1
|
Ediriweera GR, Li M, Fletcher NL, Houston ZH, Ahamed M, Blakey I, Thurecht KJ. Harnessing nanoparticles and bioorthogonal chemistries for improving precision of nuclear medicine. Biomater Sci 2025; 13:2297-2319. [PMID: 40135276 DOI: 10.1039/d4bm01387e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The convergence of nanotechnology, radiopharmaceutical development and molecular imaging has unveiled exciting opportunities for the progress of innovative diagnostic and therapeutic strategies, paving the way for significant advancements in biomedical research, especially in relation to cancer. For example, the use of highly sensitive and quantitative nuclear imaging techniques including PET and SPECT, together with nanoparticles for tumour imaging and therapy has recently expanded rapidly. While the long circulating properties of many nanomaterials are beneficial for prodrug chemotherapy formulations, due to the constant decay processes involved in nuclear medicines, directly labelled materials result in prolonged systemic radiation exposure and reduced therapeutic indices due to the unfavourable target-to-background ratios. This is due to the tendency for long circulating nanomaterials to distribute within the blood to other organs, such as the liver and spleen. The recent integration of bioorthogonal chemistry with nanotechnology and molecular imaging/radiotherapy has revolutionized the field by allowing the decoupling of the targeting molecule (i.e. nanomaterial with a bioorthogonal tag) and the imaging/therapeutic radioisotope. In this way, the detection/therapeutic element can be administered as a secondary "chase" molecule that contains the bioorthogonal partner, thereby creating an avenue to improve therapeutic index and provide imaging and treatments with reduced risk. This review will provide an overview of the progress made thus far in the field of nuclear imaging and radiotherapy for cancer using the combination of nanomaterials and bioorthogonal chemistry. We also provide a critical evaluation of the challenges and opportunities for using these approaches to better understand disease and treatment mechanisms, with the potential for downstream clinical translation.
Collapse
Affiliation(s)
- Gayathri R Ediriweera
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mengdie Li
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Nicholas L Fletcher
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zachary H Houston
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Muneer Ahamed
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Idriss Blakey
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
2
|
Kuo JCH, Colville MJ, Sorkin MR, Kuo JLK, Huang LT, Thornlow DN, Beacham GM, Hollopeter G, DeLisa MP, Alabi CA, Paszek MJ. Bio-orthogonal Glycan Imaging of Cultured Cells and Whole Animal C. elegans with Expansion Microscopy. ACS CENTRAL SCIENCE 2025; 11:193-207. [PMID: 40028367 PMCID: PMC11868961 DOI: 10.1021/acscentsci.4c01061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 03/05/2025]
Abstract
Complex carbohydrates called glycans play crucial roles in regulating cell and tissue physiology, but how they map to nanoscale anatomical features must still be resolved. Here, we present the first nanoscale map of mucin-type O-glycans throughout the entirety of the Caenorhabditis elegans model organism. We constructed a library of multifunctional linkers to probe and anchor metabolically labeled glycans in expansion microscopy (ExM). A flexible strategy was demonstrated for the chemical synthesis of linkers with a broad inventory of bio-orthogonal functional groups, fluorophores, anchorage chemistries, and linker arms. Employing C. elegans as a test bed, metabolically labeled O-glycans were resolved on the gut microvilli and other nanoscale anatomical features. Transmission electron microscopy images of C. elegans nanoanatomy validated the fidelity and isotropy of gel expansion. Whole organism maps of C. elegans O-glycosylation in the first larval stage revealed O-glycan "hotspots" in unexpected anatomical locations, including the body wall furrows. Beyond C. elegans, we validated ExM protocols for nanoscale imaging of metabolically labeled glycans on cultured mammalian cells. Together, our results suggest the broad applicability of the multifunctional reagents for imaging glycans and other metabolically labeled biomolecules at enhanced resolutions with ExM.
Collapse
Affiliation(s)
- Joe Chin-Hun Kuo
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Marshall J. Colville
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michelle R. Sorkin
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jacky Lok Ka Kuo
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ling Ting Huang
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dana N. Thornlow
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Gwendolyn M. Beacham
- Department
of Molecular Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Gunther Hollopeter
- Department
of Molecular Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Matthew P. DeLisa
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Meinig
School of Biomedical Engineering, Cornell
University, Ithaca, New York 14853, United States
- Cornell
Institute of Biotechnology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher A. Alabi
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Matthew J. Paszek
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Meinig
School of Biomedical Engineering, Cornell
University, Ithaca, New York 14853, United States
- Field
of Biophysics, Cornell University, Ithaca, New York 14853, United States
- Kavli
Institute
at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Li Y, Wang H, Chen Y, Ding L, Ju H. In Situ Glycan Analysis and Editing in Living Systems. JACS AU 2024; 4:384-401. [PMID: 38425935 PMCID: PMC10900212 DOI: 10.1021/jacsau.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
Besides proteins and nucleic acids, carbohydrates are also ubiquitous building blocks of living systems. Approximately 70% of mammalian proteins are glycosylated. Glycans not only provide structural support for living systems but also act as crucial regulators of cellular functions. As a result, they are considered essential pieces of the life science puzzle. However, research on glycans has lagged far behind that on proteins and nucleic acids. The main reason is that glycans are not direct products of gene coding, and their synthesis is nontemplated. In addition, the diversity of monosaccharide species and their linkage patterns contribute to the complexity of the glycan structures, which is the molecular basis for their diverse functions. Research in glycobiology is extremely challenging, especially for the in situ elucidation of glycan structures and functions. There is an urgent need to develop highly specific glycan labeling tools and imaging methods and devise glycan editing strategies. This Perspective focuses on the challenges of in situ analysis of glycans in living systems at three spatial levels (i.e., cell, tissue, and in vivo) and highlights recent advances and directions in glycan labeling, imaging, and editing tools. We believe that examining the current development landscape and the existing bottlenecks can drive the evolution of in situ glycan analysis and intervention strategies and provide glycan-based insights for clinical diagnosis and therapeutics.
Collapse
Affiliation(s)
- Yiran Li
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Haiqi Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yunlong Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Lin Ding
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
4
|
Kuo JCH, Colville MJ, Sorkin MR, Kuo JLK, Huang LT, Thornlow DN, Beacham GM, Hollopeter G, DeLisa MP, Alabi CA, Paszek MJ. Bio-orthogonal Glycan Imaging of Culture Cells and Whole Animal C. elegans with Expansion Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578333. [PMID: 38352588 PMCID: PMC10862801 DOI: 10.1101/2024.02.01.578333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Complex carbohydrates called glycans play crucial roles in the regulation of cell and tissue physiology, but how glycans map to nanoscale anatomical features must still be resolved. Here, we present the first nanoscale map of mucin-type O -glycans throughout the entirety of the Caenorhabditis elegans model organism. We construct a library of multifunctional linkers to probe and anchor metabolically labelled glycans in expansion microscopy (ExM), an imaging modality that overcomes the diffraction limit of conventional optical microscopes through the physical expansion of samples embedded in a polyelectrolyte gel matrix. A flexible strategy is demonstrated for the chemical synthesis of linkers with a broad inventory of bio-orthogonal functional groups, fluorophores, anchorage chemistries, and linker arms. Employing C. elegans as a test bed, we resolve metabolically labelled O -glycans on the gut microvilli and other nanoscale anatomical features using our ExM reagents and optimized protocols. We use transmission electron microscopy images of C. elegans nano-anatomy as ground truth data to validate the fidelity and isotropy of gel expansion. We construct whole organism maps of C. elegans O -glycosylation in the first larval stage and identify O -glycan "hotspots" in unexpected anatomical locations, including the body wall furrows. Beyond C. elegans , we provide validated ExM protocols for nanoscale imaging of metabolically labelled glycans on cultured mammalian cells. Together, our results suggest the broad applicability of the multifunctional reagents for imaging glycans and other metabolically labelled biomolecules at enhanced resolutions with ExM. Graphical abstract
Collapse
|
5
|
Saeui CT, Shah SR, Fernandez-Gil BI, Zhang C, Agatemor C, Dammen-Brower K, Mathew MP, Buettner M, Gowda P, Khare P, Otamendi-Lopez A, Yang S, Zhang H, Le A, Quinoñes-Hinojosa A, Yarema KJ. Anticancer Properties of Hexosamine Analogs Designed to Attenuate Metabolic Flux through the Hexosamine Biosynthetic Pathway. ACS Chem Biol 2023; 18:151-165. [PMID: 36626752 DOI: 10.1021/acschembio.2c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Altered cellular metabolism is a hallmark of cancer pathogenesis and progression; for example, a near-universal feature of cancer is increased metabolic flux through the hexosamine biosynthetic pathway (HBP). This pathway produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a potent oncometabolite that drives multiple facets of cancer progression. In this study, we synthesized and evaluated peracetylated hexosamine analogs designed to reduce flux through the HBP. By screening a panel of analogs in pancreatic cancer and glioblastoma multiform (GBM) cells, we identified Ac4Glc2Bz─a benzyl-modified GlcNAc mimetic─as an antiproliferative cancer drug candidate that down-regulated oncogenic metabolites and reduced GBM cell motility at concentrations non-toxic to non-neoplastic cells. More specifically, the growth inhibitory effects of Ac4Glc2Bz were linked to reduced levels of UDP-GlcNAc and concomitant decreases in protein O-GlcNAc modification in both pancreatic cancer and GBM cells. Targeted metabolomics analysis in GBM cells showed that Ac4Glc2Bz disturbed glucose metabolism, amino acid pools, and nucleotide precursor biosynthesis, consistent with reduced proliferation and other anti-oncogenic properties of this analog. Furthermore, Ac4Glc2Bz reduced the invasion, migration, and stemness of GBM cells. Importantly, normal metabolic functions mediated by UDP-GlcNAc were not disrupted in non-neoplastic cells, including maintenance of endogenous levels of O-GlcNAcylation with no global disruption of N-glycan production. Finally, a pilot in vivo study showed that a potential therapeutic window exists where animals tolerated 5- to 10-fold higher levels of Ac4Glc2Bz than projected for in vivo efficacy. Together, these results establish GlcNAc analogs targeting the HBP through salvage mechanisms as a new therapeutic approach to safely normalize an important facet of aberrant glucose metabolism associated with cancer.
