1
|
Wang Q, Dai Z, Hu X, Lu Z, Zheng D, Wang L, Xu L, Hong X, Bi J, Li X, Li D, Li S. A Single-Cell Atlas Revealed Altered B Cells and Neutrophils Immune Signatures and Inflammatory Responses in SFTSV Infection. J Med Virol 2025; 97:e70354. [PMID: 40263930 DOI: 10.1002/jmv.70354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) presents an emerging public threat due to its high mortality rate and ever-expanding geographic distribution. However, characterization of SFTSV infection pathogenesis and immunological impact at single-cell level remains underexplored. Here, we employ single-cell transcriptome-wide sequencing in peripheral blood mononuclear cells (PBMCs) from hospitalized SFTSV-infected patients to map the immune landscape across acute and convalescent stages of infection. The results reveal significant alterations in immune cell compositions, along with profound disruption in intercellular crosstalk. B cells and neutrophils appear to be the primary target for SFTSV infection besides monocytes, as evidenced by heightened virus-related pathways in these two cell types during the acute phase. In addition, SFTSV infection induces a substantial inflammatory response, which were prominently reflected in monocytes and neutrophils. These data illustrate the complex immune remodeling and inflammatory cascades triggered by SFTSV, with a particular focus on its effects on B cells and neutrophils, bringing novel insights into future therapeutic developments.
Collapse
Affiliation(s)
- Qiujing Wang
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Ziniu Dai
- Center for Infectious Disease Research, Westlake University, Hangzhou, Zhejiang, China
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaodan Hu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Zhengmei Lu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Di Zheng
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Lingyun Wang
- College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyun Xu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Xiaoci Hong
- Center for Infectious Disease Research, Westlake University, Hangzhou, Zhejiang, China
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jinhao Bi
- Center for Infectious Disease Research, Westlake University, Hangzhou, Zhejiang, China
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xinyi Li
- Center for Infectious Disease Research, Westlake University, Hangzhou, Zhejiang, China
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Dapeng Li
- Center for Infectious Disease Research, Westlake University, Hangzhou, Zhejiang, China
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Shibo Li
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| |
Collapse
|
2
|
Yao Y, Yin Y, Shuai F, Lam W, Zhou T, Xie Y, He X, Han X. M2 Macrophage-Derived Extracellular Vesicles Reprogram Immature Neutrophils into Anxa1 hi Neutrophils to Enhance Inflamed Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416159. [PMID: 40277454 DOI: 10.1002/advs.202416159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/22/2025] [Indexed: 04/26/2025]
Abstract
Periodontitis is a microbiome-related inflammation that can lead to irreversible bone reduction and even tooth loss. This study reveals that macrophage polarization states significantly influence periodontal homeostasis, with M2 macrophage-derived extracellular vesicles (M2-EVs) playing a pivotal role in mitigating periodontitis-induced bone loss. Single-cell RNA sequencing of periodontal tissues treated with M2-EVs uncovered a unique Anxa1hi neutrophil subpopulation exhibiting pro-reparative properties. This subpopulation is characterized by immaturity and demonstrated osteogenic and angiogenic capabilities in vivo, partially mediated through the secretion of oncostatin M (OSM) signals. The findings suggest that this functional heterogeneity arises from M2-EVs disrupting the neutrophil maturation trajectory, with pivotal reprogramming genes, such as Acvrl1 and Fpr2, driving the differentiation of the Anxa1hi reparative subpopulation. This work underscores the potential of targeting M2 macrophage-neutrophil interactions to promote the regeneration of inflamed bone tissues.
Collapse
Affiliation(s)
- Yufei Yao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fangyuan Shuai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Waishan Lam
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaxin Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuesong He
- The ADA Forsyth Institute, 100 Chestnut Street, Somerville, MA, 02143, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
Leinweber B, Pilorz V, Olejniczak I, Skrum L, Begemann K, Heyde I, Stenger S, Sadik CD, Oster H. Bmal1 deficiency in neutrophils alleviates symptoms induced by high-fat diet. iScience 2025; 28:112038. [PMID: 40124497 PMCID: PMC11930374 DOI: 10.1016/j.isci.2025.112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/24/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
Physiological processes, including metabolism and immune responses, are generated by the circadian clock, driven by clock genes. Disrupting circadian rhythms through a high-fat diet promotes obesity and inflammation. Studies show that deleting the clock gene, brain, and muscle ARNT-like 1 (Bmal1) in adipose tissue leads to overeating and weight gain. We now show that Bmal1 deletion in neutrophils protects against diet-induced obesity and reduces inflammatory macrophage infiltration into epididymal white adipose tissue (eWAT), despite increased food intake over 20 weeks of a high-fat diet. This protection is linked to enhanced energy expenditure, increased UCP1 expression in iBAT, improved insulin sensitivity, and altered expression of genes encoding chemokine receptors CXCR2, CXCR4, and the ligand Cxcl2 in eWAT. Our findings reveal a key role of Bmal1 in neutrophils in regulating high-fat diet-induced adipose inflammation and emphasize circadian regulation's importance in immuno-metabolic function.
