. RESULTS Single, combined, and negative GLUT (SLC2A) expression were observed in 27/92 (29.3%), 27/92 (29.3%), and 38/92 (41.3%, p < 0.001) of ADC and 8/40 (20.0%), 29/40 (72.5%, p < 0.001), and 3/40 (7.5%) of SQCC, respectively. In ADC, the single SLC2A3-expressed group had a significantly poorer prognosis, whereas the single SLC2A4-expressed group had a significantly better prognosis. The combined expression groups showed no significant difference. SLC2A expression was not correlated with SQCC prognosis. SLC2A4 expression correlated with lower IL8 expression. GLUT3 and GLUT4 expressions were localized in the tumor cytoplasm. CONCLUSIONS In lung ADC, single SLC2A3 expression correlated with poor prognosis, whereas single SLC2A4 expression correlated with better prognosis and lower IL8 expression. GLUT3 expression, which is increased by IL8 overexpression, may be suppressed by increasing the expression of GLUT4 through decreased IL8 expression.
Collapse
Affiliation(s)
- Yoko Nakanishi
- Division of Oncologic Pathology, Department of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Momoko Iwai
- Division of Oncologic Pathology, Department of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
- Department of Food Science & Nutrition, Graduate School of Home EconomicsKyoritsu Women's UniversityTokyoJapan
| | - Yukari Hirotani
- Division of Oncologic Pathology, Department of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Ren Kato
- Division of Oncologic Pathology, Department of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
- Department of Pediatric SurgeryNihon University School of MedicineTokyoJapan
| | - Tomoyuki Tanino
- Division of Oncologic Pathology, Department of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Haruna Nishimaki‐watanabe
- Division of Oncologic Pathology, Department of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Fumi Nozaki
- Division of Oncologic Pathology, Department of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Sumie Ohni
- Division of Oncologic Pathology, Department of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Xiaoyan Tang
- Division of Oncologic Pathology, Department of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Shinobu Masuda
- Division of Oncologic Pathology, Department of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Kayoko Sasaki‐fukatsu
- Department of Food Science & Nutrition, Graduate School of Home EconomicsKyoritsu Women's UniversityTokyoJapan
| |
Collapse
|
22
|
Saad B. Management of Obesity-Related Inflammatory and Cardiovascular Diseases by Medicinal Plants: From Traditional Uses to Therapeutic Targets. Biomedicines 2023; 11:2204. [PMID: 37626701 PMCID: PMC10452657 DOI: 10.3390/biomedicines11082204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation is a crucial factor in the development and progression of cardiovascular diseases (CVD). Cardiac remodeling in the presence of persistent inflammation leads to myocardial fibrosis and extracellular matrix changes, which reduce cardiac function, induce arrhythmias, and finally, cause heart failure. The majority of current CVD treatment plans concentrate on reducing risk factors such as hyperlipidemia, type 2 diabetes, and hypertension. One such strategy could be inflammation reduction. Numerous in vitro, animal, and clinical studies indicate that obesity is associated with low-grade inflammation. Recent studies have demonstrated the potential of medicinal plants and phytochemicals to cure and prevent obesity and inflammation. In comparison to conventional therapies, the synergistic effects of several phytochemicals boost their bioavailability and impact numerous cellular and molecular targets. Focusing on appetite, pancreatic lipase activity, thermogenesis, lipid metabolism, lipolysis and adipogenesis, apoptosis in adipocytes, and adipocyte life cycle by medicinal plants and phytochemicals represent an important goal in the development of new anti-obesity drugs. We conducted an extensive review of the literature and electronic databases, including Google Scholar, PubMed, Science Direct, and MedlinePlus, for collecting data on the therapeutic effects of medicinal plants/phytochemicals in curing obesity and its related inflammation and CVD diseases, including cellular and molecular mechanisms, cytokines, signal transduction cascades, and clinical trials.
Collapse
Affiliation(s)
- Bashar Saad
- Al-Qasemi Academic College, Baqa Algharbiya 30100, Israel; or
- Department of Biochemistry, Faculty of Medicine, The Arab American University, Jenin P203, Palestine
| |
Collapse
|
23
|
Boers HM, van Dijk TH, Duchateau GS, Mela DJ, Hiemstra H, Hoogenraad AR, Priebe MG. Effect of mulberry fruit extract on glucose fluxes after a wheat porridge meal: a dual isotope study in healthy human subjects. Eur J Clin Nutr 2023; 77:741-747. [PMID: 36944719 DOI: 10.1038/s41430-023-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Previous research has shown the efficacy of mulberry extracts for lowering post-prandial glucose (PPG) responses. The postulated mechanism is slowing of glucose absorption, but effects on glucose disposal or endogenous production are also possible. This research assessed the effect of a specified mulberry fruit extract (MFE) on these three glucose flux parameters. METHODS The study used a double-blind, randomized, controlled, full cross-over design. In 3 counter-balanced treatments, 12 healthy adult male subjects, mean (SD) age 24.9 (2.50) years and body mass index 22.5 (1.57) kg/m2, consumed porridge prepared from 13C-labelled wheat, with or without addition of 0.75 g MFE, or a solution of 13C-glucose in water. A co-administered 2H-glucose venous infusion allowed for assessment of glucose disposal. Glucose flux parameters, cumulative absorption (time to 50% absorption, T50%abs), and PPG positive incremental area under the curve from 0 to 120 min (+iAUC0-120) were determined from total and isotopically labelled glucose in plasma. As this exploratory study was not powered for formal inferential statistical tests, results are reported as the mean percent difference (or minutes for T50%abs) between treatments with 95% CI. RESULTS MFE increased mean T50%abs by 10.2 min, (95% CI 3.9-16.5 min), and reduced mean 2 h post-meal rate of glucose appearance by 8.4% (95% CI -14.9 to -1.4%) and PPG + iAUC0-120 by 11% (95% CI -26.3 to -7.3%), with no significant changes in glucose disposal or endogenous production. CONCLUSIONS The PPG-lowering effect of MFE is primarily mediated by a reduced rate of glucose uptake.