Collapse
Affiliation(s)
- Christopher T Saeui
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Sagar R Shah
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | | | - Cissy Zhang
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Christian Agatemor
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Kris Dammen-Brower
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Mohit P Mathew
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Matthew Buettner
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Prateek Gowda
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Pratik Khare
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21205, United States
| | | | - Shuang Yang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
| | - Anne Le
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21205, United States
| | | | - Kevin J Yarema
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
6
|
Parle D, Bulat F, Fouad S, Zecchini H, Brindle KM, Neves AA, Leeper FJ. Metabolic Glycan Labeling of Cancer Cells Using Variably Acetylated Monosaccharides. Bioconjug Chem 2022; 33:1467-1473. [PMID: 35876696 PMCID: PMC9389531 DOI: 10.1021/acs.bioconjchem.2c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Methylcyclopropene (Cyoc)-tagged tetra-acetylated monosaccharides, and in particular mannosamine derivatives, are promising tools for medical imaging of cancer using metabolic oligosaccharide engineering and the extremely fast inverse electron-demand Diels-Alder bioorthogonal reaction. However, the in vivo potential of these monosaccharide derivatives has yet to be fully explored due to their low aqueous solubility. To address this issue, we sought to vary the extent of acetylation of Cyoc-tagged monosaccharides and probe its effect on the extent of glycan labeling in various cancer cell lines. We demonstrate that, in the case of AcxManNCyoc, tri- and diacetylated derivatives generated significantly enhanced cell labeling compared to the tetra-acetylated monosaccharide. In contrast, for the more readily soluble azide-tagged sugars, a decrease in acetylation led to decreased glycan labeling. Ac3ManNCyoc gave better labeling than the azido-tagged Ac4ManNAz and has significant potential for in vitro and in vivo imaging of glycosylated cancer biomarkers.
Collapse
Affiliation(s)
- Daniel
R. Parle
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Flaviu Bulat
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Shahd Fouad
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Heather Zecchini
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Kevin M. Brindle
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - André A. Neves
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Finian J. Leeper
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
7
|
Xie Y, Li Y, Han S. Metabolic installation of macrophage-recruiting glycan ligand on tumor cell surface for in vivo tumor suppression. Bioorg Med Chem Lett 2022; 57:128500. [PMID: 34906672 DOI: 10.1016/j.bmcl.2021.128500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022]
Abstract
Synthetic probes that could direct immune cells against tumors are potential immunotherapeutics. We herein report in vivo tumor suppression via an intravenously injected abiotic sialic acid (TCCSia) that could be metabolically incorporated into tumor cell surface to yield of a high affinity ligand (TCCSiaα2,3-Gal) of Siglec-1 specifically expressed on macrophages. We observed marked suppression of pulmonary metastasis and subcutaneous tumor growth of B16F10 melanoma cells in mice with TCCSia, suggesting the utility of abiotic sialic acid to modulate tumor immunity via recruiting Siglec+ immune cells.
Collapse
Affiliation(s)
- Yunzhi Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361005, China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi 341000, China.
| | - Shoufa Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
8
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
9
|
Sialic Acid as a Biomarker Studied in Breast Cancer Cell Lines In Vitro Using Fluorescent Molecularly Imprinted Polymers. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sialylations are post-translational modifications of proteins and lipids that play important roles in many cellular events, including cell-cell interactions, proliferation, and migration. Tumor cells express high levels of sialic acid (SA), which are often associated with the increased invasive potential in clinical tumors, correlating with poor prognosis. To overcome the lack of natural SA-receptors, such as antibodies and lectins with high enough specificity and sensitivity, we have used molecularly imprinted polymers (MIPs), or “plastic antibodies”, as nanoprobes. Because high expression of epithelial cell adhesion molecule (EpCAM) in primary tumors is often associated with proliferation and a more aggressive phenotype, the expression of EpCAM and CD44 was initially analyzed. The SA-MIPs were used for the detection of SA on the cell surface of breast cancer cells. Lectins that specifically bind to the a-2,3 SA and a-2,6 SA variants were used for analysis of SA expression, with both flow cytometry and confocal microscopy. Here we show a correlation of EpCAM and SA expression when using the SA-MIPs for detection of SA. We also demonstrate the binding pattern of the SA-MIPs on the breast cancer cell lines using confocal microscopy. Pre-incubation of the SA-MIPs with SA-derivatives as inhibitors could reduce the binding of the SA-MIPs to the tumor cells, indicating the specificity of the SA-MIPs. In conclusion, the SA-MIPs may be a new powerful tool in the diagnostic analysis of breast cancer cells.
Collapse
|
10
|
Pedowitz NJ, Pratt MR. Design and Synthesis of Metabolic Chemical Reporters for the Visualization and Identification of Glycoproteins. RSC Chem Biol 2021; 2:306-321. [PMID: 34337414 PMCID: PMC8323544 DOI: 10.1039/d1cb00010a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glycosylation events play an invaluable role in regulating cellular processes including enzymatic activity, immune recognition, protein stability, and cell-cell interactions. However, researchers have yet to realize the full range of glycan mediated biological functions due to a lack of appropriate chemical tools. Fortunately, the past 25 years has seen the emergence of modified sugar analogs, termed metabolic chemical reporters (MCRs), which are metabolized by endogenous enzymes to label complex glycan structures. Here, we review the major reporters for each class of glycosylation and highlight recent applications that have made a tremendous impact on the field of glycobiology.
Collapse
Affiliation(s)
- Nichole J Pedowitz
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
11
|
Porte K, Riberaud M, Châtre R, Audisio D, Papot S, Taran F. Bioorthogonal Reactions in Animals. Chembiochem 2020; 22:100-113. [PMID: 32935888 DOI: 10.1002/cbic.202000525] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/15/2020] [Indexed: 01/04/2023]
Abstract
The advent of bioorthogonal chemistry has led to the development of powerful chemical tools that enable increasingly ambitious applications. In particular, these tools have made it possible to achieve what is considered to be the holy grail of many researchers involved in chemical biology: to perform unnatural chemical reactions within living organisms. In this minireview, we present an update of bioorthogonal reactions that have been carried out in animals for various applications. We outline the advances made in the understanding of fundamental biological processes, and the development of innovative imaging and therapeutic strategies using bioorthogonal chemistry.
Collapse
Affiliation(s)
- Karine Porte
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France
| | - Maxime Riberaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France
| | - Rémi Châtre
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), 86022, Poitiers, France) E-mail
| | - Davide Audisio
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France
| | - Sébastien Papot
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), 86022, Poitiers, France) E-mail
| | - Frédéric Taran
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Affiliation(s)
- Christin Bednarek
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
13
|
Soares da Costa D, Sousa JC, Dá Mesquita S, Petkova-Yankova NI, Marques F, Reis RL, Sousa N, Pashkuleva I. Bioorthogonal Labeling Reveals Different Expression of Glycans in Mouse Hippocampal Neuron Cultures during Their Development. Molecules 2020; 25:molecules25040795. [PMID: 32059500 PMCID: PMC7070308 DOI: 10.3390/molecules25040795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
The expression of different glycans at the cell surface dictates cell interactions with their environment and other cells, being crucial for the cell fate. The development of the central nervous system is associated with tremendous changes in the cell glycome that is tightly regulated. Herein, we have employed bioorthogonal Cu-free click chemistry to image temporal distribution of different glycans in live mouse hippocampal neurons during their maturation in vitro. We show development-dependent glycan patterns with increased fucose and decreased mannose expression at the end of the maturation process. We also demonstrate that this approach is biocompatible and does not affect glycan transport although it relies on an administration of modified glycans. The applicability of this strategy to tissue sections unlocks new opportunities to study the glycan dynamics under more complex physiological conditions.
