1
|
Hermosilla VE, Gyenis L, Rabalski AJ, Armijo ME, Sepúlveda P, Duprat F, Benítez-Riquelme D, Fuentes-Villalobos F, Quiroz A, Hepp MI, Farkas C, Mastel M, González-Chavarría I, Jackstadt R, Litchfield DW, Castro AF, Pincheira R. Casein kinase 2 phosphorylates and induces the SALL2 tumor suppressor degradation in colon cancer cells. Cell Death Dis 2024; 15:223. [PMID: 38493149 PMCID: PMC10944491 DOI: 10.1038/s41419-024-06591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Spalt-like proteins are Zinc finger transcription factors from Caenorhabditis elegans to vertebrates, with critical roles in development. In vertebrates, four paralogues have been identified (SALL1-4), and SALL2 is the family's most dissimilar member. SALL2 is required during brain and eye development. It is downregulated in cancer and acts as a tumor suppressor, promoting cell cycle arrest and cell death. Despite its critical functions, information about SALL2 regulation is scarce. Public data indicate that SALL2 is ubiquitinated and phosphorylated in several residues along the protein, but the mechanisms, biological consequences, and enzymes responsible for these modifications remain unknown. Bioinformatic analyses identified several putative phosphorylation sites for Casein Kinase II (CK2) located within a highly conserved C-terminal PEST degradation motif of SALL2. CK2 is a serine/threonine kinase that promotes cell proliferation and survival and is often hyperactivated in cancer. We demonstrated that CK2 phosphorylates SALL2 residues S763, T778, S802, and S806 and promotes SALL2 degradation by the proteasome. Accordingly, pharmacological inhibition of CK2 with Silmitasertib (CX-4945) restored endogenous SALL2 protein levels in SALL2-deficient breast MDA-MB-231, lung H1299, and colon SW480 cancer cells. Silmitasertib induced a methuosis-like phenotype and cell death in SW480 cells. However, the phenotype was significantly attenuated in CRISPr/Cas9-mediated SALL2 knockout SW480 cells. Similarly, Sall2-deficient tumor organoids were more resistant to Silmitasertib-induced cell death, confirming that SALL2 sensitizes cancer cells to CK2 inhibition. We identified a novel CK2-dependent mechanism for SALL2 regulation and provided new insights into the interplay between these two proteins and their role in cell survival and proliferation.
Collapse
Affiliation(s)
- V E Hermosilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Dept of Orofacial Sciences and Dept of Anatomy, University of California-San Francisco, San Francisco, CA, USA
| | - L Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - A J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
- Odyssey Therapeutics, Boston, MA, USA
| | - M E Armijo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - P Sepúlveda
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - F Duprat
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - D Benítez-Riquelme
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - F Fuentes-Villalobos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Inmunovirología. Departamento de Microbiologia. Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - A Quiroz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - M I Hepp
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - C Farkas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - M Mastel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg. Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - I González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - R Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg. Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - D W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - A F Castro
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - R Pincheira
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
2
|
SALL Proteins; Common and Antagonistic Roles in Cancer. Cancers (Basel) 2021; 13:cancers13246292. [PMID: 34944911 PMCID: PMC8699250 DOI: 10.3390/cancers13246292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Transcription factors play essential roles in regulating gene expression, impacting the cell phenotype and function, and in the response of cells to environmental conditions. Alterations in transcription factors, including gene amplification or deletion, point mutations, and expression changes, are implicated in carcinogenesis, cancer progression, metastases, and resistance to cancer treatments. Not surprisingly, transcription factor activity is altered in numerous cancers, representing a unique class of cancer drug targets. This review updates and integrates information on the SALL family of transcription factors, highlighting the synergistic and/or antagonistic functions they perform in various cancer types. Abstract SALL proteins are a family of four conserved C2H2 zinc finger transcription factors that play critical roles in organogenesis during embryonic development. They regulate cell proliferation, survival, migration, and stemness; consequently, they are involved in various human genetic disorders and cancer. SALL4 is a well-recognized oncogene; however, SALL1–3 play dual roles depending on the cancer context and stage of the disease. Current reviews of SALLs have focused only on SALL2 or SALL4, lacking an integrated view of the SALL family members in cancer. Here, we update the recent advances of the SALL members in tumor development, cancer progression, and therapy, highlighting the synergistic and/or antagonistic functions they perform in similar cancer contexts. We identified common regulatory mechanisms, targets, and signaling pathways in breast, brain, liver, colon, blood, and HPV-related cancers. In addition, we discuss the potential of the SALL family members as cancer biomarkers and in the cancer cells’ response to therapies. Understanding SALL proteins’ function and relationship will open new cancer biology, clinical research, and therapy perspectives.