Collapse
Affiliation(s)
- Hanny M Boers
- Unilever Foods Innovation Centre, 6708 WH, Wageningen, The Netherlands.
| | - Theo H van Dijk
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Guus S Duchateau
- Unilever Foods Innovation Centre, 6708 WH, Wageningen, The Netherlands
| | - David J Mela
- Unilever Foods Innovation Centre, 6708 WH, Wageningen, The Netherlands.
| | - Harry Hiemstra
- Unilever Foods Innovation Centre, 6708 WH, Wageningen, The Netherlands
| | | | - Marion G Priebe
- Center for Medical Biomics, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
24
|
Niisato N, Marunaka Y. Therapeutic potential of multifunctional myricetin for treatment of type 2 diabetes mellitus. Front Nutr 2023; 10:1175660. [PMID: 37305094 PMCID: PMC10251146 DOI: 10.3389/fnut.2023.1175660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglycemia, insulin resistance, and insufficient insulin secretion. It is considered that chronic hyperglycemia causes serious problems due to diabetic complications such as retinopathy, nephropathy, and neuropathy. Primarily, treatment in T2DM is pharmacologically tried by using drugs that are insulin sensitizers, insulin secretagogues, α-glucosidase inhibitors, and glucose transporter inhibitors. However, long-term application of these drugs frequently induces various harmful side effects, suggesting that the importance of taking advantage of natural products like phytochemicals. Accordingly, flavonoids, a group of phytochemicals, have attracted attention as components of natural products which are effective in the treatment of several diseases containing T2DM and are strongly recommended as food supplements to ameliorate T2DM-related complications. Several well-studied flavonoids such as quercetin and catechin are known to have anti-diabetic, anti-obesity, and anti-hypertensive actions, although a huge number of flavonoids are still under investigation and their actions are not fully understood. In this situation, myricetin is being shown to be a multiple bioactive compound to prevent and/or suppress hyperglycemia through inhibiting digestion and uptake of saccharides and enhancing insulin secretion as a possible GLP-1 receptor agonist, and to ameliorate T2DM-related complications by protecting endothelial cells from oxidative stress induced by hyperglycemia. In this review, we summarize the multiple effects of myricetin on the targets of T2DM treatment, comparing with different flavonoids.
Collapse
Affiliation(s)
- Naomi Niisato
- Department of Health and Sports Sciences, Faculty of Health and Medical Sciences, Kyoto University of Advanced Science, Kameoka, Japan
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, Japan
| | - Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, Japan
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
- Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
25
|
Bellachioma L, Morresi C, Albacete A, Martínez-Melgarejo PA, Ferretti G, Giorgini G, Galeazzi R, Damiani E, Bacchetti T. Insights on the Hypoglycemic Potential of Crocus sativus Tepal Polyphenols: An In Vitro and In Silico Study. Int J Mol Sci 2023; 24:ijms24119213. [PMID: 37298165 DOI: 10.3390/ijms24119213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Post-prandial hyperglycemia typical of diabetes mellitus could be alleviated using plant-derived compounds such as polyphenols, which could influence the activities of enzymes involved in carbohydrate digestion and of intestinal glucose transporters. Here, we report on the potential anti-hyperglycemic effect of Crocus sativus tepals compared to stigmas, within the framework of valorizing these by-products of the saffron industry, since the anti-diabetic properties of saffron are well-known, but not those of its tepals. In vitro assays showed that tepal extracts (TE) had a greater inhibitory action than stigma extracts (SE) on α-amylase activity (IC50: TE = 0.60 ± 0.09 mg/mL; SE = 1.10 ± 0.08 mg/mL; acarbose = 0.051 ± 0.07) and on glucose absorption in Caco-2 differentiated cells (TE = 1.20 ± 0.02 mg/mL; SE = 2.30 ± 0.02 mg/mL; phlorizin = 0.23 ± 0.01). Virtual screening performed with principal compounds from stigma and tepals of C. sativus and human pancreatic α-amylase, glucose transporter 2 (GLUT2) and sodium glucose co-transporter-1 (SGLT1) were validated via molecular docking, e.g., for human pancreatic α-amylase, epicatechin 3-o-gallate and catechin-3-o-gallate were the best scored ligands from tepals (-9.5 kcal/mol and -9.4 kcal/mol, respectively), while sesamin and episesamin were the best scored ones from stigmas (-10.1 kcal/mol). Overall, the results point to the potential of C. sativus tepal extracts in the prevention/management of diabetes, likely due to the rich pool of phytocompounds characterized using high-resolution mass spectrometry, some of which are capable of binding and interacting with proteins involved in starch digestion and intestinal glucose transport.
Collapse
Affiliation(s)
- Luisa Bellachioma
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alfonso Albacete
- Centro de Edafología y Biología Aplicada del Segura, Agencia Estatal Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - Purificación A Martínez-Melgarejo
- Centro de Edafología y Biología Aplicada del Segura, Agencia Estatal Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - Gianna Ferretti
- Department of Clinical Science and Odontostomatology, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giorgia Giorgini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
26
|
Naz R, Saqib F, Awadallah S, Wahid M, Latif MF, Iqbal I, Mubarak MS. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023; 28:molecules28103996. [PMID: 37241737 DOI: 10.3390/molecules28103996] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | | |
Collapse
|
27
|
Mazraesefidi M, Mahmoodi M, Hajizadeh M. Effects of silibinin on apoptosis and insulin secretion in rat RINm5F pancreatic β-cells. Biotech Histochem 2023; 98:201-209. [PMID: 36762428 DOI: 10.1080/10520295.2022.2154840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
We investigated whether silibinin, a flavonoid, might be useful for treating diabetes mellitus by treating five groups of rat RINm5F β-insulinemia cells as follows: control streptozotocin (STZ) group administered citrate buffer and dimethyl sulfoxide; STZ group administered 20 mM STZ; silibinin group administered 50 µM silibinin; pre-silibinin group administered 50 µM silibinin 5 h before administering 20 mM STZ; simultaneous group administered 50 µM silibinin at the same time as 20 mM STZ. For all groups, MTT assay and flow cytometry were used to evaluate cell viability and necrosis, respectively. Glucose-stimulated insulin secretion (GSIS) and insulin cell content were determined using enzyme-linked immunosorbent assay. Also, expression of genes, pancreatic and duodenal homeobox 1 (pdx1), neuronal differentiation 1 (neurod1), v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A (mafa), glucose transporter 2 (glut2)) was determined using the real-time polymerase chain reaction. We found that silibinin improved the viability of RINm5F cells and increased GSIS and cellular insulin under glucotoxic conditions. Silibinin increased the expression of neurod1, mafa and glut2, but reduced pdx1 expression. Our findings suggest that silibinin might increase glucose sensitivity and insulin synthesis under glucotoxic conditions, which could be useful for diabetes treatment.