Collapse
Affiliation(s)
- Diana Soares da Costa
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (N.I.P.-Y.); (R.L.R.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- Correspondence: (D.S.d.C.); (I.P.)
| | - João C. Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Sandro Dá Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Nevena I. Petkova-Yankova
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (N.I.P.-Y.); (R.L.R.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (N.I.P.-Y.); (R.L.R.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Iva Pashkuleva
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (N.I.P.-Y.); (R.L.R.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- Correspondence: (D.S.d.C.); (I.P.)
| |
Collapse
|
14
|
Moons SJ, Adema GJ, Derks MT, Boltje TJ, Büll C. Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs. Glycobiology 2020; 29:433-445. [PMID: 30913290 DOI: 10.1093/glycob/cwz026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Sialic acids cap the glycans of cell surface glycoproteins and glycolipids. They are involved in a multitude of biological processes and aberrant sialic acid expression is associated with several pathologies. Sialic acids modulate the characteristics and functions of glycoproteins and regulate cell-cell as well as cell-extracellular matrix interactions. Pathogens such as influenza virus use sialic acids to infect host cells and cancer cells exploit sialic acids to escape from the host's immune system. The introduction of unnatural sialic acids with different functionalities into surface glycans enables the study of the broad biological functions of these sugars and presents a therapeutic option to intervene with pathological processes involving sialic acids. Multiple chemically modified sialic acid analogs can be directly utilized by cells for sialoglycan synthesis. Alternatively, analogs of the natural sialic acid precursor sugar N-Acetylmannosamine (ManNAc) can be introduced into the sialic acid biosynthesis pathway resulting in the intracellular conversion into the corresponding sialic acid analog. Both, ManNAc and sialic acid analogs, have been employed successfully for a large variety of glycoengineering applications such as glycan imaging, targeting toxins to tumor cells, inhibiting pathogen binding, or altering immune cell activity. However, there are significant differences between ManNAc and sialic acid analogs with respect to their chemical modification potential and cellular metabolism that should be considered in sialic acid glycoengineering experiments.
Collapse
Affiliation(s)
- Sam J Moons
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Max Tgm Derks
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Christian Büll
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Agatemor C, Buettner MJ, Ariss R, Muthiah K, Saeui CT, Yarema KJ. Exploiting metabolic glycoengineering to advance healthcare. Nat Rev Chem 2019; 3:605-620. [PMID: 31777760 DOI: 10.1038/s41570-019-0126-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metabolic glycoengineering (MGE) is a technique for manipulating cellular metabolism to modulate glycosylation. MGE is used to increase the levels of natural glycans and, more importantly, to install non-natural monosaccharides into glycoconjugates. In this Review, we summarize the chemistry underlying MGE that has been developed over the past three decades and highlight several recent advances that have set the stage for clinical translation. In anticipation of near-term application to human healthcare, we describe emerging efforts to deploy MGE in diverse applications, ranging from the glycoengineering of biotherapeutic proteins and the diagnosis and treatment of complex diseases such as cancer to the development of new immunotherapies.
Collapse
Affiliation(s)
- Christian Agatemor
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Matthew J Buettner
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Ryan Ariss
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Keerthana Muthiah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
16
|
Santegoets KCM, Gielen PR, Büll C, Schulte BM, Kers-Rebel ED, Küsters B, Bossman SAJFH, Ter Laan M, Wesseling P, Adema GJ. Expression profiling of immune inhibitory Siglecs and their ligands in patients with glioma. Cancer Immunol Immunother 2019; 68:937-949. [PMID: 30953118 PMCID: PMC6529385 DOI: 10.1007/s00262-019-02332-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/24/2019] [Indexed: 12/22/2022]
Abstract
Gliomas appear to be highly immunosuppressive tumors, with a strong myeloid component. This includes MDSCs, which are a heterogeneous, immature myeloid cell population expressing myeloid markers Siglec-3 (CD33) and CD11b and lacking markers of mature myeloid cells including MHC II. Siglec-3 is a member of the sialic acid-binding immunoglobulin-like lectin (Siglec) family and has been suggested to promote MDSC expansion and suppression. Siglecs form a recently defined family of receptors with potential immunoregulatory functions but only limited insight in their expression on immune regulatory cell subsets, prompting us to investigate Siglec expression on MDSCs. We determined the expression of different Siglec family members on monocytic-MDSCs (M-MDSCs) and polymorphnuclear-MDSCs (PMN-MDSCs) from blood of glioma patients and healthy donors, as well as from patient-derived tumor material. Furthermore, we investigated the presence of sialic acid ligands for these Siglecs on MDSCs and in the glioma tumor microenvironment. Both MDSC subsets express Siglec-3, -5, -7 and -9, with higher levels of Siglec-3, -7 and -9 on M-MDSCs and higher Siglec-5 levels on PMN-MDSCs. Similar Siglec expression profiles were found on MDSCs from healthy donors. Furthermore, the presence of Siglec-5 and -9 was also confirmed on PMN-MDSCs from glioma tissue. Interestingly, freshly isolated glioma cells predominantly expressed sialic acid ligands for Siglec-7 and -9, which was confirmed in situ. In conclusion, our data show a distinct Siglec expression profile for M- and PMN-MDSCs and propose possible sialic acid-Siglec interactions between glioma cells and MDSCs in the tumor microenvironment.
Collapse
Affiliation(s)
- Kim C M Santegoets
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Paul R Gielen
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Christian Büll
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Barbara M Schulte
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Esther D Kers-Rebel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandra A J F H Bossman
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Prinses Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Chemical and biological methods for probing the structure and functions of polysialic acids. Emerg Top Life Sci 2018; 2:363-376. [DOI: 10.1042/etls20180008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 08/01/2018] [Indexed: 01/27/2023]
Abstract
Owing to its poly-anionic charge and large hydrodynamic volume, polysialic acid (polySia) attached to neural cell adhesion molecule regulates axon–axon and axon–substratum interactions and signalling, particularly, in the development of the central nervous system (CNS). Expression of polySia is spatiotemporally regulated by the action of two polysialyl transferases, namely ST8SiaII and ST8SiaIV. PolySia expression peaks during late embryonic and early post-natal period and maintained at a steady state in adulthood in neurogenic niche of the brain. Aberrant polySia expression is associated with neurological disorders and brain tumours. Investigations on the structure and functions, over the past four decades, have shed light on the physiology of polySia. This review focuses on the biological, biochemical, and chemical tools available for polySia engineering. Genetic knockouts, endo-neuraminidases that cleave polySia, antibodies, exogenous expression, and neuroblastoma cells have provided deep insights into the ability of polySia to guide migration of neuronal precursors in neonatal brain development, neuronal clustering, axonal pathway guidance, and axonal targeting. Advent of metabolic sialic acid engineering using ManNAc analogues has enabled reversible and dose-dependent modulation polySia in vitro and ex vivo. In vivo, ManNAc analogues readily engineer the sialoglycans in peripheral tissues, but show no effect in the brain. A recently developed carbohydrate-neuroactive hybrid strategy enables a non-invasive access to the brain in living animals across the blood–brain barrier. A combination of recent advances in CNS drugs and imaging with ManNAc analogues for polySia modulation would pave novel avenues for understanding intricacies of brain development and tackling the challenges of neurological disorders.
Collapse
|
18
|
Li S, Yu B, Wang J, Zheng Y, Zhang H, Walker MJ, Yuan Z, Zhu H, Zhang J, Wang PG, Wang B. Biomarker-Based Metabolic Labeling for Redirected and Enhanced Immune Response. ACS Chem Biol 2018; 13:1686-1694. [PMID: 29792670 DOI: 10.1021/acschembio.8b00350] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Installation of an antibody-recruiting moiety on the surface of disease-relevant cells can lead to the selective destruction of targets by the immune system. Such an approach can be an alternative strategy to traditional chemotherapeutics in cancer therapy and possibly other diseases. Herein we describe the development of a new strategy to selectively label targets with an antibody-recruiting moiety through its covalent and stable installation, complementing existing methods of employing reversible binding. This is achieved through selective delivery of 1,3,4- O-acetyl- N-azidoacetylmannosamine (Ac3ManNAz) to folate receptor-overexpressing cells using an Ac3ManNAz-folate conjugate via a cleavable linker. As such, Ac3ManNAz is converted to cell surface glycan bearing an azido group, which serves as an anchor to introduce l-rhamnose (Rha), a hapten, via a click reaction with aza-dibenzocyclooctyne (DBCO)-Rha. We tested this method in several cell lines including KB, HEK-293, and MCF7 and were able to demonstrate the following: 1) Rha can be selectively installed to the folate receptor overexpressing cell surface and 2) the Rha installed on the target surface can recruit anti-rhamnose (anti-Rha) antibodies, leading to the destruction of target cells via complement-dependent cytotoxicity (CDC) and antibody-dependent cellular phagocytosis (ADCP).