Collapse
Affiliation(s)
- Brinja Leinweber
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Violetta Pilorz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Iwona Olejniczak
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Ludmila Skrum
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Kimberly Begemann
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Isabel Heyde
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Sarah Stenger
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Christian David Sadik
- University of Lübeck, Department of Dermatology, Allergy, and Venereology Ratzeburger Allee, 23562 Luebeck, Germany
| | - Henrik Oster
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| |
Collapse
|
4
|
Luo Y, Dong W, Yuan L, Zhu YA, Zhang DD, Ni H, Zhu W. The Role of Thrombo-inflammation in Ischemic Stroke: Focus on the Manipulation and Clinical Application. Mol Neurobiol 2025; 62:2362-2375. [PMID: 39107669 DOI: 10.1007/s12035-024-04397-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/22/2024] [Indexed: 01/28/2025]
Abstract
Stroke leaves a great economic burden due to its high morbidity and mortality. Rapid revascularization of targeted vessel(s) is the effective treatment for ischemic stroke, but subsequent ischemia-reperfusion (I/R) injury is a common complication following revascularization, leading to microcirculation dysfunction and infarct volume increase. Thrombo-inflammation, the interaction between thrombosis and inflammation, plays a critical role in the pathophysiology of ischemic stroke. In the context of I/R injury, thrombo-inflammation consists of platelet activation, endothelial injury, and inflammatory cell infiltration. Numerous studies are devoted to exploring methods of regulating thrombo-inflammation to mitigate I/R injury post-stroke, including blocking activations of platelets and neutrophils. Drugs such as antiplatelet medications, anticoagulants, and glucocorticoids have been confirmed to have the potential to regulate thrombo-inflammation. Furthermore, several recently developed drugs have also shown promises in relieving I/R injury by manipulating thrombo-inflammation. However, the majority of these studies are still in the preclinical stage. Herein, in this review, we will address the mechanisms of thrombo-inflammation in ischemic stroke, related research advances, and particularly the clinical feasibility of thrombo-inflammation as a therapeutic strategy against I/R injury.
Collapse
Affiliation(s)
- Yuanfei Luo
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Weichen Dong
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Linying Yuan
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yunqing Amelia Zhu
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
| | - Dachuan Dustin Zhang
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada
- CCOA Therapeutics Inc., Toronto, ON, M5B 1W8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Medicine, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Wusheng Zhu
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Chen H, Zhou Y, Tang Y, Lan J, Lin C, Chen Q, Kuang H. Neutrophil extracellular traps in tumor progression of gynecologic cancers. Front Immunol 2024; 15:1421889. [PMID: 39555072 PMCID: PMC11563837 DOI: 10.3389/fimmu.2024.1421889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/30/2024] [Indexed: 11/19/2024] Open
Abstract
This article delves into the intricate interplay between tumors, particularly gynecologic malignancies, and neutrophil extracellular traps (NETs). The relationship between tumors, specifically gynecologic malignancies, and NETs is a multifaceted and pivotal area of study. Neutrophils, pivotal components of the immune system, are tasked with combating foreign invaders. NETs, intricate structures released by neutrophils, play a vital role in combating systemic infections but also play a role in non-infectious conditions such as inflammation, autoimmune diseases, and cancer. Cancer cells have the ability to attract neutrophils, creating tumor-associated neutrophils, which then stimulate the release of NETs into the tumor microenvironment. The impact of NETs within the tumor microenvironment is profound and intricate. They play a significant role in influencing cancer development and metastasis, as well as modulating tumor immune responses. Through the release of proteases and pro-inflammatory cytokines, NETs directly alter the behavior of tumor cells, increasing invasiveness and metastatic potential. Additionally, NETs can trigger epithelial-mesenchymal transition in tumor cells, a process associated with increased invasion and metastasis. The interaction between tumors and NETs is particularly critical in gynecologic malignancies such as ovarian, cervical, and endometrial cancer. Understanding the mechanisms through which NETs operate in these tumors can offer valuable insights for the development of targeted therapeutic interventions. Researchers are actively working towards harnessing this interaction to impede tumor progression and metastasis, opening up new avenues for future treatment modalities. As our understanding of the interplay between tumors and NETs deepens, it is anticipated that novel treatment strategies will emerge, potentially leading to improved outcomes for patients with gynecologic malignancies. This article provides a comprehensive overview of the latest research findings on the interaction between NETs and cancer, particularly in gynecologic tumors, serving as a valuable resource for future exploration in this field.