Collapse
Affiliation(s)
- Maryam Mazraesefidi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammadreza Hajizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
28
|
Air-Frying Is a Better Thermal Processing Choice for Improving Antioxidant Properties of Brassica Vegetables. Antioxidants (Basel) 2023; 12:antiox12020490. [PMID: 36830048 PMCID: PMC9952021 DOI: 10.3390/antiox12020490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Brassica vegetables have demonstrated many health benefits over the years due to their composition of phenolic, flavonoid, and glucosinolate contents. However, these bioactive molecules can be easily depleted during gastronomic operations. Therefore, a sustainable method that improves their phenolic content and antioxidant activity is required for both the processors and consumers. Thermal processing has been demonstrated as a method to improve the phenolic content and antioxidant status of Brassica vegetables. In the current study, four different thermal processing methods, including freeze-drying, sautéing, steaming, and air-frying, were employed for five different Brassica vegetables, including kale, broccoli sprouts, Brussels sprouts, red cabbage, and green cabbage. The total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities were assessed using radical scavenging activity (DPPH and ABTS•+), reducing power (FRAP), and the chelating ability of metal ions. Among the methods tested, air-frying at 160 °C for 10 min showed the highest TPC, TFC, and antioxidant activity of the Brassica vegetables, while sautéing showed the lowest. The steam treatments were preferred over the freeze-drying treatments. Within the vegetables tested, both kale and broccoli sprouts contained higher antioxidant properties in most of the employed processing treatments. The results also indicated that there is a strong correlation between the TPC, TFC, and antioxidant activity (p < 0.05). This study indicates that air-frying could be used as a sustainable thermal processing method for improving biomolecules in Brassica vegetables.
Collapse
|
29
|
Rana N, Aziz MA, Serya RAT, Lasheen DS, Samir N, Wuest F, Abouzid KAM, West FG. A Fluorescence-Based Assay to Probe Inhibitory Effect of Fructose Mimics on GLUT5 Transport in Breast Cancer Cells. ACS BIO & MED CHEM AU 2023; 3:51-61. [PMID: 37101605 PMCID: PMC10125380 DOI: 10.1021/acsbiomedchemau.2c00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 04/28/2023]
Abstract
Rapid cell division and reprogramming of energy metabolism are two crucial hallmarks of cancer cells. In humans, hexose trafficking into cancer cells is mainly mediated through a family of glucose transporters (GLUTs), which are facilitative transmembrane hexose transporter proteins. In several breast cancers, fructose can functionally substitute glucose as an alternative energy supply supporting rapid proliferation. GLUT5, the principal fructose transporter, is overexpressed in human breast cancer cells, providing valuable targets for breast cancer detection as well as selective targeting of anticancer drugs using structurally modified fructose mimics. Herein, a novel fluorescence assay was designed aiming to screen a series of C-3 modified 2,5-anhydromannitol (2,5-AM) compounds as d-fructose analogues to explore GLUT5 binding site requirements. The synthesized probes were evaluated for their ability to inhibit the uptake of the fluorescently labeled d-fructose derivative 6-NBDF into EMT6 murine breast cancer cells. A few of the compounds screened demonstrated highly potent single-digit micromolar inhibition of 6-NBDF cellular uptake, which was substantially more potent than the natural substrate d-fructose, at a level of 100-fold or more. The results of this assay are consistent with those obtained from a previous study conducted for some selected compounds against 18F-labeled d-fructose-based probe 6-[18F]FDF, indicating the reproducibility of the current non-radiolabeled assay. These highly potent compounds assessed against 6-NBDF open avenues for the development of more potent probes targeting GLUT5-expressing cancerous cells.
Collapse
Affiliation(s)
- Natasha Rana
- Department
of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department
of Oncology, University of Alberta—Cross
Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Cancer
Research Institute of Northern Alberta, University of Alberta, 2-132 Li Ka Shing, Edmonton, AB T6G 2E1, Canada
| | - Marwa A. Aziz
- Department
of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - Rabah A. T. Serya
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - Deena S. Lasheen
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - Nermin Samir
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - Frank Wuest
- Department
of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department
of Oncology, University of Alberta—Cross
Cancer Institute, Edmonton, AB T6G IZ2, Canada
| | - Khaled A. M. Abouzid
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - F. G. West
- Department
of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department
of Oncology, University of Alberta—Cross
Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Cancer
Research Institute of Northern Alberta, University of Alberta, 2-132 Li Ka Shing, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
30
|
Venturini G, Alvim JM, Padilha K, Toepfer CN, Gorham JM, Wasson LK, Biagi D, Schenkman S, Carvalho VM, Salgueiro JS, Cardozo KHM, Krieger JE, Pereira AC, Seidman JG, Seidman CE. Cardiomyocyte infection by Trypanosoma cruzi promotes innate immune response and glycolysis activation. Front Cell Infect Microbiol 2023; 13:1098457. [PMID: 36814444 PMCID: PMC9940271 DOI: 10.3389/fcimb.2023.1098457] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Introduction Chagas cardiomyopathy, a disease caused by Trypanosoma cruzi (T. cruzi) infection, is a major contributor to heart failure in Latin America. There are significant gaps in our understanding of the mechanism for infection of human cardiomyocytes, the pathways activated during the acute phase of the disease, and the molecular changes that lead to the progression of cardiomyopathy. Methods To investigate the effects of T. cruzi on human cardiomyocytes during infection, we infected induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) with the parasite and analyzed cellular, molecular, and metabolic responses at 3 hours, 24 hours, and 48 hours post infection (hpi) using transcriptomics (RNAseq), proteomics (LC-MS), and metabolomics (GC-MS and Seahorse) analyses. Results Analyses of multiomic data revealed that cardiomyocyte infection caused a rapid increase in genes and proteins related to activation innate and adaptive immune systems and pathways, including alpha and gamma interferons, HIF-1α signaling, and glycolysis. These responses resemble prototypic responses observed in pathogen-activated immune cells. Infection also caused an activation of glycolysis that was dependent on HIF-1α signaling. Using gene editing and pharmacological inhibitors, we found that T. cruzi uptake was mediated in part by the glucose-facilitated transporter GLUT4 and that the attenuation of glycolysis, HIF-1α activation, or GLUT4 expression decreased T. cruzi infection. In contrast, pre-activation of pro-inflammatory immune responses with LPS resulted in increased infection rates. Conclusion These findings suggest that T. cruzi exploits a HIF-1α-dependent, cardiomyocyte-intrinsic stress-response activation of glycolysis to promote intracellular infection and replication. These chronic immuno-metabolic responses by cardiomyocytes promote dysfunction, cell death, and the emergence of cardiomyopathy.