Collapse
Affiliation(s)
- Shanshan Li
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiajia Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yueqin Zheng
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Huajie Zhang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry Glycobiology, Shandong University, Jinan, Shandong 250100, People’s Republic of China
| | - Margaret J. Walker
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - He Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Zhang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng George Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
19
|
Comess KM, McLoughlin SM, Oyer JA, Richardson PL, Stöckmann H, Vasudevan A, Warder SE. Emerging Approaches for the Identification of Protein Targets of Small Molecules - A Practitioners’ Perspective. J Med Chem 2018; 61:8504-8535. [DOI: 10.1021/acs.jmedchem.7b01921] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kenneth M. Comess
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Shaun M. McLoughlin
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Jon A. Oyer
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Paul L. Richardson
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Henning Stöckmann
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Anil Vasudevan
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Scott E. Warder
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| |
Collapse
|
20
|
Saeui CT, Liu L, Urias E, Morrissette-McAlmon J, Bhattacharya R, Yarema KJ. Pharmacological, Physiochemical, and Drug-Relevant Biological Properties of Short Chain Fatty Acid Hexosamine Analogues Used in Metabolic Glycoengineering. Mol Pharm 2018; 15:705-720. [PMID: 28853901 PMCID: PMC6292510 DOI: 10.1021/acs.molpharmaceut.7b00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, we catalog structure activity relationships (SAR) of several short chain fatty acid (SCFA)-modified hexosamine analogues used in metabolic glycoengineering (MGE) by comparing in silico and experimental measurements of physiochemical properties important in drug design. We then describe the impact of these compounds on selected biological parameters that influence the pharmacological properties and safety of drug candidates by monitoring P-glycoprotein (Pgp) efflux, inhibition of cytochrome P450 3A4 (CYP3A4), hERG channel inhibition, and cardiomyocyte cytotoxicity. These parameters are influenced by length of the SCFAs (e.g., acetate vs n-butyrate), which are added to MGE analogues to increase the efficiency of cellular uptake, the regioisomeric arrangement of the SCFAs on the core sugar, the structure of the core sugar itself, and by the type of N-acyl modification (e.g., N-acetyl vs N-azido). By cataloging the influence of these SAR on pharmacological properties of MGE analogues, this study outlines design considerations for tuning the pharmacological, physiochemical, and the toxicological parameters of this emerging class of small molecule drug candidates.
Collapse
Affiliation(s)
- Christopher T. Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Lingshu Liu
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Esteban Urias
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Rahul Bhattacharya
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Kevin J. Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Tumor target amplification: Implications for nano drug delivery systems. J Control Release 2018; 275:142-161. [PMID: 29454742 DOI: 10.1016/j.jconrel.2018.02.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Tumor cells overexpress surface markers which are absent from normal cells. These tumor-restricted antigenic signatures are a fundamental basis for distinguishing on-target from off-target cells for ligand-directed targeting of cancer cells. Unfortunately, tumor heterogeneity impedes the establishment of a solid expression pattern for a given target marker, leading to drastic changes in quality (availability) and quantity (number) of the target. Consequently, a subset of cancer cells remains untargeted during the course of treatment, which subsequently promotes drug-resistance and cancer relapse. Since target inefficiency is only problematic for cancer treatment and not for treatment of other pathological conditions such as viral/bacterial infections, target amplification or the generation of novel targets is key to providing eligible antigenic markers for effective targeted therapy. This review summarizes the limitations of current ligand-directed targeting strategies and provides a comprehensive overview of tumor target amplification strategies, including self-amplifying systems, dual targeting, artificial markers and peptide modification. We also discuss the therapeutic and diagnostic potential of these approaches, the underlying mechanism(s) and established methodologies, mostly in the context of different nanodelivery systems, to facilitate more effective ligand-directed cancer cell monitoring and targeting.
Collapse
|
22
|
Choi JY, Park M, Cho H, Kim MH, Kang K, Choi IS. Neuro-Compatible Metabolic Glycan Labeling of Primary Hippocampal Neurons in Noncontact, Sandwich-Type Neuron-Astrocyte Coculture. ACS Chem Neurosci 2017; 8:2607-2612. [PMID: 28953350 DOI: 10.1021/acschemneuro.7b00300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycans are intimately involved in several facets of neuronal development and neuropathology. However, the metabolic labeling of surface glycans in primary neurons is a difficult task because of the neurotoxicity of unnatural monosaccharides that are used as a metabolic precursor, hindering the progress of metabolic engineering in neuron-related fields. Therefore, in this paper, we report a neurosupportive, neuron-astrocyte coculture system that neutralizes the neurotoxic effects of unnatural monosaccharides, allowing for the long-term observation and characterization of glycans in primary neurons in vitro. Polysialic acids in neurons are selectively imaged, via the metabolic labeling of sialoglycans with peracetylated N-azidoacetyl-d-mannosamine (Ac4ManNAz), for up to 21 DIV. Two-color labeling shows that neuronal activities, such as neurite outgrowth and recycling of membrane components, are highly dynamic and change over time during development. In addition, the insertion sites of membrane components are suggested to not be random, but be predominantly localized in developing neurites. This work provides a new research platform and also suggests advanced 3D systems for metabolic-labeling studies of glycans in primary neurons.
Collapse
Affiliation(s)
- Ji Yu Choi
- Center
for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Matthew Park
- Center
for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Hyeoncheol Cho
- Center
for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Mi-Hee Kim
- Center
for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Kyungtae Kang
- Department
of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, Korea
| | - Insung S. Choi
- Center
for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
23
|
DOTA-tetrazine probes with modified linkers for tumor pretargeting. Nucl Med Biol 2017; 55:19-26. [DOI: 10.1016/j.nucmedbio.2017.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 11/21/2022]
|
24
|
Lee S, Jung S, Koo H, Na JH, Yoon HY, Shim MK, Park J, Kim JH, Lee S, Pomper MG, Kwon IC, Ahn CH, Kim K. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo. Biomaterials 2017; 148:1-15. [DOI: 10.1016/j.biomaterials.2017.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/03/2017] [Accepted: 09/18/2017] [Indexed: 01/22/2023]
|
25
|
Wratil PR, Horstkorte R. Metabolic Glycoengineering of Sialic Acid Using N-acyl-modified Mannosamines. J Vis Exp 2017. [PMID: 29286437 DOI: 10.3791/55746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sialic acid (Sia) is a highly important constituent of glycoconjugates, such as N- and O-glycans or glycolipids. Due to its position at the non-reducing termini of oligo- and polysaccharides, as well as its unique chemical characteristics, sialic acid is involved in a multitude of different receptor-ligand interactions. By modifying the expression of sialic acid on the cell surface, sialic acid-dependent interactions will consequently be influenced. This can be helpful to investigate sialic acid-dependent interactions and has the potential to influence certain diseases in a beneficial way. Via metabolic glycoengineering (MGE), the expression of sialic acid on the cell surface can be modulated. Herein, cells, tissues, or even entire animals are treated with C2-modified derivatives of N-acetylmannosamine (ManNAc). These amino sugars act as sialic acid precursor molecules and therefore are metabolized to the corresponding sialic acid species and expressed on glycoconjugates. Applying this method produces intriguing effects on various biological processes. For example, it can drastically reduce the expression of polysialic acid (polySia) in treated neuronal cells and thus affects neuronal growth and differentiation. Here, we show the chemical synthesis of two of the most common C2-modified N-acylmannosamine derivatives, N-propionylmannosamine (ManNProp) as well as N-butanoylmannosamine (ManNBut), and further show how these non-natural amino sugars can be applied in cell culture experiments. The expression of modified sialic acid species is quantified by high performance liquid chromatography (HPLC) and further analyzed via mass spectrometry. The effects on polysialic acid expression are elucidated via Western blot using a commercially available polysialic acid antibody.