Collapse
|
3
|
Hepp MI, Escobar D, Farkas C, Hermosilla VE, Álvarez C, Amigo R, Gutiérrez JL, Castro AF, Pincheira R. A Trichostatin A (TSA)/Sp1-mediated mechanism for the regulation of SALL2 tumor suppressor in Jurkat T cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30028-2. [PMID: 29778644 DOI: 10.1016/j.bbagrm.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/03/2018] [Accepted: 05/16/2018] [Indexed: 11/26/2022]
Abstract
SALL2 is a transcription factor involved in development and disease. Deregulation of SALL2 has been associated with cancer, suggesting that it plays a role in the disease. However, how SALL2 is regulated and why is deregulated in cancer remain poorly understood. We previously showed that the p53 tumor suppressor represses SALL2 under acute genotoxic stress. Here, we investigated the effect of Histone Deacetylase Inhibitor (HDACi) Trichostatin A (TSA), and involvement of Sp1 on expression and function of SALL2 in Jurkat T cells. We show that SALL2 mRNA and protein levels were enhanced under TSA treatment. Both, TSA and ectopic expression of Sp1 transactivated the SALL2 P2 promoter. This transactivation effect was blocked by the Sp1-binding inhibitor mithramycin A. Sp1 bound in vitro and in vivo to the proximal region of the P2 promoter. TSA induced Sp1 binding to the P2 promoter, which correlated with dynamic changes on H4 acetylation and concomitant recruitment of p300 or HDAC1 in a mutually exclusive manner. Our results suggest that TSA-induced Sp1-Lys703 acetylation contributes to the transcriptional activation of the P2 promoter. Finally, using a CRISPR/Cas9 SALL2-KO Jurkat-T cell model and gain of function experiments, we demonstrated that SALL2 upregulation is required for TSA-mediated cell death. Thus, our study identified Sp1 as a novel transcriptional regulator of SALL2, and proposes a novel epigenetic mechanism for SALL2 regulation in Jurkat-T cells. Altogether, our data support SALL2 function as a tumor suppressor, and SALL2 involvement in cell death response to HDACi.
Collapse
Affiliation(s)
- Matías I Hepp
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile.
| | - David Escobar
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile
| | - Carlos Farkas
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile
| | - Viviana E Hermosilla
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile
| | - Claudia Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile
| | - Roberto Amigo
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile
| | - José L Gutiérrez
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile
| | - Ariel F Castro
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile
| | - Roxana Pincheira
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile.
| |
Collapse
|
4
|
Liu F, Cao L, Zhang T, Chang F, Xu Y, Li Q, Deng J, Li L, Shao G. CRL4B RBBP7 targets HUWE1 for ubiquitination and proteasomal degradation. Biochem Biophys Res Commun 2018; 501:440-447. [PMID: 29738775 DOI: 10.1016/j.bbrc.2018.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
Abstract
The E3 ubiquitin ligase HUWE1/Mule/ARF-BP1 plays an important role in diverse biological processes including DNA damage repair and apoptosis. Our previous study has shown that in response to DNA damage HUWE1 was downregulated in CUL4B-mediated ubiquitination and subsequent proteasomal degradation, and CUL4B-mediated regulation of HUWE1 was important for cell survival upon DNA damage. CUL4B is a core component of the CUL4B Ring ligase complexes containing ROC1, DDB1 and a DDB1-Cullin Associated Factors (DCAFs), the latter of which are DDB1-binding WD40 adaptors critical for substrate recognition and recruitment. However, the identity of DCAF in CRL4B that mediates degradation of HUWE1 remains elusive. Here we report that RBBP7 is the DCAF in the CRL4B complex bridging the DDB1-CUL4B-ROC1 to HUWE1. Loading of HUWE1 to the E3 ubiquitin ligase complex resulted in its polyubiquitination, and consequently its proteasome mediated degradation. Overexpression of RBBP7 promoted HUWE1 protein degradation, while depletion of RBBP7 stabilized HUWE1, and hence accelerated the degradation of MCL-1 and BRCA1, two substrates of HUWE1 that are critical in apoptosis and DNA damage repair. Taken together, these data reveal CRL4BRBBP7 is the E3 ligase responsible for the proteasomal degradation of HUWE1, and further provide a potential strategy for cancer therapy by targeting HUWE1 and the CUL4B E3 ligase complex.