Collapse
Affiliation(s)
- Gabriela Venturini
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Juliana M. Alvim
- Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Christopher N. Toepfer
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Lauren K. Wasson
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | | | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | - Jose E. Krieger
- Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Alexandre C. Pereira
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States,Howard Hughes Medical Institute, Chevy Chase, MD, United States,*Correspondence: Christine E. Seidman,
| |
Collapse
|
31
|
Dietary Polyphenols and In Vitro Intestinal Fructose Uptake and Transport: A Systematic Literature Review. Int J Mol Sci 2022; 23:ijms232214355. [PMID: 36430831 PMCID: PMC9697405 DOI: 10.3390/ijms232214355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Recent evidence links chronic consumption of large amounts of fructose (FRU) with several non-communicable disease. After ingestion, dietary FRU is absorbed into the intestinal tract by glucose transporter (GLUT) 5 and transported to the portal vein via GLUT2. GLUT2 is primarily localized on the basolateral membrane, but GLUT2 may be dislocated post-prandially from the basolateral membrane of intestinal cells to the apical one. Polyphenols (PP) are plant secondary metabolites that exert hypoglycemic properties by modulating intracellular insulin signaling pathways and by inhibiting intestinal enzymes and transporters. Post-prandially, PP may reach high concentrations in the gut lumen, making the inhibition of FRU absorption a prime target for exploring the effects of PP on FRU metabolism. Herein, we have systematically reviewed studies on the effect of PP and PP-rich products on FRU uptake and transport in intestinal cells. In spite of expectations, the very different experimental conditions in the various individual studies do not allow definitive conclusions to be drawn. Future investigations should rely on standardized conditions in order to obtain comparable results that allow a credible rating of polyphenols and polyphenol-rich products as inhibitors of fructose uptake.
Collapse
|
32
|
Li F, Yang C, Zhang L, Li W. Synthesis of myricetin derivatives and evaluation of their hypoglycemic activities. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Dual complexation using heat moisture treatment and pre-gelatinization to enhance Starch–Phenolic complex and control digestibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Temre MK, Kumar A, Singh SM. An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: Promising potential of new pan-GLUT inhibitors. Front Pharmacol 2022; 13:1035510. [PMID: 36386187 PMCID: PMC9663470 DOI: 10.3389/fphar.2022.1035510] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 07/23/2023] Open
Abstract
Neoplastic cells displayed altered metabolism with accelerated glycolysis. Therefore, these cells need a mammoth supply of glucose for which they display an upregulated expression of various glucose transporters (GLUT). Thus, novel antineoplastic strategies focus on inhibiting GLUT to intersect the glycolytic lifeline of cancer cells. This review focuses on the current status of various GLUT inhibition scenarios. The GLUT inhibitors belong to both natural and synthetic small inhibitory molecules category. As neoplastic cells express multiple GLUT isoforms, it is necessary to use pan-GLUT inhibitors. Nevertheless, it is also necessary that such pan-GLUT inhibitors exert their action at a low concentration so that normal healthy cells are left unharmed and minimal injury is caused to the other vital organs and systems of the body. Moreover, approaches are also emerging from combining GLUT inhibitors with other chemotherapeutic agents to potentiate the antineoplastic action. A new pan-GLUT inhibitor named glutor, a piperazine-one derivative, has shown a potent antineoplastic action owing to its inhibitory action exerted at nanomolar concentrations. The review discusses the merits and limitations of the existing GLUT inhibitory approach with possible future outcomes.