Collapse
Affiliation(s)
- Hong Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yaling Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jianfa Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chao Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qionghua Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongying Kuang
- The Second Department of Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Kilic G, Debisarun PA, Alaswad A, Baltissen MP, Lamers LA, de Bree LCJ, Benn CS, Aaby P, Dijkstra H, Lemmers H, Martens JHA, Domínguez-Andrés J, van Crevel R, Li Y, Xu CJ, Netea MG. Seasonal variation in BCG-induced trained immunity. Vaccine 2024; 42:126109. [PMID: 38981740 DOI: 10.1016/j.vaccine.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The Bacille Calmette-Guerin (BCG) vaccine is a well-established inducer of innate immune memory (also termed trained immunity), causing increased cytokine production upon heterologous secondary stimulation. Innate immune responses are known to be influenced by season, but whether seasons impact induction of trained immunity is not known. To explore the influence of season on innate immune memory induced by the BCG vaccine, we vaccinated healthy volunteers with BCG either during winter or spring. Three months later, we measured the ex vivo cytokine responses against heterologous stimuli, analyzed gene expressions and epigenetic signatures of the immune cells, and compared these with the baseline before vaccination. BCG vaccination during winter induced a stronger increase in the production of pro-inflammatory cytokines by peripheral blood mononuclear cells (PBMCs) upon stimulation with different bacterial and fungal stimuli, compared to BCG vaccination in spring. In contrast, winter BCG vaccination resulted in lower IFNγ release in PBMCs compared to spring BCG vaccination. Furthermore, NK cells of the winter-vaccinated people had a greater pro-inflammatory cytokine and IFNγ production capacity upon heterologous stimulation. BCG had only minor effects on the transcriptome of monocytes 3 months later. In contrast, we identified season-dependent epigenetic changes in monocytes and NK cells induced by vaccination, partly explaining the higher immune cell reactivity in the winter BCG vaccination group. These results suggest that BCG vaccination during winter is more prone to induce a robust trained immunity response by activating and reprogramming the immune cells, especially NK cells. (Dutch clinical trial registry no. NL58219.091.16).
Collapse
Affiliation(s)
- Gizem Kilic
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Priya A Debisarun
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ahmed Alaswad
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Marijke P Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Lieke A Lamers
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - L Charlotte J de Bree
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christine S Benn
- Bandim Health Project, Open Patient Data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Odense, Denmark; Danish Institute for Advanced Study, University of Southern Denmark, Copenhagen, Denmark
| | - Peter Aaby
- Bandim Health Project, Open Patient Data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Helga Dijkstra
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Jorge Domínguez-Andrés
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Reinout van Crevel
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yang Li
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Individualised Infection Medicine (CiiM), A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Cheng-Jian Xu
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Individualised Infection Medicine (CiiM), A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Mihai G Netea
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Hou Z, Lu F, Lin J, Wu Y, Chen L, Fang H, Chen L, Zhang S, Huang H, Pan Y. Loss of Annexin A1 in macrophages restrains efferocytosis and remodels immune microenvironment in pancreatic cancer by activating the cGAS/STING pathway. J Immunother Cancer 2024; 12:e009318. [PMID: 39237260 PMCID: PMC11381726 DOI: 10.1136/jitc-2024-009318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Pancreatic cancer is an incurable malignant disease with extremely poor prognosis and a complex tumor microenvironment. We sought to characterize the role of Annexin A1 (ANXA1) in pancreatic cancer, including its ability to promote efferocytosis and antitumor immune responses. METHODS The tumor expression of ANXA1 and cleaved Caspase-3 (c-Casp3) and numbers of tumor-infiltrating CD68+ macrophages in 151 cases of pancreatic cancer were examined by immunohistochemistry and immunofluorescence. The role of ANXA1 in pancreatic cancer was investigated using myeloid-specific ANXA1-knockout mice. The changes in tumor-infiltrating immune cell populations induced by ANXA1 deficiency in macrophages were assessed by single-cell RNA sequencing and flow cytometry. RESULTS ANXA1 expression in pancreatic cancer patient samples correlated with the number of CD68+ macrophages. The percentage of ANXA1+ tumor-infiltrating macrophages negatively correlated with c-Casp3 expression and was significantly associated with worse survival. In mice, myeloid-specific ANXA1 deficiency inhibited tumor growth and was accompanied by the accumulation of apoptotic cells in pancreatic tumor tissue caused by inhibition of macrophage efferocytosis, which was dependent on cGAS-STING pathway-induced type I interferon signaling. ANXA1 deficiency significantly remodeled the intratumoral lymphocyte and macrophage compartments in tumor-bearing mice by increasing the number of effector T cells and pro-inflammatory macrophages. Furthermore, combination therapy of ANXA1 knockdown with gemcitabine and anti-programmed cell death protein-1 antibody resulted in synergistic inhibition of pancreatic tumor growth. CONCLUSION This research uncovers a novel role of macrophage ANXA1 in pancreatic cancer. ANXA1-mediated regulation of efferocytosis by tumor-associated macrophages promotes antitumor immune response via STING signaling, suggesting potential treatment strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Zelin Hou
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jiajing Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yuwei Wu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Linjin Chen
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Haizong Fang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Linlin Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shihan Zhang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
8
|
Xing J, Wang K, Xu YC, Pei ZJ, Yu QX, Liu XY, Dong YL, Li SF, Chen Y, Zhao YJ, Yao F, Ding J, Hu W, Zhou RP. Efferocytosis: Unveiling its potential in autoimmune disease and treatment strategies. Autoimmun Rev 2024; 23:103578. [PMID: 39004157 DOI: 10.1016/j.autrev.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.