Collapse
Affiliation(s)
- Paul R Wratil
- Max von Pettenkofer-Institut & Genzentrum, Virologie, Nationales Referenzzentrum für Retroviren, Medizinische Fakultät, LMU München; Institut für Laboratoriumsmedizin, klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg;
| |
Collapse
|
26
|
Png ZM, Zeng H, Ye Q, Xu J. Inverse-Electron-Demand Diels-Alder Reactions: Principles and Applications. Chem Asian J 2017; 12:2142-2159. [DOI: 10.1002/asia.201700442] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/06/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Zhuang Mao Png
- Institute of Materials Research and Engineering; Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Huining Zeng
- Institute of Materials Research and Engineering; Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Qun Ye
- Institute of Materials Research and Engineering; Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering; Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
27
|
Yoon HY, Koo H, Kim K, Kwon IC. Molecular imaging based on metabolic glycoengineering and bioorthogonal click chemistry. Biomaterials 2017; 132:28-36. [PMID: 28399460 DOI: 10.1016/j.biomaterials.2017.04.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 01/09/2023]
Abstract
Metabolic glycoengineering is a powerful technique that can introduce various chemical groups to cellular glycan by treatment of unnatural monosaccharide. Particularly, this technique has enabled many challenging trials for molecular imaging in combination with click chemistry, which provides fast and specific chemical conjugation reaction of imaging probes to metabolically-modified live cells. This review introduces recent progress in molecular imaging based on the combination of these two cutting-edge techniques. First, these techniques showed promising results in specific tumor cell imaging for cancer diagnosis and therapy. The related researches showed the surface of tumor cells could be labeled with bioorthogonal chemical groups by metabolic glycoengineering, which can be further conjugated with fluorescence dyes or nanoparticles with imaging probes by click chemistry, in vitro and in vivo. This method can be applied to heterogeneous tumor cells regardless of genetic properties of different tumor cells. Furthermore, the amount of targeting moieties on tumor cells can be freely controlled externally by treatment of unnatural monosaccharide. Second, this sequential use of metabolic glycoengineering and click chemistry is also useful in cell tracking to monitor the localization of the inoculated therapeutic cells including chondrocytes and stem cells. This therapeutic cell-labeling technique provided excellent viability of chondrocytes and stem cells during the whole process in vitro and in vivo. It can provide long-term and safe therapeutic cell imaging compared to traditional methods. These overall studies demonstrate the great potential of metabolic glycoengineering and click chemistry in live cell imaging.
Collapse
Affiliation(s)
- Hong Yeol Yoon
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791, Republic of Korea
| | - Heebeom Koo
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Ick Chan Kwon
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
28
|
Mongis A, Piller F, Piller V. Coupling of Immunostimulants to Live Cells through Metabolic Glycoengineering and Bioorthogonal Click Chemistry. Bioconjug Chem 2017; 28:1151-1165. [PMID: 28297599 DOI: 10.1021/acs.bioconjchem.7b00042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study investigated the potential of metabolic glycoengineering followed by bioorthogonal click chemistry for introducing into cell-surface glycans different immunomodulating molecules. Mouse tumor models EG7 and MC38-OVA were treated with Ac4GalNAz and Ac4ManNAz followed by ligation of immunostimulants to modified cell-surface glycans of the living cells through bioorthogonal click chemistry. The presence of covalently bound oligosaccharide and oligonucleotide immunostimulants could be clearly established. The activation of a reporter macrophage cell line was determined. Depending on the tumor cell line, covalently and noncovalently bound CpG activated the macrophages by between 67 and 100% over controls. EG7 cells with covalently attached immunostimulants and controls were injected subcutaneously into C57BL/6 mice. All tumor cells subjected to the complete treatment with control molecules formed tumors like nontreated cells confirming cell viability. However, when CpG oligonucleotide was linked to cell-surface glycans, tumor growth was slowed significantly (60% reduction, n = 10, by covalently bound CpG compared to noncovalently bound CpG, n = 10). When mice that had not developed large tumors were challenged with unmodified EG7 cells, no new tumors developed, suggesting protection through the immune system.
Collapse
Affiliation(s)
- Aline Mongis
- Centre de Biophysique Moléculaire, CNRS UPR4301 , Rue Charles Sadron, 45071 Orléans, France
| | - Friedrich Piller
- Centre de Biophysique Moléculaire, CNRS UPR4301 , Rue Charles Sadron, 45071 Orléans, France
| | - Véronique Piller
- Centre de Biophysique Moléculaire, CNRS UPR4301 , Rue Charles Sadron, 45071 Orléans, France
| |
Collapse
|
29
|
Badr HA, AlSadek DMM, El-Houseini ME, Saeui CT, Mathew MP, Yarema KJ, Ahmed H. Harnessing cancer cell metabolism for theranostic applications using metabolic glycoengineering of sialic acid in breast cancer as a pioneering example. Biomaterials 2017; 116:158-173. [PMID: 27926828 PMCID: PMC5193387 DOI: 10.1016/j.biomaterials.2016.11.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022]
Abstract
Abnormal cell surface display of sialic acids - a family of unusual 9-carbon sugars - is widely recognized as distinguishing feature of many types of cancer. Sialoglycans, however, typically cannot be identified with sufficiently high reproducibility and sensitivity to serve as clinically accepted biomarkers and similarly, almost all efforts to exploit cancer-specific differences in sialylation signatures for therapy remain in early stage development. In this report we provide an overview of important facets of glycosylation that contribute to cancer in general with a focus on breast cancer as an example of malignant disease characterized by aberrant sialylation. We then describe how cancer cells experience nutrient deprivation during oncogenesis and discuss how the resulting metabolic reprogramming, which endows breast cancer cells with the ability to obtain nutrients during scarcity, constitutes an "Achilles' heel" that we believe can be exploited by metabolic glycoengineering (MGE) strategies to develop new diagnostic methods and therapeutic approaches. In particular, we hypothesize that adaptations made by breast cancer cells that allow them to efficiently scavenge sialic acid during times of nutrient deprivation renders them vulnerable to MGE, which refers to the use of exogenously-supplied, non-natural monosaccharide analogues to modulate targeted aspects of glycosylation in living cells and animals. In specific, once non-natural sialosides are incorporated into the cancer "sialome" they can be exploited as epitopes for immunotherapy or as chemical tags for targeted delivery of imaging or therapeutic agents selectively to tumors.
Collapse
Affiliation(s)
- Haitham A Badr
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Dina M M AlSadek
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Motawa E El-Houseini
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Christopher T Saeui
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Mohit P Mathew
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Hafiz Ahmed
- GlycoMantra, Inc., Baltimore, MD 21227, USA.
| |
Collapse
|
30
|
Shajahan A, Parashar S, Goswami S, Ahmed SM, Nagarajan P, Sampathkumar SG. Carbohydrate–Neuroactive Hybrid Strategy for Metabolic Glycan Engineering of the Central Nervous System in Vivo. J Am Chem Soc 2017; 139:693-700. [DOI: 10.1021/jacs.6b08894] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Asif Shajahan
- Laboratory
of Chemical Glycobiology and ‡Experimental Animal Facility, National Institute of Immunology, Aruna Asaf Ali Marg, New
Delhi 110067, India
| | - Shubham Parashar
- Laboratory
of Chemical Glycobiology and ‡Experimental Animal Facility, National Institute of Immunology, Aruna Asaf Ali Marg, New
Delhi 110067, India
| | - Surbhi Goswami
- Laboratory
of Chemical Glycobiology and ‡Experimental Animal Facility, National Institute of Immunology, Aruna Asaf Ali Marg, New
Delhi 110067, India
| | - Syed Meheboob Ahmed
- Laboratory
of Chemical Glycobiology and ‡Experimental Animal Facility, National Institute of Immunology, Aruna Asaf Ali Marg, New
Delhi 110067, India
| | - Perumal Nagarajan
- Laboratory
of Chemical Glycobiology and ‡Experimental Animal Facility, National Institute of Immunology, Aruna Asaf Ali Marg, New
Delhi 110067, India
| | - Srinivasa-Gopalan Sampathkumar
- Laboratory
of Chemical Glycobiology and ‡Experimental Animal Facility, National Institute of Immunology, Aruna Asaf Ali Marg, New
Delhi 110067, India
| |
Collapse
|
31
|
Timm KN, Kennedy BWC, Brindle KM. Imaging Tumor Metabolism to Assess Disease Progression and Treatment Response. Clin Cancer Res 2016; 22:5196-5203. [PMID: 27609841 PMCID: PMC5321522 DOI: 10.1158/1078-0432.ccr-16-0159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/09/2016] [Indexed: 12/26/2022]
Abstract
Changes in tumor metabolism may accompany disease progression and can occur following treatment, often before there are changes in tumor size. We focus here on imaging methods that can be used to image various aspects of tumor metabolism, with an emphasis on methods that can be used for tumor grading, assessing disease progression, and monitoring treatment response. Clin Cancer Res; 22(21); 5196-203. ©2016 AACR.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Brett W C Kennedy
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Szabo R, Skropeta D. Advancement of Sialyltransferase Inhibitors: Therapeutic Challenges and Opportunities. Med Res Rev 2016; 37:219-270. [DOI: 10.1002/med.21407] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/14/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Rémi Szabo
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
| | - Danielle Skropeta
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
- Centre for Medical & Molecular Bioscience; University of Wollongong; Wollongong NSW 2522 Australia
| |
Collapse
|
33
|
Wratil PR, Horstkorte R, Reutter W. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines. Angew Chem Int Ed Engl 2016; 55:9482-512. [PMID: 27435524 DOI: 10.1002/anie.201601123] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/14/2022]
Abstract
In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).