Collapse
Affiliation(s)
- Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Deparment of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
35
|
Williamson G. Effects of Polyphenols on Glucose-Induced Metabolic Changes in Healthy Human Subjects and on Glucose Transporters. Mol Nutr Food Res 2022; 66:e2101113. [PMID: 35315210 PMCID: PMC9788283 DOI: 10.1002/mnfr.202101113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Indexed: 12/30/2022]
Abstract
Dietary polyphenols interact with glucose transporters in the small intestine and modulate glucose uptake after food or beverage consumption. This review assesses the transporter interaction in vitro and how this translates to an effect in healthy volunteers consuming glucose. As examples, the apple polyphenol phlorizin inhibits sodium-glucose linked transporter-1; in the intestinal lumen, it is converted to phloretin, a strong inhibitor of glucose transporter-2 (GLUT2), by the brush border digestive enzyme lactase. Consequently, an apple extract rich in phlorizin attenuates blood glucose and insulin in healthy volunteers after a glucose challenge. On the other hand, the olive phenolic, oleuropein, inhibits GLUT2, but the strength of the inhibition is not enough to modulate blood glucose after a glucose challenge in healthy volunteers. Multiple metabolic effects and oxidative stresses after glucose consumption include insulin, incretin hormones, fatty acids, amino acids, and protein markers. However, apart from acute postprandial effects on glucose, insulin, and some incretin hormones, very little is known about the acute effects of polyphenols on these glucose-induced secondary effects. In summary, attenuation of the effect of a glucose challenge in vivo is only observed when polyphenols are strong inhibitors of glucose transporters.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health SciencesMonash UniversityBASE Facility, 264 Ferntree Gully RoadNotting HillVIC 3168Australia
| |
Collapse
|
36
|
Yadav K, Singh D, Singh MR, Pradhan M. Nano-constructs targeting the primary cellular energy source of cancer cells for modulating tumor progression. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Laskowska AK, Wilczak A, Skowrońska W, Michel P, Melzig MF, Czerwińska ME. Fruits of Hippophaë rhamnoides in human leukocytes and Caco-2 cell monolayer models—A question about their preventive role in lipopolysaccharide leakage and cytokine secretion in endotoxemia. Front Pharmacol 2022; 13:981874. [PMID: 36249809 PMCID: PMC9561609 DOI: 10.3389/fphar.2022.981874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Preparations from Hippophaë rhamnoides L. (sea buckthorn) have been traditionally used in the treatment of skin and digestive disorders, such as gastritis, gastric and duodenal ulcers, uterine erosions, as well as oral, rectal, and vaginal mucositis, in particular in the Himalayan and Eurasian regions. An influence of an aqueous extract from the fruits of H. rhamnoides (HR) on leakage of lipopolysaccharide (LPS) from Escherichia coli through gut epithelium developed from the human colorectal adenocarcinoma (Caco-2) monolayer in vitro and glucose transporter 2 (GLUT2) translocation were the principal objectives of the study. Additionally, the effect of HR on the production of pro- and anti-inflammatory cytokines (interleukins: IL-8, IL-1β, IL-10, IL-6; tumor necrosis factor: TNF-α) by the Caco-2 cell line, human neutrophils (PMN), and peripheral blood mononuclear cells (PBMC) was evaluated. The concentration of LPS on the apical and basolateral sides of the Caco-2 monolayer was evaluated with a Limulus Amebocyte Lysate (LAL) assay. GLUT2 translocation was evaluated using an immunostaining assay, whereas secretion of cytokines by cell cultures was established with an enzyme-linked immunosorbent (ELISA) assay. HR (500 μg/ml) significantly inhibited LPS leakage through epithelial monolayer in vitro in comparison with non-treated control. The treatment of Caco-2 cells with HR (50–100 μg/ml) showed GLUT2 expression similar to the non-treated control. HR decreased the secretion of most pro-inflammatory cytokines in all tested models. HR might prevent low-grade chronic inflammation caused by metabolic endotoxemia through the prevention of the absorption of LPS and decrease of chemotactic factors released by immune and epithelial cells, which support its use in metabolic disorders in traditional medicine.
Collapse
Affiliation(s)
- Anna K. Laskowska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Wilczak
- Student Scientific Association, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Skowrońska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Michel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | | | - Monika E. Czerwińska
- Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Monika E. Czerwińska,
| |
Collapse
|
38
|
Targeting Glucose Metabolism Enzymes in Cancer Treatment: Current and Emerging Strategies. Cancers (Basel) 2022; 14:cancers14194568. [PMID: 36230492 PMCID: PMC9559313 DOI: 10.3390/cancers14194568] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Reprogramming of glucose metabolism is a hallmark of cancer and can be targeted by therapeutic agents. Some metabolism regulators, such as ivosidenib and enasidenib, have been approved for cancer treatment. Currently, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Furthermore, some natural products have shown efficacy in killing tumor cells by regulating glucose metabolism, offering novel therapeutic opportunities in cancer. However, most of them have failed to be translated into clinical applications due to low selectivity, high toxicity, and side effects. Recent studies suggest that combining glucose metabolism modulators with chemotherapeutic drugs, immunotherapeutic drugs, and other conventional anticancer drugs may be a future direction for cancer treatment. Abstract Reprogramming of glucose metabolism provides sufficient energy and raw materials for the proliferation, metastasis, and immune escape of cancer cells, which is enabled by glucose metabolism-related enzymes that are abundantly expressed in a broad range of cancers. Therefore, targeting glucose metabolism enzymes has emerged as a promising strategy for anticancer drug development. Although several glucose metabolism modulators have been approved for cancer treatment in recent years, some limitations exist, such as a short half-life, poor solubility, and numerous adverse effects. With the rapid development of medicinal chemicals, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Additionally, several studies have found that some natural products can suppress cancer progression by regulating glucose metabolism enzymes. In this review, we summarize the mechanisms underlying the reprogramming of glucose metabolism and present enzymes that could serve as therapeutic targets. In addition, we systematically review the existing drugs targeting glucose metabolism enzymes, including small-molecule modulators and natural products. Finally, the opportunities and challenges for glucose metabolism enzyme-targeted anticancer drugs are also discussed. In conclusion, combining glucose metabolism modulators with conventional anticancer drugs may be a promising cancer treatment strategy.
Collapse
|
39
|
Chen S, Wu F, Yang C, Zhao C, Cheng N, Cao W, Zhao H. Alternative to Sugar, Honey Does Not Provoke Insulin Resistance in Rats Based on Lipid Profiles, Inflammation, and IRS/PI3K/AKT Signaling Pathways Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10194-10208. [PMID: 35971648 DOI: 10.1021/acs.jafc.2c03639] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insulin resistance (IR) is the central link to metabolic syndrome (MS), and IR prevention has become the key to overcoming this worldwide public health problem. A diet rich in simple sugars is an important pathogenic factor in IR development. To investigate the effect of honey on IR compared to the sugar-water diet, we analyzed phenolics and oligosaccharides in jujube honey and rape honey based on LC-MS and silane derivatization/GC-MS. The effects of different diets on glucose and lipid profile, histopathology and IR-related mechanism pathways were analyzed and compared by equal sugar levels intervention of fructose, fructose + glucose and two kinds of unifloral honey (high-/low-dose) in rats. The results suggested that sugar-equivalent honey, which differs from sugar solution, especially 17.1 g/kg BW jujube honey rich in phenolics (1.971 mg/100 g of isoquercitrin) and oligosaccharides (2.18 g/100 g of turanose), suppressed IR via maintaining glucose (OGTT and ITT) and lipid (TC, TG, LDL-C, HDL-C, and NEFA) homeostasis, improving histological structural abnormalities of the liver, adipose and skeletal muscle, reducing oxidative stress (GSH-Px and MDA) and inflammation (IL-6 and TNF-α), modulating the NF-κB (NF-κB gene expression was down-regulated to 0.94) and IRS/PI3K/AKT signaling pathways (e.g., AKT and GLUT2 expression in liver increased by 4.56 and 13.37 times, respectively) as well as reshaping the gut microbiota. These revealed a potential nutritional contribution of substituting honey for simple sugar in the diet, providing a theoretical basis for controlling IR development via dietary modification and supplementation.