Collapse
Affiliation(s)
- Jing Xing
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ke Wang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu-Cai Xu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Jun Pei
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Xia Yu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xing-Yu Liu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Lu Dong
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ding
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
9
|
You Q, Ke Y, Chen X, Yan W, Li D, Chen L, Wang R, Yu J, Hong H. Loss of Endothelial Annexin A1 Aggravates Inflammation-Induched Vascular Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307040. [PMID: 38358087 PMCID: PMC11022713 DOI: 10.1002/advs.202307040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/03/2024] [Indexed: 02/16/2024]
Abstract
Chronic inflammation is increasingly considered as the most important component of vascular aging, contributing to the progression of age-related cardiovascular diseases. To delay the process of vascular aging, anti-inflammation may be an effective measure. The anti-inflammatory factor annexin A1 (ANXA1) is shown to participate in several age-related diseases; however, its function during vascular aging remains unclear. Here, an ANXA1 knockout (ANXA1-/-) and an endothelial cell-specific ANXA1 deletion mouse (ANXA1△EC) model are used to investigate the role of ANXA1 in vascular aging. ANXA1 depletion exacerbates vascular remodeling and dysfunction while upregulates age- and inflammation-related protein expression. Conversely, Ac2-26 (a mimetic peptide of ANXA1) supplementation reverses this phenomenon. Furthermore, long-term tumor necrosis factor-alpha (TNF-α) induction of human umbilical vein endothelial cells (HUVECs) increases cell senescence. Finally, the senescence-associated secretory phenotype and senescence-related protein expression, rates of senescence-β-galactosidase positivity, cell cycle arrest, cell migration, and tube formation ability are observed in both ANXA1-knockdown HUVECs and overexpressed ANXA1-TNF-α induced senescent HUVECs. They also explore the impact of formyl peptide receptor 2 (a receptor of ANXA1) in an ANXA1 overexpression inflammatory model. These data provide compelling evidence that age-related inflammation in arteries contributes to senescent endothelial cells that promote vascular aging.
Collapse
Affiliation(s)
- Qinyi You
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Yilang Ke
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Xiaofeng Chen
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Wanhong Yan
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Dang Li
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Lu Chen
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Run Wang
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Jie Yu
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Huashan Hong
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| |
Collapse
|
10
|
Singh J, Jackson KL, Tang FS, Fu T, Nowell C, Salimova E, Kiriazis H, Ritchie RH, Head GA, Woodman OL, Qin CX. The pro-resolving mediator, annexin A1 regulates blood pressure, and age-associated changes in cardiovascular function and remodeling. FASEB J 2024; 38:e23457. [PMID: 38318648 DOI: 10.1096/fj.202301802r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Aging is associated with chronic, low-level inflammation which may contribute to cardiovascular pathologies such as hypertension and atherosclerosis. This chronic inflammation may be opposed by endogenous mechanisms to limit inflammation, for example, by the actions of annexin A1 (ANXA1), an endogenous glucocorticoid-regulated protein that has anti-inflammatory and pro-resolving activity. We hypothesized the pro-resolving mediator ANXA1 protects against age-induced changes in blood pressure (BP), cardiovascular structure and function, and cardiac senescence. BP was measured monthly in conscious mature (4-month) and middle-aged (12-month) ANXA1-deficient (ANXA1-/- ) and wild-type C57BL/6 mice. Body composition was measured using EchoMRI, and both cardiac and vascular function using ultrasound imaging. Cardiac hypertrophy, fibrosis and senescence, vascular fibrosis, elastin, and calcification were assessed histologically. Gene expression relevant to structural remodeling, inflammation, and cardiomyocyte senescence were also quantified. In C57BL/6 mice, progression from 4 to 12 months of age did not affect the majority of cardiovascular parameters measured, with the exception of mild cardiac hypertrophy, vascular calcium, and collagen deposition. Interestingly, ANXA1-/- mice exhibited higher BP, regardless of age. Additionally, age progression had a marked impact in ANXA1-/- mice, with markedly augmented vascular remodeling, impaired vascular distensibility, and body composition. Consistent with vascular dysfunction, cardiac dysfunction, and hypertrophy were also evident, together with markers of senescence and inflammation. These findings suggest that endogenous ANXA1 plays a critical role in regulating BP, cardiovascular function, and remodeling and delays cardiac senescence. Our findings support the development of novel ANXA1-based therapies to prevent age-related cardiovascular pathologies.