Collapse
Affiliation(s)
- Paul R Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany.
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystrasse 1, 06114, Halle, Germany.
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
34
|
Wratil PR, Horstkorte R, Reutter W. Metabolisches Glykoengineering mitN-Acyl-Seiten- ketten-modifizierten Mannosaminen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul R. Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie; Martin-Luther-Universität Halle-Wittenberg; Hollystraße 1 06114 Halle Deutschland
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
35
|
Lin B, Wu X, Zhao H, Tian Y, Han J, Liu J, Han S. Redirecting immunity via covalently incorporated immunogenic sialic acid on the tumor cell surface. Chem Sci 2016; 7:3737-3741. [PMID: 29997860 PMCID: PMC6008587 DOI: 10.1039/c5sc04133c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/23/2016] [Indexed: 12/17/2022] Open
Abstract
Techniques eliciting anti-tumor immunity are of interest for immunotherapy. We herein report the covalent incorporation of a non-self immunogen into the tumor glycocalyx by metabolic oligosaccharide engineering with 2,4-dinitrophenylated sialic acid (DNPSia). This enables marked suppression of pulmonary metastasis and subcutaneous tumor growth of B16F10 melanoma cells in mice preimmunized to produce anti-DNP antibodies. Located on the exterior glycocalyx, DNPSia is well-positioned to recruit antibodies. Given the high levels of natural anti-DNP antibodies in humans and ubiquitous sialylation across many cancers, DNPSia offers a simplified route to redirect immunity against diverse tumors without recourse to preimmunization.
Collapse
Affiliation(s)
- Bijuan Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Xuanjun Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Hu Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Yunpeng Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology , Innovation Center for Cell Signaling Network , School of Life Sciences , Xiamen University , Xiamen , 361005 , China
| | - Jian Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Shoufa Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| |
Collapse
|
36
|
Hapuarachchige S, Kato Y, Artemov D. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models. Sci Rep 2016; 6:24298. [PMID: 27068794 PMCID: PMC4828666 DOI: 10.1038/srep24298] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022] Open
Abstract
The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity.
Collapse
Affiliation(s)
- Sudath Hapuarachchige
- Division of Cancer Imaging Research, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yoshinori Kato
- Division of Cancer Imaging Research, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Hoshi University School of Pharmacy and Pharmaceutical Sciences, Life Science Tokyo Advanced Research Center (L-StaR), Shinagawa-ku, Tokyo 142-8501, JAPAN
| | - Dmitri Artemov
- Division of Cancer Imaging Research, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
37
|
Neves AA, Wainman YA, Wright A, Kettunen MI, Rodrigues TB, McGuire S, Hu D, Bulat F, Geninatti Crich S, Stöckmann H, Leeper FJ, Brindle KM. Imaging Glycosylation In Vivo by Metabolic Labeling and Magnetic Resonance Imaging. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 128:1308-1312. [PMID: 27346899 PMCID: PMC4848764 DOI: 10.1002/ange.201509858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Indexed: 11/06/2022]
Abstract
Glycosylation is a ubiquitous post-translational modification, present in over 50 % of the proteins in the human genome,1 with important roles in cell-cell communication and migration. Interest in glycome profiling has increased with the realization that glycans can be used as biomarkers of many diseases,2 including cancer.3 We report here the first tomographic imaging of glycosylated tissues in live mice by using metabolic labeling and a gadolinium-based bioorthogonal MRI probe. Significant N-azidoacetylgalactosamine dependent T1 contrast was observed in vivo two hours after probe administration. Tumor, kidney, and liver showed significant contrast, and several other tissues, including the pancreas, spleen, heart, and intestines, showed a very high contrast (>10-fold). This approach has the potential to enable the rapid and non-invasive magnetic resonance imaging of glycosylated tissues in vivo in preclinical models of disease.
Collapse
Affiliation(s)
- André A. Neves
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - Yéléna A. Wainman
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
- Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Alan Wright
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - Mikko I. Kettunen
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandNeulaniementie 270211KuopioFinland
| | - Tiago B. Rodrigues
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - Sarah McGuire
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - De‐En Hu
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| | - Flaviu Bulat
- Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health ScienceMolecular Imaging CenterVia Nizza 5210126TurinItaly
| | | | - Finian J. Leeper
- Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreCambridgeCB2 0REUK
| |
Collapse
|
38
|
Neves AA, Wainman YA, Wright A, Kettunen MI, Rodrigues TB, McGuire S, Hu DE, Bulat F, Geninatti Crich S, Stöckmann H, Leeper FJ, Brindle KM. Imaging Glycosylation In Vivo by Metabolic Labeling and Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2015; 55:1286-90. [PMID: 26633082 PMCID: PMC4737346 DOI: 10.1002/anie.201509858] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Indexed: 11/23/2022]
Abstract
Glycosylation is a ubiquitous post‐translational modification, present in over 50 % of the proteins in the human genome,1 with important roles in cell–cell communication and migration. Interest in glycome profiling has increased with the realization that glycans can be used as biomarkers of many diseases,2 including cancer.3 We report here the first tomographic imaging of glycosylated tissues in live mice by using metabolic labeling and a gadolinium‐based bioorthogonal MRI probe. Significant N‐azidoacetylgalactosamine dependent T1 contrast was observed in vivo two hours after probe administration. Tumor, kidney, and liver showed significant contrast, and several other tissues, including the pancreas, spleen, heart, and intestines, showed a very high contrast (>10‐fold). This approach has the potential to enable the rapid and non‐invasive magnetic resonance imaging of glycosylated tissues in vivo in preclinical models of disease.
Collapse
Affiliation(s)
- André A Neves
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.
| | - Yéléna A Wainman
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.,Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Alan Wright
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Mikko I Kettunen
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Tiago B Rodrigues
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Sarah McGuire
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - De-En Hu
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Flaviu Bulat
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Science, Molecular Imaging Center, Via Nizza 52, 10126, Turin, Italy
| | - Henning Stöckmann
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Finian J Leeper
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| |
Collapse
|
39
|
Cheng B, Xie R, Dong L, Chen X. Metabolic Remodeling of Cell-Surface Sialic Acids: Principles, Applications, and Recent Advances. Chembiochem 2015; 17:11-27. [PMID: 26573222 DOI: 10.1002/cbic.201500344] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 12/14/2022]
Abstract
Cell-surface sialic acids are essential in mediating a variety of physiological and pathological processes. Sialic acid chemistry and biology remain challenging to investigate, demanding new tools for probing sialylation in living systems. The metabolic glycan labeling (MGL) strategy has emerged as an invaluable chemical biology tool that enables metabolic installation of useful functionalities into cell-surface sialoglycans by "hijacking" the sialic acid biosynthetic pathway. Here we review the principles of MGL and its applications in study and manipulation of sialic acid function, with an emphasis on recent advances.
Collapse
Affiliation(s)
- Bo Cheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Ran Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Lu Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xing Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
40
|
Shinde S, El-Schich Z, Malakpour-Permlid A, Wan W, Dizeyi N, Mohammadi R, Rurack K, Gjörloff Wingren A, Sellergren B. Sialic Acid-Imprinted Fluorescent Core-Shell Particles for Selective Labeling of Cell Surface Glycans. J Am Chem Soc 2015; 137:13908-12. [PMID: 26414878 DOI: 10.1021/jacs.5b08482] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The expression of cell surface glycans terminating with sialic acid (SA) residues has been found to correlate with various disease states there among cancer. We here report a novel strategy for specific fluorescence labeling of such motifs. This is based on sialic acid-imprinted core-shell nanoparticles equipped with nitrobenzoxadiazole (NBD) fluorescent reporter groups allowing environmentally sensitive fluorescence detection at convenient excitation and emission wavelengths. Imprinting was achieved exploiting a hybrid approach combining reversible boronate ester formation between p-vinylphenylboronic acid and SA, the introduction of cationic amine functionalities, and the use of an NBD-appended urea-monomer as a binary hydrogen-bond donor targeting the SA carboxylic acid and OH functionalities. The monomers were grafted from 200 nm RAFT-modified silica core particles using ethylene glycol dimethacrylate (EGDMA) as cross-linker resulting in a shell thickness of ca. 10 nm. The particles displayed strong affinity for SA in methanol/water mixtures (K = 6.6 × 10(5) M(-1) in 2% water, 5.9 × 10(3) M(-1) in 98% water, B(max) ≈ 10 μmol g(-1)), whereas binding of the competitor glucuronic acid (GA) and other monosaccharides was considerably weaker (K (GA) = 1.8 × 10(3) M(-1) in 98% water). In cell imaging experiments, the particles selectively stained different cell lines in correlation with the SA expression level. This was further verified by enzymatic cleavage of SA and by staining using a FITC labeled SA selective lectin.