Collapse
Affiliation(s)
- Sinan Chen
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Chenchen Yang
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Cheng Zhao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Ni Cheng
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| |
Collapse
|
40
|
Ismail A, Tanasova M. Importance of GLUT Transporters in Disease Diagnosis and Treatment. Int J Mol Sci 2022; 23:8698. [PMID: 35955833 PMCID: PMC9368955 DOI: 10.3390/ijms23158698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
Facilitative sugar transporters (GLUTs) are the primary method of sugar uptake in all mammalian cells. There are 14 different types of those transmembrane proteins, but they transport only a handful of substrates, mainly glucose and fructose. This overlap and redundancy contradict the natural tendency of cells to conserve energy and resources, and has led researchers to hypothesize that different GLUTs partake in more metabolic roles than just sugar transport into cells. Understanding those roles will lead to better therapeutics for a wide variety of diseases and disorders. In this review we highlight recent discoveries of the role GLUTs play in different diseases and disease treatments.
Collapse
Affiliation(s)
- Abdelrahman Ismail
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
41
|
Flavonoid-based Polymeric Nanoparticles: A Promising Approach for Cancer and Diabetes Treatment. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Ansari P, Choudhury ST, Seidel V, Rahman AB, Aziz MA, Richi AE, Rahman A, Jafrin UH, Hannan JMA, Abdel-Wahab YHA. Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081146. [PMID: 36013325 PMCID: PMC9409999 DOI: 10.3390/life12081146] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022]
Abstract
Diabetes Mellitus (DM) is a metabolic disorder that is spreading alarmingly around the globe. Type-2 DM (T2DM) is characterized by low-grade inflammation and insulin resistance and is closely linked to obesity. T2DM is mainly controlled by lifestyle/dietary changes and oral antidiabetic drugs but requires insulin in severe cases. Many of the drugs that are currently used to treat DM are costly and present adverse side effects. Several cellular, animal, and clinical studies have provided compelling evidence that flavonoids have therapeutic potential in the management of diabetes and its complications. Quercetin is a flavonoid, present in various natural sources, which has demonstrated in vitro and in vivo antidiabetic properties. It improves oral glucose tolerance, as well as pancreatic β-cell function to secrete insulin. It inhibits the α-glucosidase and DPP-IV enzymes, which prolong the half-life of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Quercetin also suppresses the release of pro-inflammatory markers such as IL-1β, IL-4, IL-6, and TNF-α. Further studies are warranted to elucidate the mode(s) of action of quercetin at the molecular level. This review demonstrates the therapeutic potential of quercetin in the management of T2DM.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
- Correspondence: ; Tel.: +880-132-387-9720
| | - Samara T. Choudhury
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh;
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Akib Bin Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Md. Abdul Aziz
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Anika E. Richi
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Ayesha Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Umme H. Jafrin
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh;
| | | |
Collapse
|
43
|
Morresi C, Vasarri M, Bellachioma L, Ferretti G, Degl′Innocenti D, Bacchetti T. Glucose Uptake and Oxidative Stress in Caco-2 Cells: Health Benefits from Posidonia oceanica (L.) Delile. Mar Drugs 2022; 20:md20070457. [PMID: 35877750 PMCID: PMC9319946 DOI: 10.3390/md20070457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
Posidonia oceanica (L.) Delile is an endemic Mediterranean marine plant of extreme ecological importance. Previous in vitro and in vivo studies have demonstrated the potential antidiabetic properties of P. oceanica leaf extract. Intestinal glucose transporters play a key role in glucose homeostasis and represent novel targets for the management of diabetes. In this study, the ability of a hydroalcoholic P. oceanica leaf extract (POE) to modulate intestinal glucose transporters was investigated using Caco-2 cells as a model of an intestinal barrier. The incubation of cells with POE significantly decreased glucose uptake by decreasing the GLUT2 glucose transporter levels. Moreover, POE had a positive effect on the barrier integrity by increasing the Zonulin-1 levels. A protective effect exerted by POE against oxidative stress induced by chronic exposure to high glucose concentrations or tert-butyl hydroperoxide was also demonstrated. This study highlights for the first time the effect of POE on glucose transport, intestinal barrier integrity, and its protective antioxidant effect in Caco-2 cells. These findings suggest that the P. oceanica phytocomplex may have a positive impact by preventing the intestinal cell dysfunction involved in the development of inflammation-related disease associated with oxidative stress.
Collapse
Affiliation(s)
- Camilla Morresi
- Department of Clinical Experimental Science and Odontostomatology-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (C.M.); (G.F.)
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Luisa Bellachioma
- Department of Life and Environmental Sciences-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (L.B.); (T.B.)
| | - Gianna Ferretti
- Department of Clinical Experimental Science and Odontostomatology-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (C.M.); (G.F.)
| | - Donatella Degl′Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
- Interuniversity Center of Marine Biology and Applied Ecology “G. Bacci” (CIBM), Viale N. Sauro 4, 57128 Livorno, Italy
- Correspondence:
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (L.B.); (T.B.)
| |
Collapse
|
44
|
Chocolate and Cocoa-Derived Biomolecules for Brain Cognition during Ageing. Antioxidants (Basel) 2022; 11:antiox11071353. [PMID: 35883844 PMCID: PMC9311747 DOI: 10.3390/antiox11071353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cognitive decline is a common problem in older individuals, often exacerbated by neurocognitive conditions, such as vascular dementia and Alzheimer’s disease, which heavily affect people’s lives and exert a substantial toll on healthcare systems. Currently, no cure is available, and commonly used treatments are aimed at limiting the progressive loss of cognitive functions. The absence of effective pharmacological treatments for the cognitive decline has led to the search for lifestyle interventions, such as diet and the use of nutraceuticals that can prevent and limit the loss of cognition. Cocoa and chocolate are foods derived from cocoa beans, commonly used in the population and with good acceptability. The purpose of this review was to collect current experimental evidence regarding the neuroprotective effect of chocolate and cocoa (or derived molecules) in the elderly. From a systematic review of the literature, 9 observational studies and 10 interventional studies were selected, suggesting that the biomolecules contained in cocoa may offer promising tools for managing cognitive decline, if provided in adequate dosages and duration of treatment. However, the molecular mechanisms of cocoa action on the central nervous system are not completely understood.