Collapse
Affiliation(s)
- Jaideep Singh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Kristy L Jackson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Feng Shii Tang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ting Fu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cameron Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Helen Kiriazis
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Geoffrey A Head
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Pharmacology, School of Pharmaceutical Sciences, Qilu College of Medicine, Shandong University, Jinan, China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
11
|
Deng C, Chen Y, Zhao X, Yu L, Xiao Y, Li H, Zhang Y, Ai K, Zhou D, Bai X, Gong T, Wei J, Zeng C, Lei G. Apoptotic Neutrophil Membrane-Camouflaged Liposomes for Dually Targeting Synovial Macrophages and Fibroblasts to Attenuate Osteoarthritis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39064-39080. [PMID: 37523857 DOI: 10.1021/acsami.3c05861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
No current pharmacological approach is capable of simultaneously inhibiting the symptomatology and structural progression of osteoarthritis. M1 macrophages and activated synovial fibroblasts (SFs) mutually contribute to the propagation of joint pain and cartilage destruction in osteoarthritis. Here, we report the engineering of an apoptotic neutrophil membrane-camouflaged liposome (termed "NM@Lip") for precise delivery of triamcinolone acetonide (TA) by dually targeting M1 macrophages and activated SFs in osteoarthritic joints. NM@Lip has a high cellular uptake in M1 macrophages and activated SFs. Furthermore, TA-loaded NM@Lip (TA-NM@Lip) effectively repolarizes M1 macrophages to the M2 phenotype and transforms pathological SFs to the deactivated phenotype by inhibiting the PI3K/Akt pathway. NM@Lip retains in the joint for up to 28 days and selectively distributes into M1 macrophages and activated SFs in synovium with low distribution in cartilage. TA-NM@Lip decreases the levels of pro-inflammatory cytokines, chemokines, and cartilage-degrading enzymes in osteoarthritic joints. In a rodent model of osteoarthritis-related pain, a single intra-articular TA-NM@Lip injection attenuates synovitis effectively and achieves complete pain relief with long-lasting effects. In a rodent model of osteoarthritis-related joint degeneration, repeated intra-articular TA-NM@Lip injections induce no obvious cartilage damage and effectively attenuate cartilage degeneration. Taken together, TA-NM@Lip represents a promising nanotherapeutic approach for osteoarthritis therapy.
Collapse
Affiliation(s)
- Caifeng Deng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
| | - Yuxiao Chen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
| | - Xuan Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
| | - Liukang Yu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
| | - Yongbing Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
| | - Hui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Jie Wei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
- Health Management Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
12
|
Liu X, Liu H, Deng Y. Efferocytosis: An Emerging Therapeutic Strategy for Type 2 Diabetes Mellitus and Diabetes Complications. J Inflamm Res 2023; 16:2801-2815. [PMID: 37440994 PMCID: PMC10335275 DOI: 10.2147/jir.s418334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing evidence indicates that chronic, low-grade inflammation is a significant contributor to the fundamental pathogenesis of type 2 diabetes mellitus (T2DM). Efferocytosis, an effective way to eliminate apoptotic cells (ACs), plays a critical role in inflammation resolution. Massive accumulation of ACs and the proliferation of persistent inflammation caused by defective efferocytosis have been proven to be closely associated with pancreatic islet β cell destruction, adipose tissue inflammation, skeletal muscle dysfunction, and liver metabolism abnormalities, which together are considered the most fundamental pathological mechanism underlying T2DM. Therefore, here we outline the association between the molecular mechanisms of efferocytosis in glucose homeostasis, T2DM, and its complications, and we analyzed the present constraints and potential future prospects for therapeutic targets in T2DM and its complications.
Collapse
Affiliation(s)
- Xun Liu
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Hua Liu
- Southern Theater General Hospital of the Chinese People’s Liberation Army, Guangzhou, Guangdong, 510010, People’s Republic of China
| | - Yihui Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| |
Collapse
|
13
|
Adrover JM, McDowell SAC, He XY, Quail DF, Egeblad M. NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell 2023; 41:505-526. [PMID: 36827980 DOI: 10.1016/j.ccell.2023.02.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Neutrophils are major effectors and regulators of the immune system. They play critical roles not only in the eradication of pathogens but also in cancer initiation and progression. Conversely, the presence of cancer affects neutrophil activity, maturation, and lifespan. By promoting or repressing key neutrophil functions, cancer cells co-opt neutrophil biology to their advantage. This co-opting includes hijacking one of neutrophils' most striking pathogen defense mechanisms: the formation of neutrophil extracellular traps (NETs). NETs are web-like filamentous extracellular structures of DNA, histones, and cytotoxic granule-derived proteins. Here, we discuss the bidirectional interplay by which cancer stimulates NET formation, and NETs in turn support disease progression. We review how vascular dysfunction and thrombosis caused by neutrophils and NETs underlie an elevated risk of death from cardiovascular events in cancer patients. Finally, we propose therapeutic strategies that may be effective in targeting NETs in the clinical setting.