Collapse
Affiliation(s)
- Sudhirkumar Shinde
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University , SE-20506 Malmö, Sweden
| | - Zahra El-Schich
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University , SE-20506 Malmö, Sweden
| | - Atena Malakpour-Permlid
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University , SE-20506 Malmö, Sweden
| | - Wei Wan
- Chemical and Optical Sensing Division, Federal Institute for Materials Research and Testing (BAM) , 12200 Berlin, Germany
| | - Nishtman Dizeyi
- Department of Translational Medicine, Lund University , SE-20502 Malmö, Sweden
| | - Reza Mohammadi
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University , SE-20506 Malmö, Sweden
| | - Knut Rurack
- Chemical and Optical Sensing Division, Federal Institute for Materials Research and Testing (BAM) , 12200 Berlin, Germany
| | - Anette Gjörloff Wingren
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University , SE-20506 Malmö, Sweden
| | - Börje Sellergren
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University , SE-20506 Malmö, Sweden
| |
Collapse
|
41
|
Liang Y, Hua Q, Pan P, Yang J, Zhang Q. Development of a novel method to evaluate sialylation of glycoproteins and analysis of gp96 sialylation in Hela, SW1990 and A549 cell lines. Biol Res 2015; 48:52. [PMID: 26363641 PMCID: PMC4568068 DOI: 10.1186/s40659-015-0041-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 08/27/2015] [Indexed: 12/04/2022] Open
Abstract
Background Glycoproteins play a critical role in the cellular activities of eukaryotes. Sialic acid is typically the outermost monosaccharide of glycolipids and glycoproteins, and is necessary for normal development. Results A strategy based on avidin–biotin affinity was established to enrich sialylated glycoproteins from HeLa cervical carcinoma, SW1990 pancreatic adenocarcinoma, and A549 lung adenocarcinoma cells. Using HPLC–MS/MS, western blot, real-time PCR, and enzyme-linked immunosorbent assay, gp96 was identified in all three cell lines. No significant difference in the protein expression of gp96 was detected at the whole cell level, but the amount of biotinylated gp96 in SW1990 cells was 30–40 % lower than that in A549 and HeLa cells, and the amount of sialylated gp96 in SW1990 cells was 30 % lower than that in A549 and HeLa cells. Immunoblotting results showed that the expression of sialyltransferase proteins in the total cell lysates from HeLa and A549 cells were higher than that in SW1990 cells. Conclusions We established a new method for investigating the expression and sialylation of glycoproteins using metabolic labeling, click chemistry, and avidin–biotin affinity. We successfully used this method to purify sialylated glycoproteins from cancer cell lines. Our results showed that the levels of gp96 sialylation varied across different cancer cell lines, and this may be because of differences in sialyltransferase expression.
Collapse
Affiliation(s)
- Yangui Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, China.
| | - Qiang Hua
- Institute of Information On Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Pengwei Pan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, China.
| | - Jie Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, China.
| | - Qi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, China. .,China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China.
| |
Collapse
|
42
|
Badr HA, AlSadek DMM, Mathew MP, Li CZ, Djansugurova LB, Yarema KJ, Ahmed H. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation. Biomaterials 2015; 70:23-36. [PMID: 26295436 DOI: 10.1016/j.biomaterials.2015.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 01/23/2023]
Abstract
Cancer is characterized by abnormal energy metabolism shaped by nutrient deprivation that malignant cells experience during various stages of tumor development. This study investigated the response of nutrient-deprived cancer cells and their non-malignant counterparts to sialic acid supplementation and found that cells utilize negligible amounts of this sugar for energy. Instead cells use sialic acid to maintain cell surface glycosylation through complementary mechanisms. First, levels of key metabolites (e.g., UDP-GlcNAc and CMP-Neu5Ac) required for glycan biosynthesis are maintained or enhanced upon Neu5Ac supplementation. In concert, sialyltransferase expression increased at both the mRNA and protein levels, which facilitated increased sialylation in biochemical assays that measure sialyltransferase activity as well as at the whole cell level. In the course of these experiments, several important differences emerged that differentiated the cancer cells from their normal counterparts including resistant to sialic acid-mediated energy depletion, consistently more robust sialic acid-mediated glycan display, and distinctive cell surface vs. internal vesicle display of newly-produced sialoglycans. Finally, the impact of sialic acid supplementation on specific markers implicated in cancer progression was demonstrated by measuring levels of expression and sialylation of EGFR1 and MUC1 as well as the corresponding function of sialic acid-supplemented cells in migration assays. These findings both provide fundamental insight into the biological basis of sialic acid supplementation of nutrient-deprived cancer cells and open the door to the development of diagnostic and prognostic tools.
Collapse
Affiliation(s)
- Haitham A Badr
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Dina M M AlSadek
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohit P Mathew
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, 400 North Broadway Street, Baltimore, MD 21231, USA
| | - Chen-Zhong Li
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174, USA
| | - Leyla B Djansugurova
- Institute of General Genetics and Cytology, Al-Farabi Ave, 93, Almaty 050060, Kazakhstan
| | - Kevin J Yarema
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, 400 North Broadway Street, Baltimore, MD 21231, USA.
| | - Hafiz Ahmed
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine and Institute of Marine and Environmental Technology, 701 East Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
43
|
Chen W, Smeekens JM, Wu R. Systematic and site-specific analysis of N-sialoglycosylated proteins on the cell surface by integrating click chemistry and MS-based proteomics. Chem Sci 2015; 6:4681-4689. [PMID: 29142707 PMCID: PMC5667505 DOI: 10.1039/c5sc01124h] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/26/2015] [Indexed: 01/02/2023] Open
Abstract
Glycoproteins on the cell surface are ubiquitous and essential for cells to interact with the extracellular matrix, communicate with other cells, and respond to environmental cues. Although surface sialoglycoproteins can dramatically impact cell properties and represent different cellular statuses, global and site-specific analysis of sialoglycoproteins only on the cell surface is extraordinarily challenging. An effective method integrating metabolic labeling, copper-free click chemistry and mass spectrometry-based proteomics was developed to globally and site-specifically analyze surface N-sialoglycoproteins. Surface sialoglycoproteins metabolically labeled with a functional group were specifically tagged through copper-free click chemistry, which is ideal because it is quick, specific and occurs under physiological conditions. Sequentially tagged sialoglycoproteins were enriched for site-specific identification by mass spectrometry. Systematic and quantitative analysis of the surface N-sialoglycoproteome in cancer cells with distinctive invasiveness demonstrated many N-sialoglycoproteins up-regulated in invasive cells, the majority of which contained cell adhesion-related domains. This method is very effective to globally and site-specifically analyze N-sialoglycoproteins on the cell surface, and will have extensive applications in the biological and biomedical research communities. Site-specific information regarding surface sialoglycoproteins can serve as biomarkers for disease detection, targets for vaccine development and drug treatment.
Collapse
Affiliation(s)
- Weixuan Chen
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , USA . ; ; Tel: +1-404-385-1515
| | - Johanna M Smeekens
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , USA . ; ; Tel: +1-404-385-1515
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , USA . ; ; Tel: +1-404-385-1515
| |
Collapse
|
44
|
Chemistry-enabled methods for the visualization of cell-surface glycoproteins in Metazoans. Glycoconj J 2015; 32:443-54. [PMID: 25913724 DOI: 10.1007/s10719-015-9589-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 01/20/2023]
Abstract
The majority of cell-surface and secreted proteins are glycosylated, which can directly affect their macromolecular interactions, stability, and localization. Investigating these effects is critical to developing a complete understanding of the role of glycoproteins in fundamental biology and human disease. The development of selective and unique chemical reactions have revolutionized the visualization, identification, and characterization of glycoproteins. Here, we review the chemical methods that have been created to enable the visualization of the major types of cell-surface glycoproteins in living systems, from mammalian cells to whole animals.
Collapse
|
45
|
Identification of sialylated glycoproteins from metabolically oligosaccharide engineered pancreatic cells. Clin Proteomics 2015; 12:11. [PMID: 25987888 PMCID: PMC4434541 DOI: 10.1186/s12014-015-9083-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/23/2015] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated the use of metabolic oligosaccharide engineering and bio-orthogonal ligation reactions combined with lectin microarray and mass spectrometry to analyze sialoglycoproteins in the SW1990 human pancreatic cancer line. Specifically, cells were treated with the azido N-acetylmannosamine analog, 1,3,4-Bu3ManNAz, to label sialoglycoproteins with azide-modified sialic acids. The metabolically labeled sialoglyproteins were then biotinylated via the Staudinger ligation, and sialoglycopeptides containing azido-sialic acid glycans were immobilized to a solid support. The peptides linked to metabolically labeled sialylated glycans were then released from sialoglycopeptides and analyzed by mass spectrometry; in parallel, the glycans from azido-sialoglycoproteins were characterized by lectin microarrays. This method identified 75 unique N-glycosite-containing peptides from 55 different metabolically labeled sialoglycoproteins of which 42 were previously linked to cancer in the literature. A comparison of two of these glycoproteins, LAMP1 and ORP150, in histological tumor samples showed overexpression of these proteins in the cancerous tissue demonstrating that our approach constitutes a viable strategy to identify and discover sialoglycoproteins associated with cancer, which can serve as biomarkers for cancer diagnosis or targets for therapy.