Collapse
|
45
|
Anghel SA, Badea RA, Chiritoiu G, Patriche DS, Alexandru PR, Pena F. Novel luciferase-based GLP-1 reporter assay reveals naturally-occurring secretagogues. Br J Pharmacol 2022; 179:4738-4753. [PMID: 35736785 DOI: 10.1111/bph.15896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/22/2022] [Accepted: 05/15/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide 1 (GLP-1) is a hormone derived from preproglucagon. It is secreted by enteroendocrine cells in response to feeding, and, in turn, acts as a critical regulator of insulin release. Modulating GLP-1 secretion thus holds promise as a strategy for controlling blood glucose levels. EXPERIMENTAL APPROACH To dissect GLP-1 regulation and to discover specific secretagogues, we engineered a reporter cell line introducing a luciferase within proglucagon sequence in GLUTag cells. The assay was validated using western blotting and ELISA. A focused natural compounds library was screened. We measured luminescence, glucose uptake and ATP to investigate the mechanism by which newly found secretagogues potentiate GLP-1 secretion. KEY RESULTS The newly created reporter cell line is ideal for the rapid, sensitive and quantitative assessment of GLP-1 secretion. The small molecule screen identified non-toxic GLP-1 modulators. Quercetin is the most potent newly found GLP-1 secretagogue, while other flavonoids also potentiate GLP-1 secretion. Quercetin requires glucose and extracellular calcium to act as GLP-1 secretagogue. Our results support a mechanism whereby flavonoids cause GLUTag cells to utilize glucose more efficiently, leading to elevated ATP levels, followed by KATP channel blockade and GLP-1 exocytosis. CONCLUSION AND IMPLICATIONS Our methodology enables finding of new GLP-1 secretagogues. Quercetin is a potent, naturally occuring GLP-1 secretagogue. Mechanistic studies of newly found secretagogues are possible in newly created reporter cell line. Further validation in more physiological systems, such as primary L-cells or whole organisms is needed. GLP-1 secretagogues might serve as leads for developing alternative glucose-lowering therapies.
Collapse
Affiliation(s)
- Sorina Andreea Anghel
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Rodica Aura Badea
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Gabriela Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - David Sebastian Patriche
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Petruta Ramona Alexandru
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Florentina Pena
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
46
|
Liu G, Duan Y, Yang S, Yu M, Lv Z. Simultaneous quantification of marine neutral neoagaro-oligosaccharides and agar-oligosaccharides by the UHPLC-MS/MS method: application to the intestinal transport study by using the Caco-2 cell monolayer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2227-2234. [PMID: 35616101 DOI: 10.1039/d2ay00700b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A sensitive and robust ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established for the first time to simultaneously quantify marine neutral neoagaro-oligosaccharides (NAOS) and agar-oligosaccharides (AOS) with different degrees of polymerization (DP) in Hanks' balanced salt solution (HBSS). The separation was achieved on a BEH amide column using a mobile phase of acetonitrile-10 mmol L-1 ammonium acetate (58 : 42, v/v) with an isocratic elution program. The total analysis time was 3.5 min. The mass spectra were acquired in the multiple reaction monitoring (MRM) pattern by using a heated-electrospray ionization (H-ESI) source operating in the positive ionization mode. The linear range was 40-20 000 nmol L-1. The accuracy and precision ranged from 91.5 to 110.0% and 0.9 to 10.4%, respectively. The extraction recovery was consistent and reproducible. The stability was within 90.3-110.8%. The matrix effect, carryover, and dilution integrity were all satisfactory. Moreover, the validated method was successfully applied to the intestinal transport study by using the Caco-2 cell monolayer in vitro. The results revealed that neoagarobiose, neoagarotetraose, neoagarohexaose, agarotriose, agaropentose, and agaroheptose were transported by a paracellular pathway.
Collapse
Affiliation(s)
- Guilin Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Yunhai Duan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Shuang Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China
- Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China
- Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China
- Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
47
|
Effects of Maturity and Thermal Treatment on Phenolic Profiles and In Vitro Health-Related Properties of Sacha Inchi Leaves. PLANTS 2022; 11:plants11111515. [PMID: 35684288 PMCID: PMC9182973 DOI: 10.3390/plants11111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
Sacha inchi (Plukenetia volubilis L.) has been adopted as a novel economic crop with well-studied nutritional and bioactive benefits for human health. Sacha inchi seeds and oil have high commercial value but scant research has focused on its leaves. This study investigated and compared phenolic compositions, antioxidant potentials and in vitro health-related properties of both young and mature sacha inchi leaves after freeze-drying and oven-drying processes. Results showed that p-coumaric acid, 4-hydroxybenzoic acid, ferulic acid and gallic acid were predominantly detected in both young and mature leaves that also exhibited similar total phenolic contents (TPCs), while higher TPCs were detected in freeze-dried than in oven-dried leaves. Mature leaves exhibited higher antioxidant potential than young leaves after freeze-drying, while the opposite results were observed for oven-drying. Overall in vitro health-related activities were higher in mature leaves compared to young leaves regardless of the drying process. Knowledge gained from this study can be used to encourage prospective utilization of sacha inchi leaves as a source of health-promoting compounds. This, in turn, will increase the commercial value of the leaves and provide a wider market variety of sacha inchi products.