Collapse
Affiliation(s)
- Jose M Adrover
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
14
|
Schilperoort M, Ngai D, Katerelos M, Power DA, Tabas I. PFKFB2-mediated glycolysis promotes lactate-driven continual efferocytosis by macrophages. Nat Metab 2023; 5:431-444. [PMID: 36797420 PMCID: PMC10050103 DOI: 10.1038/s42255-023-00736-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/03/2023] [Indexed: 02/18/2023]
Abstract
Resolving-type macrophages prevent chronic inflammation by clearing apoptotic cells through efferocytosis. These macrophages are thought to rely mainly on oxidative phosphorylation, but emerging evidence suggests a possible link between efferocytosis and glycolysis. To gain further insight into this issue, we investigated molecular-cellular mechanisms involved in efferocytosis-induced macrophage glycolysis and its consequences. We found that efferocytosis promotes a transient increase in macrophage glycolysis that is dependent on rapid activation of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2), which distinguishes this process from glycolysis in pro-inflammatory macrophages. Mice transplanted with activation-defective PFKFB2 bone marrow and then subjected to dexamethasone-induced thymocyte apoptosis exhibit impaired thymic efferocytosis, increased thymic necrosis, and lower expression of the efferocytosis receptors MerTK and LRP1 on thymic macrophages compared with wild-type control mice. In vitro mechanistic studies revealed that glycolysis stimulated by the uptake of a first apoptotic cell promotes continual efferocytosis through lactate-mediated upregulation of MerTK and LRP1. Thus, efferocytosis-induced macrophage glycolysis represents a unique metabolic process that sustains continual efferocytosis in a lactate-dependent manner. The differentiation of this process from inflammatory macrophage glycolysis raises the possibility that it could be therapeutically enhanced to promote efferocytosis and resolution in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maaike Schilperoort
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - David Ngai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Marina Katerelos
- Kidney Laboratory, Department of Nephrology, Austin Health, Heidelberg, Victoria, Australia
| | - David A Power
- Kidney Laboratory, Department of Nephrology, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia
- The Institute for Breathing and Sleep (IBAS), Austin Health, HeidelbergVictoria, Australia
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Physiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
15
|
Role of Annexin A1 Secreted by Neutrophils in Melanoma Metastasis. Cells 2023; 12:cells12030425. [PMID: 36766767 PMCID: PMC9913423 DOI: 10.3390/cells12030425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Annexin A1 (AnxA1) is highly secreted by neutrophils and binds to formyl peptide receptors (FPRs) to trigger anti-inflammatory effects and efferocytosis. AnxA1 is also expressed in the tumor microenvironment, being mainly attributed to cancer cells. As recruited neutrophils are player cells at the tumor sites, the role of neutrophil-derived AnxA1 in lung melanoma metastasis was investigated here. Melanoma cells and neutrophils expressing AnxA1 were detected in biopsies from primary melanoma patients, which also presented higher levels of serum AnxA1 and augmented neutrophil-lymphocyte ratio (NLR) in the blood. Lung melanoma metastatic mice (C57BL/6; i.v. injected B16F10 cells) showed neutrophilia, elevated AnxA1 serum levels, and higher labeling for AnxA1 in neutrophils than in tumor cells at the lungs with metastasis. Peritoneal neutrophils collected from naïve mice were co-cultured with B16F10 cells or employed to obtain neutrophil-conditioned medium (NCM; 18 h incubation). B16F10 cells co-cultured with neutrophils or with NCM presented higher invasion, which was abolished if B16F10 cells were previously incubated with FPR antagonists or co-cultured with AnxA1 knockout (AnxA1-/-) neutrophils. The depletion of peripheral neutrophils during lung melanoma metastasis development (anti-Gr1; i.p. every 48 h for 21 days) reduced the number of metastases and AnxA1 serum levels in mice. Our findings show that AnxA1 secreted by neutrophils favors melanoma metastasis evolution via FPR pathways, addressing AnxA1 as a potential biomarker for the detection or progression of melanoma.