Collapse
Affiliation(s)
- Fei Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Li Cao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ting Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Fen Chang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yongjie Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qin Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jingcheng Deng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Li Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
5
|
Miao F, Zhang X, Cao Y, Wang Y, Zhang X. Effect of siRNA-silencing of SALL2 gene on growth, migration and invasion of human ovarian carcinoma A2780 cells. BMC Cancer 2017; 17:838. [PMID: 29228922 PMCID: PMC5725831 DOI: 10.1186/s12885-017-3843-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 11/24/2017] [Indexed: 12/28/2022] Open
Abstract
Background The role of Spalt-like gene-2 (SALL2) in tumorigenesis remains incompletely elucidated. This study investigated the effects of SALL2 on human ovarian carcinoma (OC) A2780 cells and the probable mechanism. Methods Expression of SALL2 in human OC cell lines were detected by reverse transcription PCR (RT-PCR) and Western blot analysis. A2780 cells were transfected with small-interfering ribonucleic acid (siRNA) to silence SALL2. SALL2 expression was detected by RT-PCR, Western blot analysis and immunofluorescence assay. Cell proliferation was measured by CCK-8 assay and flow cytometry (FCM). Apoptosis was measured by FCM. Cell migration was detected by real-time cell analysis. Cell invasion was detected by transwell assay. mRNA expression of p21 was detected by quantitative real-time PCR. Western blot analysis was used to determine the expression of matrix metalloproteinase (MMP)2, MMP9, protein kinase B (PKB, also called Akt), and phosphorylated-Akt (p-Akt). Results SALL2 was expressed in six OC cell lines, and the expression was the highest in A2780 cells. Compared with that in the Scramble group, SALL2 expression in A2780 was downregulated after transfection with siRNA-2 and siRNA-3 for 48 h. Compared with that in the Scramble group, proliferation of A2780 cells in the siRNA-2 group increased after transfection for 24, 48 and 72 h. In the siRNA-2 group, the proportion of A2780 cells decreased in the G0/G1 phase, and cell apoptosis decreased after transfection for 48 h. Compared with that in the Scramble group, the cell migration and invasion abilities of A2780 cells increased. Compared with that in the Scramble group, p21 mRNA expression in A2780 cells decreased after transfection with siRNA2. When SALL2 was silenced, the expression of MMP2/9 and p-Akt in A2780 cells increased. Furthermore, the PI3K inhibitor LY294002 could effectively reversed SALL2 siRNA-induced phosphorylation of Akt, migration and invasion of A2780 cells. Conclusion Transient silencing of SALL2 promotes cell proliferation, migration, and invasion, and inhibits apoptosis of A2780 cells. In SALL2 siRNA-silenced cells, p21 expression was decreased. SALL2 knockdown by siRNA induces the migration and invasion of A2780 cells; this phenomenon is possibly associated with the increased expression of MMP2/9 and the activation of the PI3K/Akt signalling pathway. Electronic supplementary material The online version of this article (10.1186/s12885-017-3843-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fang Miao
- School of Basic Medical Sciences, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, People's Republic of China
| | - Xueshan Zhang
- School of Basic Medical Sciences, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, People's Republic of China
| | - Yanning Cao
- School of Basic Medical Sciences, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, People's Republic of China
| | - Yue Wang
- School of Basic Medical Sciences, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, People's Republic of China
| | - Xiaoshu Zhang
- School of Basic Medical Sciences, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Hermosilla VE, Hepp MI, Escobar D, Farkas C, Riffo EN, Castro AF, Pincheira R. Developmental SALL2 transcription factor: a new player in cancer. Carcinogenesis 2017; 38:680-690. [DOI: 10.1093/carcin/bgx036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/11/2017] [Indexed: 11/12/2022] Open
|
7
|
Sung CK, Yim H. Roles of SALL2 in tumorigenesis. Arch Pharm Res 2016; 40:146-151. [PMID: 27957650 DOI: 10.1007/s12272-016-0874-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/07/2016] [Indexed: 12/19/2022]
Abstract
The proteins p150Sal2 (product of SALL2) and p53 share growth arrest and pro-apoptotic functions by independently inducing p21Cip1/Waf1 and BAX, and both proteins are targeted by the human papilloma virus E6 protein, leading to blockage of growth arrest in infected cells. Loss of both p53 and Sall2 in mice causes significantly higher mortality and metastasis rates compared with p53 single mutant mice. Therefore, p150Sal2 seems to have strong potential as a novel cancer biomarker for early diagnosis and risk prediction. Loss of SALL2 expression is observed in many cases of human serous ovarian carcinoma, whereas normal ovarian epithelial cells maintain high levels of the p150Sal2 protein, supporting an important tumor suppressive role for p150Sal2 in the human ovary. In contrast, p150Sal2 is a transcription factor required to convert differentiated glioblastoma cells into stem-like tumor-propagating cells, suggesting that its functional roles are dependent on tissue types and cellular context. The function of p150Sal2 in normal and diseased cells and possible therapeutic approaches are discussed in this review.