Collapse
|
48
|
Méril-Mamert V, Ponce-Mora A, Sylvestre M, Lawrence G, Bejarano E, Cebrián-Torrejón G. Antidiabetic Potential of Plants from the Caribbean Basin. PLANTS 2022; 11:plants11101360. [PMID: 35631785 PMCID: PMC9146409 DOI: 10.3390/plants11101360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia, insulin insufficiency or insulin resistance, and many issues, including vascular complications, glycative stress and lipid metabolism dysregulation. Natural products from plants with antihyperglycemic, hypolipidemic, pancreatic protective, antioxidative, and insulin-like properties complement conventional treatments. Throughout this review, we summarize the current status of knowledge of plants from the Caribbean basin traditionally used to manage DM and treat its sequelae. Seven plants were chosen due to their use in Caribbean folk medicine. We summarize the antidiabetic properties of each species, exploring the pharmacological mechanisms related to their antidiabetic effect reported in vitro and in vivo. We propose the Caribbean flora as a source of innovative bioactive phytocompounds to treat and prevent DM and DM-associated complications.
Collapse
Affiliation(s)
- Vanessa Méril-Mamert
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
| | - Alejandro Ponce-Mora
- Department of Biomedical Sciences, School of Health Sciences and Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain;
| | - Muriel Sylvestre
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
| | - Genica Lawrence
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
| | - Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain;
- Correspondence: (E.B.); (G.C.-T.); Tel.: +96-136-90-00 (ext. 64541) (E.B.); +96-136-90-00 (ext. 64315) (G.C.-T.)
| | - Gerardo Cebrián-Torrejón
- Laboratoire COVACHIM-M2E EA 3592, Université des Antilles, CEDEX, 97157 Pointe-à-Pitre, France; (V.M.-M.); (M.S.); (G.L.)
- Correspondence: (E.B.); (G.C.-T.); Tel.: +96-136-90-00 (ext. 64541) (E.B.); +96-136-90-00 (ext. 64315) (G.C.-T.)
| |
Collapse
|
49
|
Abelmoschus esculentus (L.) Moench Pod Extract Revealed Antagonistic Effect against the Synergistic Antidiabetic Activity of Metformin and Acarbose upon Concomitant Administration in Glucose-Induced Hyperglycemic Mice. Biologics 2022. [DOI: 10.3390/biologics2020010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abelmoschus esculentus (L.) Moench, commonly known as okra, is one of the most widely used vegetable crops currently used for diabetes treatment as well. It is thought that the large amount of soluble dietary fibers present in okra is responsible for the slowing of the absorption of glucose from the gut. However, its role in concomitant administration with commonly prescribed medications, including metformin (MET) and acarbose (ACR) for diabetes, is unclear. Therefore, this study assessed the effect of A. esculentus pod extract (AEE) administered concomitantly with MET and ACR in the glucose-induced hyperglycemic mice model. The AEE was prepared using green okra pods. In this experiment, each male Swiss Webster mouse was administered a 2.5 gm/kg/BW dose of glucose via gastric lavage to induce hyperglycemia. The experimental animals were divided into five groups: (i) negative control, (ii) positive control, (iii) MET only, (iv) MET and ACR, and (v) MET, ACR, and AEE. The orally administered doses of the MET, ACR, and the extract were 150 mg/kg/BW, 15 mg/kg/BW, and 0.2 mL/kg/BW, respectively. We found that MET only and a combination of MET and ACR reduced glucose levels significantly (p < 0.01) compared to the positive control. On the other hand, when MET, ACR, and AEE were administered simultaneously, the synergistic antihyperglycemic action of the MET and ACR was diminished. After 150 min, the blood glucose level was 4.50 ± 0.189 mmol/L (iv) and 6.58 ± 0.172 mmol/L (v). This study suggests that taking AEE concurrently with MET and ACR would reduce the effectiveness of antidiabetic drugs; thereby, concomitant administration of these antidiabetic agents is not recommended. This study provides an essential basis for decision-making about the consumption of AEE with conventional medicine. Further study is required to find the molecular insight of drug interactions in combination therapy of medicinal plants for diabetes.
Collapse
|
50
|
Cremonini E, Daveri E, Iglesias DE, Kang J, Wang Z, Gray R, Mastaloudis A, Kay CD, Hester SN, Wood SM, Fraga CG, Oteiza PI. A randomized placebo-controlled cross-over study on the effects of anthocyanins on inflammatory and metabolic responses to a high-fat meal in healthy subjects. Redox Biol 2022; 51:102273. [PMID: 35255426 PMCID: PMC8902616 DOI: 10.1016/j.redox.2022.102273] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effects of supplementation with a cyanidin- and delphinidin-rich extract (CDRE) on the postprandial dysmetabolism, inflammation, and redox and insulin signaling, triggered by the consumption of a high fat meal (HFM) in healthy individuals. Participants (n = 25) consumed a 1026-kcal HFM simultaneously with either the CDRE providing 320.4 mg of anthocyanins (90% cyanidin and delphinidin) or placebo. Diets were randomly assigned in a double blind, placebo-controlled crossover design. Blood was collected prior to (fasted, time 0), and for 5 h after meal consumption; plasma, serum, and peripheral blood mononuclear cells (PBMC) were isolated. AC metabolites were detected in serum as early as 30 min after CDRE consumption. The CDRE mitigated HFM-induced endotoxemia, reducing increases in plasma LPS and LPS-binding protein. The CDRE also reduced other events associated with HFM-triggered postprandial dysmetabolism including: i) plasma glucose and triglyceride increases; ii) TNFα and NOX4 upregulation in PBMC; and iii) JNK1/2 activation in PBMC. The CDRE did not significantly affect HFM-mediated increases in plasma insulin, GLP-1, GLP-2, GIP, and LDL- and HDL-cholesterol, and IKK phosphorylation in PBMC. In summary, dietary AC, i.e. cyanidin and delphinidin, exerted beneficial actions against unhealthy diets by modulating the associated postprandial dysmetabolism, endotoxemia, alterations of glycemia and lipidemia, and redox and insulin signaling.
Collapse
|