Collapse
|
16
|
Prieto-Fernández L, Menéndez ST, Otero-Rosales M, Montoro-Jiménez I, Hermida-Prado F, García-Pedrero JM, Álvarez-Teijeiro S. Pathobiological functions and clinical implications of annexin dysregulation in human cancers. Front Cell Dev Biol 2022; 10:1009908. [PMID: 36247003 PMCID: PMC9554710 DOI: 10.3389/fcell.2022.1009908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Annexins are an extensive superfamily of structurally related calcium- and phospholipid-binding proteins, largely conserved and widely distributed among species. Twelve human annexins have been identified, referred to as Annexin A1-13 (A12 remains as of yet unassigned), whose genes are spread throughout the genome on eight different chromosomes. According to their distinct tissue distribution and subcellular localization, annexins have been functionally implicated in a variety of biological processes relevant to both physiological and pathological conditions. Dysregulation of annexin expression patterns and functions has been revealed as a common feature in multiple cancers, thereby emerging as potential biomarkers and molecular targets for clinical application. Nevertheless, translation of this knowledge to the clinic requires in-depth functional and mechanistic characterization of dysregulated annexins for each individual cancer type, since each protein exhibits varying expression levels and phenotypic specificity depending on the tumor types. This review specifically and thoroughly examines the current knowledge on annexin dysfunctions in carcinogenesis. Hence, available data on expression levels, mechanism of action and pathophysiological effects of Annexin A1-13 among different cancers will be dissected, also further discussing future perspectives for potential applications as biomarkers for early diagnosis, prognosis and molecular-targeted therapies. Special attention is devoted to head and neck cancers (HNC), a complex and heterogeneous group of aggressive malignancies, often lately diagnosed, with high mortality, and scarce therapeutic options.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía T. Menéndez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M. García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Li YZ, Wang YY, Huang L, Zhao YY, Chen LH, Zhang C. Annexin A Protein Family in Atherosclerosis. Clin Chim Acta 2022; 531:406-417. [PMID: 35562096 DOI: 10.1016/j.cca.2022.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Atherosclerosis, a silent chronic vascular pathology, is the cause of the majority of cardiovascular ischaemic events. Atherosclerosis is characterized by a series of deleterious changes in cellularity, including endothelial dysfunction, transmigration of circulating inflammatory cells into the arterial wall, pro-inflammatory cytokines production, lipid accumulation in the intima, vascular local inflammatory response, atherosclerosis-related cells apoptosis and autophagy. Proteins of Annexin A (AnxA) family, the well-known Ca2+ phospholipid-binding protein, have many functions in regulating inflammation-related enzymes and cell signaling transduction, thus influencing cell adhesion, migration, differentiation, proliferation and apoptosis. There is now accumulating evidence that some members of the AnxA family, such as AnxA1, AnxA2, AnxA5 and AnxA7, play major roles in the development of atherosclerosis. This article discusses the major roles of AnxA1, AnxA2, AnxA5 and AnxA7, and the multifaceted mechanisms of the main biological process in which they are involved in atherosclerosis. Considering these evidences, it has been proposed that AnxA are drivers- and not merely participator- on the road to atherosclerosis, thus the progression of atherosclerosis may be prevented by targeting the expression or function of the AnxA family proteins.
Collapse
Affiliation(s)
- Yong-Zhen Li
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yan-Yue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yu-Yan Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Hui Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
18
|
Zhang Z, Ma Q, Velagapudi R, Barclay WE, Rodriguiz RM, Wetsel WC, Yang T, Shinohara ML, Terrando N. Annexin-A1 Tripeptide Attenuates Surgery-Induced Neuroinflammation and Memory Deficits Through Regulation the NLRP3 Inflammasome. Front Immunol 2022; 13:856254. [PMID: 35603196 PMCID: PMC9120413 DOI: 10.3389/fimmu.2022.856254] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/01/2022] [Indexed: 01/05/2023] Open
Abstract
Neuroinflammation is a growing hallmark of perioperative neurocognitive disorders (PNDs), including delirium and longer-lasting cognitive deficits. We have developed a clinically relevant orthopedic mouse model to study the impact of a common surgical procedure on the vulnerable brain. The mechanism underlying PNDs remains unknown. Here we evaluated the impact of surgical trauma on the NLRP3 inflammasome signaling, including the expression of apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, and IL-1β in the hippocampus of C57BL6/J male mice, adult (3-months) and aged (>18-months). Surgery triggered ASC specks formation in CA1 hippocampal microglia, but without inducing significant morphological changes in NLRP3 and ASC knockout mice. Since no therapies are currently available to treat PNDs, we assessed the neuroprotective effects of a biomimetic peptide derived from the endogenous inflammation-ending molecule, Annexin-A1 (ANXA1). We found that this peptide (ANXA1sp) inhibited postoperative NLRP3 inflammasome activation and prevented microglial activation in the hippocampus, reducing PND-like memory deficits. Together our results reveal a previously under-recognized role of hippocampal ANXA1 and NLRP3 inflammasome dysregulation in triggering postoperative neuroinflammation, offering a new target for advancing treatment of PNDs through the resolution of inflammation.