Collapse
Affiliation(s)
- Chang K Sung
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea.
| |
Collapse
|
8
|
Hannah J, Zhou P. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Gene 2015; 573:33-45. [PMID: 26344709 DOI: 10.1016/j.gene.2015.08.064] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/03/2015] [Accepted: 08/27/2015] [Indexed: 01/29/2023]
Abstract
The cullin 4 subfamily of genes includes CUL4A and CUL4B, which share a mostly identical amino acid sequence aside from the elongated N-terminal region in CUL4B. Both act as scaffolding proteins for modular cullin RING ligase 4 (CRL4) complexes which promote the ubiquitination of a variety of substrates. CRL4 function is vital to cells as loss of both genes or their shared substrate adaptor protein DDB1 halts proliferation and eventually leads to cell death. Due to their high structural similarity, CUL4A and CUL4B share a substantial overlap in function. However, in some cases, differences in subcellular localization, spatiotemporal expression patterns and stress-inducibility preclude functional compensation. In this review, we highlight the most essential functions of the CUL4 genes in: DNA repair and replication, chromatin-remodeling, cell cycle regulation, embryogenesis, hematopoiesis and spermatogenesis. CUL4 genes are also clinically relevant as dysregulation can contribute to the onset of cancer and CRL4 complexes are often hijacked by certain viruses to promote viral replication and survival. Also, mutations in CUL4B have been implicated in a subset of patients suffering from syndromic X-linked intellectual disability (AKA mental retardation). Interestingly, the antitumor effects of immunomodulatory drugs are caused by their binding to the CRL4CRBN complex and re-directing the E3 ligase towards the Ikaros transcription factors IKZF1 and IKZF3. Because of their influence over key cellular functions and relevance to human disease, CRL4s are considered promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jeffrey Hannah
- Department of Pathology, Weill Cornell Medical College, 1300 York Ave. NY, NY 10065, United States.
| | - Pengbo Zhou
- Department of Pathology, Weill Cornell Medical College, 1300 York Ave. NY, NY 10065, United States.
| |
Collapse
|
9
|
Wu Z, Cheng K, Shi L, Li Z, Negi H, Gao G, Kamle S, Li D. Sal-like protein 2 upregulates p16 expression through a proximal promoter element. Cancer Sci 2015; 106:253-61. [PMID: 25580951 PMCID: PMC4376433 DOI: 10.1111/cas.12606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/22/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
Sal-like protein 2 (Sall2), a homeotic transcription factor, is a putative tumor suppressor. We have previously shown that Sall2 activates the transcription of tumor suppressor gene p21 and suppresses tumorigenesis through cell cycle inhibition and induction of apoptosis. To investigate additional Sall2-regulated downstream genes, we analyzed the differences in mRNA expression profiles with and without exogenously expressed Sall2. We identified 1616 Sall2-responsive genes through gene expression arrays. Promoter-reporter assays of p16INK4A and several other tumor-related genes indicated that the Sall2 regulation of these promoters was not significantly different between the two major forms of Sall2 with alternative exon 1 or exon 1A. Additional analysis showed that Sall2-induced p16 promoter activation was Sall2 dose-dependent. Deletion and site-directed mutagenesis of the p16 promoter identified a consensus Sall2 binding site (GGGTGGG) proximal to the p16 transcription start site and was critical for p16 promoter activation. Finally, to confirm the significance of Sall2-activated p16 expression in cell cycle regulation, we co-transfected the SKOV3 cells with a Sall2 expression construct and a p16 minigene and also co-transfected the ES-2 cells with a Sall2 expression construct and the siRNA against p16 for flow cytometry analysis. Our results showed that Sall2 enhanced the p16 minigene blocking of cell cycle progression and p16 knockdown with siRNA abolished most of the Sall2 inhibition of cell cycle progression. These findings indicate that Sall2 targets multiple cell cycle regulators, including p16, through their promoters, adding knowledge to the understanding of Sall2 and p16 gene regulation, and how Sall2 deregulation may promote cancer formation.