Collapse
|
46
|
Wu X, Yu M, Lin B, Xing H, Han J, Han S. A sialic acid-targeted near-infrared theranostic for signal activation based intraoperative tumor ablation. Chem Sci 2015; 6:798-803. [PMID: 28706639 PMCID: PMC5494541 DOI: 10.1039/c4sc02248c] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/19/2014] [Indexed: 12/22/2022] Open
Abstract
Agents enabling tumor staging are valuable for cancer surgery. Herein, a targetable sialic acid-armed near-infrared profluorophore (SA-pNIR) is reported for fluorescence guided tumor detection. SA-pNIR consists of a sialic acid entity effective for in vivo tumor targeting and a profluorophore which undergoes lysosomal acidity-triggered fluorogenic isomerization. SA-pNIR displays a number of advantageous biomedical properties in mice, e.g. high tumor-to-normal tissue signal contrast, long-term retention in tumors and low systemic toxicity. In addition, SA-pNIR effectively converts NIR light into cytotoxic heat in cells, suggesting tumor-activatable photothermal therapy. With high performance tumor illumination and lysosome-activatable photothermal properties, SA-pNIR is a promising agent for detection and photothermal ablation of surgically exposed tumors.
Collapse
Affiliation(s)
- Xuanjun Wu
- Department of Chemical Biology , College of Chemistry and Chemical Engineering , the Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , and Innovation Center for Cell Biology , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Mingzhu Yu
- Department of Chemical Biology , College of Chemistry and Chemical Engineering , the Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , and Innovation Center for Cell Biology , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Bijuan Lin
- Department of Chemical Biology , College of Chemistry and Chemical Engineering , the Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , and Innovation Center for Cell Biology , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Hongjie Xing
- Department of Chemical Biology , College of Chemistry and Chemical Engineering , the Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , and Innovation Center for Cell Biology , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology , Innovation Center for Cell Biology , School of Life Sciences , Xiamen University , Xiamen , 361005 , China
| | - Shoufa Han
- Department of Chemical Biology , College of Chemistry and Chemical Engineering , the Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , and Innovation Center for Cell Biology , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| |
Collapse
|
47
|
Santos J, Fernandes E, Ferreira JA, Lima L, Tavares A, Peixoto A, Parreira B, Correia da Costa JM, Brindley PJ, Lopes C, Santos LL. P53 and cancer-associated sialylated glycans are surrogate markers of cancerization of the bladder associated with Schistosoma haematobium infection. PLoS Negl Trop Dis 2014; 8:e3329. [PMID: 25502795 PMCID: PMC4263606 DOI: 10.1371/journal.pntd.0003329] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/08/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bladder cancer is a significant health problem in rural areas of Africa and the Middle East where Schistosoma haematobium is prevalent, supporting an association between malignant transformation and infection by this blood fluke. Nevertheless, the molecular mechanisms linking these events are poorly understood. Bladder cancers in infected populations are generally diagnosed at a late stage since there is a lack of non-invasive diagnostic tools, hence enforcing the need for early carcinogenesis markers. METHODOLOGY/PRINCIPAL FINDINGS Forty-three formalin-fixed paraffin-embedded bladder biopsies of S. haematobium-infected patients, consisting of bladder tumours, tumour adjacent mucosa and pre-malignant/malignant urothelial lesions, were screened for bladder cancer biomarkers. These included the oncoprotein p53, the tumour proliferation rate (Ki-67>17%), cell-surface cancer-associated glycan sialyl-Tn (sTn) and sialyl-Lewisa/x (sLea/sLex), involved in immune escape and metastasis. Bladder tumours of non-S. haematobium etiology and normal urothelium were used as controls. S. haematobium-associated benign/pre-malignant lesions present alterations in p53 and sLex that were also found in bladder tumors. Similar results were observed in non-S. haematobium associated tumours, irrespectively of their histological nature, denoting some common molecular pathways. In addition, most benign/pre-malignant lesions also expressed sLea. However, proliferative phenotypes were more prevalent in lesions adjacent to bladder tumors while sLea was characteristic of sole benign/pre-malignant lesions, suggesting it may be a biomarker of early carcionogenesis associated with the parasite. A correlation was observed between the frequency of the biomarkers in the tumor and adjacent mucosa, with the exception of Ki-67. Most S. haematobium eggs embedded in the urothelium were also positive for sLea and sLex. Reinforcing the pathologic nature of the studied biomarkers, none was observed in the healthy urothelium. CONCLUSION/SIGNIFICANCE This preliminary study suggests that p53 and sialylated glycans are surrogate biomarkers of bladder cancerization associated with S. haematobium, highlighting a missing link between infection and cancer development. Eggs of S. haematobium express sLea and sLex antigens in mimicry of human leukocytes glycosylation, which may play a role in the colonization and disease dissemination. These observations may help the early identification of infected patients at a higher risk of developing bladder cancer and guide the future development of non-invasive diagnostic tests.
Collapse
Affiliation(s)
- Júlio Santos
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Clínica Sagrada Esperança, Luanda, Angola
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Grupo de Investigação em Cancro Digestivo (GICD), Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Department of Chemistry of the University of Aveiro, Aveiro, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Research Department, LPCC-Portuguese League Against Cancer (NRNorte), Porto, Portugal
- Núcleo de Investigação em Farmácia – Centro de Investigação em Saúde e Ambiente (CISA), School of Allied Health Sciences – Polytechnic Institute of Porto, Porto, Portugal
| | - Ana Tavares
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Department of Pathology, Portuguese Institute for Oncology of Porto, Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
| | - Beatriz Parreira
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
| | - José Manuel Correia da Costa
- Center for the Study of Animal Science (ICETA), University of Porto, Porto, Portugal
- INSA, National Institute of Health, Porto, Portugal
| | - Paul J. Brindley
- Research Center for Neglected Diseases of Poverty- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, D.C., United States of America
| | - Carlos Lopes
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Lúcio L. Santos
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Health School of University of Fernando Pessoa, Porto, Portugal
- Department of Surgical Oncology, Portuguese Institute for Oncology, Porto, Portugal
- National Cancer Center, Luanda, Angol
| |
Collapse
|
48
|
Xie R, Dong L, Huang R, Hong S, Lei R, Chen X. Targeted Imaging and Proteomic Analysis of Tumor-Associated Glycans in Living Animals. Angew Chem Int Ed Engl 2014; 53:14082-6. [DOI: 10.1002/anie.201408442] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Indexed: 12/13/2022]
|
49
|
Xie R, Dong L, Huang R, Hong S, Lei R, Chen X. Targeted Imaging and Proteomic Analysis of Tumor-Associated Glycans in Living Animals. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Godinat A, Budin G, Morales AR, Park HM, Sanman LE, Bogyo M, Yu A, Stahl A, Dubikovskaya EA. A biocompatible "split luciferin" reaction and its application for non-invasive bioluminescent imaging of protease activity in living animals. ACTA ACUST UNITED AC 2014; 6:169-189. [PMID: 25205565 DOI: 10.1002/9780470559277.ch140047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The great complexity of many human pathologies, such as cancer, diabetes, and neurodegenerative diseases, requires new tools for studies of biological processes on the whole organism level. The discovery of novel biocompatible reactions has tremendously advanced our understanding of basic biology; however, no efficient tools exist for real-time non-invasive imaging of many human proteases that play very important roles in multiple human disorders. We recently reported that the "split luciferin" biocompatible reaction represents a valuable tool for evaluation of protease activity directly in living animals using bioluminescence imaging (BLI). Since BLI is the most sensitive in vivo imaging modality known to date, this method can be widely applied for the evaluation of the activity of multiple proteases, as well as identification of their new peptide-specific substrates. In this unit, we describe several applications of this "split luciferin" reaction for quantification of protease activities in test tube assays and living animals.
Collapse
Affiliation(s)
- Aurélien Godinat
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Ghyslain Budin
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Alma R Morales
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Hyo Min Park
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, California
| | - Laura E Sanman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California
| | - Matthew Bogyo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Allen Yu
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, California
| | - Andreas Stahl
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, California
| | - Elena A Dubikovskaya
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| |
Collapse
|