Collapse
Affiliation(s)
- Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sung CK, Yim H. The tumor suppressor protein p150Sal2 in carcinogenesis. Tumour Biol 2015; 36:489-94. [DOI: 10.1007/s13277-014-3019-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022] Open
|
11
|
Dhaouadi N, Li JY, Feugier P, Gustin MP, Dab H, Kacem K, Bricca G, Cerutti C. Computational identification of potential transcriptional regulators of TGF-ß1 in human atherosclerotic arteries. Genomics 2014; 103:357-70. [PMID: 24819318 DOI: 10.1016/j.ygeno.2014.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/17/2014] [Accepted: 05/03/2014] [Indexed: 11/17/2022]
Abstract
TGF-ß is protective in atherosclerosis but deleterious in metastatic cancers. Our aim was to determine whether TGF-ß transcriptional regulation is tissue-specific in early atherosclerosis. The computational methods included 5 steps: (i) from microarray data of human atherosclerotic carotid tissue, to identify the 10 best co-expressed genes with TGFB1 (TGFB1 gene cluster), (ii) to choose the 11 proximal promoters, (iii) to predict the TFBS shared by the promoters, (iv) to identify the common TFs co-expressed with the TGFB1 gene cluster, and (v) to compare the common TFs in the early lesions to those identified in advanced atherosclerotic lesions and in various cancers. Our results show that EGR1, SP1 and KLF6 could be responsible for TGFB1 basal expression, KLF6 appearing specific to atherosclerotic lesions. Among the TFs co-expressed with the gene cluster, transcriptional activators (SLC2A4RG, MAZ) and repressors (ZBTB7A, PATZ1, ZNF263) could be involved in the fine-tuning of TGFB1 expression in atherosclerosis.
Collapse
Affiliation(s)
- Nedra Dhaouadi
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université de Lyon, Université Lyon 1, Hôpital Nord-Ouest Villefranche-sur-Saône, 8 avenue Rockefeller, F-69373 Lyon, France; Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Université de Carthage, Faculté des Sciences de Bizerte, Bizerte, Tunisia
| | - Jacques-Yuan Li
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université de Lyon, Université Lyon 1, Hôpital Nord-Ouest Villefranche-sur-Saône, 8 avenue Rockefeller, F-69373 Lyon, France
| | - Patrick Feugier
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université de Lyon, Université Lyon 1, Hôpital Nord-Ouest Villefranche-sur-Saône, 8 avenue Rockefeller, F-69373 Lyon, France
| | - Marie-Paule Gustin
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université de Lyon, Université Lyon 1, Hôpital Nord-Ouest Villefranche-sur-Saône, 8 avenue Rockefeller, F-69373 Lyon, France
| | - Houcine Dab
- Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Université de Carthage, Faculté des Sciences de Bizerte, Bizerte, Tunisia
| | - Kamel Kacem
- Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Université de Carthage, Faculté des Sciences de Bizerte, Bizerte, Tunisia
| | - Giampiero Bricca
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université de Lyon, Université Lyon 1, Hôpital Nord-Ouest Villefranche-sur-Saône, 8 avenue Rockefeller, F-69373 Lyon, France
| | - Catherine Cerutti
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université de Lyon, Université Lyon 1, Hôpital Nord-Ouest Villefranche-sur-Saône, 8 avenue Rockefeller, F-69373 Lyon, France.
| |
Collapse
|
12
|
Abstract
The ability of cullin 4A (CUL4A), a scaffold protein, to recruit a repertoire of substrate adaptors allows it to assemble into distinct E3 ligase complexes to mediate turnover of key regulatory proteins. In the past decade, a considerable wealth of information has been generated regarding its biology, regulation, assembly, molecular architecture and novel functions. Importantly, unravelling of its association with multiple tumours and modulation by viral proteins establishes it as one of the key proteins that may play an important role in cellular transformation. Considering the role of its substrate in regulating the cell cycle and maintenance of genomic stability, understanding the detailed aspects of these processes will have significant consequences for the treatment of cancer and related diseases. This review is an effort to provide a broad overview of this multifaceted ubiquitin ligase and addresses its critical role in regulation of important biological processes. More importantly, its tremendous potential to be exploited for therapeutic purposes has been discussed.
Collapse
Affiliation(s)
- Puneet Sharma
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, India
| | | |
Collapse
|
13
|
Farkas C, Martins CP, Escobar D, Hepp MI, Castro AF, Evan G, Gutiérrez JL, Warren R, Donner DB, Pincheira R. Wild type p53 transcriptionally represses the SALL2 transcription factor under genotoxic stress. PLoS One 2013; 8:e73817. [PMID: 24040083 PMCID: PMC3765348 DOI: 10.1371/journal.pone.0073817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022] Open
Abstract
SALL2- a member of the Spalt gene family- is a poorly characterized transcription factor found deregulated in various cancers, which suggests it plays a role in the disease. We previously identified SALL2 as a novel interacting protein of neurotrophin receptors and showed that it plays a role in neuronal function, which does not necessarily explain why or how SALL2 is deregulated in cancer. Previous evidences indicate that SALL2 gene is regulated by the WT1 and AP4 transcription factors. Here, we identified SALL2 as a novel downstream target of the p53 tumor suppressor protein. Bioinformatic analysis of the SALL2 gene revealed several putative p53 half sites along the promoter region. Either overexpression of wild-type p53 or induction of the endogenous p53 by the genotoxic agent doxorubicin repressed SALL2 promoter activity in various cell lines. However R175H, R249S, and R248W p53 mutants, frequently found in the tumors of cancer patients, were unable to repress SALL2 promoter activity, suggesting that p53 specific binding to DNA is important for the regulation of SALL2. Electrophoretic mobility shift assay demonstrated binding of p53 to one of the identified p53 half sites in the Sall2 promoter, and chromatin immunoprecipitation analysis confirmed in vivo interaction of p53 with the promoter region of Sall2 containing this half site. Importantly, by using a p53ER (TAM) knockin model expressing a variant of p53 that is completely dependent on 4-hydroxy-tamoxifen for its activity, we show that p53 activation diminished SALL2 RNA and protein levels during genotoxic cellular stress in primary mouse embryo fibroblasts (MEFs) and radiosensitive tissues in vivo. Thus, our finding indicates that p53 represses SALL2 expression in a context-specific manner, adding knowledge to the understanding of SALL2 gene regulation, and to a potential mechanism for its deregulation in cancer.
Collapse
Affiliation(s)
- Carlos Farkas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jiang T, Tang HM, Wu ZH, Chen J, Lu S, Zhou CZ, Yan DW, Peng ZH. Cullin 4B is a novel prognostic marker that correlates with colon cancer progression and pathogenesis. Med Oncol 2013; 30:534. [PMID: 23649548 DOI: 10.1007/s12032-013-0534-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/03/2013] [Indexed: 11/27/2022]
Abstract
Cullin 4B (CUL4B), a scaffold protein of the Cullin4B-RING E3 ligase complex, functions in proteolysis. The present study aims to investigate its expression pattern and evaluate whether CUL4B expression was associated with histopathological and prognosis in the patients with colon cancer. Real-time PCR and western blot were used to identify CUL4B expression in tumor tissue and the paired adjacent normal mucosa from patients with colon cancer. Immunohistochemistry on a tissue microarray containing 203 cases of colon cancer was performed to analyze the association between CUL4B expression and clinicopathological features. Results indicated that CUL4B mRNA and protein levels in tumor tissues were both higher than that in normal mucosae (P < 0.001). Immunohistochemical study displayed that high CUL4B expression was significantly associated with the depth of tumor invasion, lymph node metastasis, distant metastasis, histological differentiation, vascular invasion, and advanced tumor stage. Patients with CUL4B-positive tumors had a higher recurrence rate and poorer survival than patients with CUL4B-negative tumors. In multivariate analyses, CUL4B expression was an independent factor for determining colon cancer prognosis after surgery. In conclusion, CUL4B might promote the progression of colon cancer and can be served as a novel independent prognostic marker for the prediction of recurrence in colon cancer.
Collapse
Affiliation(s)
- Tao Jiang
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, 85 Wujin Road, Shanghai, 200080, PR China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Promoter methylation of the SALL2 tumor suppressor gene in ovarian cancers. Mol Oncol 2012; 7:419-27. [PMID: 23273547 DOI: 10.1016/j.molonc.2012.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 01/22/2023] Open
Abstract
The SALL2 gene product and transcription factor p150 were first identified in a search for tumor suppressors targeted for inactivation by the oncogenic mouse polyoma virus. SALL2 has also been identified as a cellular quiescence factor, essential for cells to enter and remain in a state of growth arrest under conditions of serum deprivation. p150 is a transcriptional activator of p21(Cip1/Waf1) and BAX, sharing important growth arrest and proapoptotic properties with p53. It also acts as a repressor of c-myc. Restoration of SALL2 expression in cells derived from a human ovarian carcinoma (OVCA) suppresses growth of the cells in immunodeficient mice. Here we examine the pattern of p150 expression in the normal human ovary, in OVCA-derived cell lines and in primary ovarian carcinomas. Immunohistochemical staining showed that p150 is highly expressed in surface epithelial cells of the normal human ovary. Expression is exclusively from the P2 promoter governing the E1A splice variant of p150. The P2 promoter is CpG-rich and susceptible to methylation silencing. p150 expression was restored in OVCA cell lines following growth in the presence of 5-azacytidine. In a survey of 210 cases of OVCA, roughly 90% across major and minor histological types failed to show expression of the protein. Immunological and biochemical approaches were used to show hypermethylation of the SALL2 P2 promoter in OVCA-derived cell lines and in a majority of primary tumors. These results bring together molecular biological and clinical evidence in support of a role of SALL2 as a suppressor of ovarian cancers.
Collapse
|
16
|
Sung CK, Yim H, Gu H, Li D, Andrews E, Duraisamy S, Li C, Drapkin R, Benjamin T. The polyoma virus large T binding protein p150 is a transcriptional repressor of c-MYC. PLoS One 2012; 7:e46486. [PMID: 23029531 PMCID: PMC3460914 DOI: 10.1371/journal.pone.0046486] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 09/02/2012] [Indexed: 11/18/2022] Open
Abstract
p150, product of the SALL2 gene, is a binding partner of the polyoma virus large T antigen and a putative tumor suppressor. p150 binds to the nuclease hypersensitive element of the c-MYC promoter and represses c-MYC transcription. Overexpression of p150 in human ovarian surface epithelial cells leads to decreased expression, and downregulation to increased expression, of c-MYC. c-MYC is repressed upon restoration of p150 to ovarian carcinoma cells. Induction of apoptosis by etoposide results in recruitment of p150 to the c-MYC promoter and to repression of c-MYC. Analysis of data in The Cancer Genome Atlas shows negative correlations between SALL2 and c-MYC expression in four common solid tumor types.
Collapse
Affiliation(s)
- Chang Kyoo Sung
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hyungshin Yim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hongcang Gu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dawei Li
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erik Andrews
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sekhar Duraisamy
- Dana Farber Cancer Institute, Department of Medical Oncology, Center for Molecular Oncologic Pathology, Boston, Massachusetts, United States of America
| | - Cheng Li
- Dana Farber Cancer Institute, Department of Biostatistics and Computational Biology, Boston, Massachusetts, United States of America
| | - Ronny Drapkin
- Dana Farber Cancer Institute, Department of Medical Oncology, Center for Molecular Oncologic Pathology, Boston, Massachusetts, United States of America
- Brigham and Women's Hospital, Department of Pathology, Boston, Massachusetts, United States of America
| | - Thomas Benjamin
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lee J, Zhou P. Pathogenic Role of the CRL4 Ubiquitin Ligase in Human Disease. Front Oncol 2012; 2:21. [PMID: 22649780 PMCID: PMC3355902 DOI: 10.3389/fonc.2012.00021] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/17/2012] [Indexed: 11/29/2022] Open
Abstract
The cullin 4-RING ubiquitin ligase (CRL4) family employs multiple DDB1–CUL4 associated factors substrate receptors to direct the degradation of proteins involved in a wide spectrum of cellular functions. Aberrant expression of the cullin 4A (CUL4A) gene is found in many tumor types, while mutations of the cullin 4B (CUL4B) gene are causally associated with human X-linked mental retardation. This focused review will summarize our current knowledge of the two CUL4 family members in the pathogenesis of human malignancy and neuronal disease, and discuss their potential as new targets for cancer prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College and Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| | | |
Collapse
|