Collapse
Affiliation(s)
- Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States,*Correspondence: Zhiquan Zhang, ; Niccolò Terrando,
| | - Qing Ma
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Ravikanth Velagapudi
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - William E. Barclay
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States,Department of Neurobiology, Duke University Medical Center, Durham, NC, United States,Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Ting Yang
- Department of Medicine, Division of Nephrology, Duke University Medical Center, Durham, NC, United States
| | - Mari L. Shinohara
- Department of Immunology, Duke University Medical Center, Durham, NC, United States,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States,Department of Immunology, Duke University Medical Center, Durham, NC, United States,Department of Cell Biology, Duke University Medical Center, Durham, NC, United States,*Correspondence: Zhiquan Zhang, ; Niccolò Terrando,
| |
Collapse
|
19
|
Effects of Formyl Peptide Receptor Agonists Ac9-12 and WKYMV in In Vivo and In Vitro Acute Inflammatory Experimental Models. Cells 2022; 11:cells11020228. [PMID: 35053343 PMCID: PMC8773544 DOI: 10.3390/cells11020228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022] Open
Abstract
Formyl peptide receptors (Fprs) are a G-protein-coupled receptor family mainly expressed on leukocytes. The activation of Fpr1 and Fpr2 triggers a cascade of signaling events, leading to leukocyte migration, cytokine release, and increased phagocytosis. In this study, we evaluate the effects of the Fpr1 and Fpr2 agonists Ac9-12 and WKYMV, respectively, in carrageenan-induced acute peritonitis and LPS-stimulated macrophages. Peritonitis was induced in male C57BL/6 mice through the intraperitoneal injection of 1 mL of 3% carrageenan solution or saline (control). Pre-treatments with Ac9-12 and WKYMV reduced leukocyte influx to the peritoneal cavity, particularly neutrophils and monocytes, and the release of IL-1β. The addition of the Fpr2 antagonist WRW4 reversed only the anti-inflammatory actions of WKYMV. In vitro, the administration of Boc2 and WRW4 reversed the effects of Ac9-12 and WKYMV, respectively, in the production of IL-6 by LPS-stimulated macrophages. These biological effects of peptides were differently regulated by ERK and p38 signaling pathways. Lipidomic analysis evidenced that Ac9-12 and WKYMV altered the intracellular lipid profile of LPS-stimulated macrophages, revealing an increased concentration of several glycerophospholipids, suggesting regulation of inflammatory pathways triggered by LPS. Overall, our data indicate the therapeutic potential of Ac9-12 and WKYMV via Fpr1 or Fpr2-activation in the inflammatory response and macrophage activation.
Collapse
|
20
|
Reichardt SD, Amouret A, Muzzi C, Vettorazzi S, Tuckermann JP, Lühder F, Reichardt HM. The Role of Glucocorticoids in Inflammatory Diseases. Cells 2021; 10:cells10112921. [PMID: 34831143 PMCID: PMC8616489 DOI: 10.3390/cells10112921] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
For more than 70 years, glucocorticoids (GCs) have been a powerful and affordable treatment option for inflammatory diseases. However, their benefits do not come without a cost, since GCs also cause side effects. Therefore, strong efforts are being made to improve their therapeutic index. In this review, we illustrate the mechanisms and target cells of GCs in the pathogenesis and treatment of some of the most frequent inflammatory disorders affecting the central nervous system, the gastrointestinal tract, the lung, and the joints, as well as graft-versus-host disease, which often develops after hematopoietic stem cell transplantation. In addition, an overview is provided of novel approaches aimed at improving GC therapy based on chemical modifications or GC delivery using nanoformulations. GCs remain a topic of highly active scientific research despite being one of the oldest class of drugs in medical use.
Collapse
Affiliation(s)
- Sybille D. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Agathe Amouret
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Chiara Muzzi
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
- Correspondence: ; Tel.: +49-551-3963365
| |
Collapse
|
21
|
Chaudhary S, Patidar A, Dhiman A, Chaubey GK, Dilawari R, Talukdar S, Modanwal R, Raje M. Exposure of a specific pleioform of multifunctional glyceraldehyde 3-phosphate dehydrogenase initiates CD14-dependent clearance of apoptotic cells. Cell Death Dis 2021; 12:892. [PMID: 34593755 PMCID: PMC8482365 DOI: 10.1038/s41419-021-04168-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Rapid clearance of apoptotic cells by phagocytes is crucial for organogenesis, tissue homeostasis, and resolution of inflammation. This process is initiated by surface exposure of various 'eat me' ligands. Though phosphatidylserine (PS) is the best recognized general recognition ligand till date, recent studies have shown that PS by itself is not sufficient for clearance of apoptotic cells. In this study, we have identified a specific pleioform of GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) that functions as an 'eat me' signal on apoptotic cell surface. This specific form of GAPDH which is exposed on surface of apoptotic cells was found to interact with CD14 present on plasma membrane of phagocytes leading to their engulfment. This is the first study demonstrating the novel interaction between multifunctional GAPDH and the phagocytic receptor CD14 resulting in apoptotic cell clearance (efferocytosis).
Collapse
Affiliation(s)
- Surbhi Chaudhary
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Anil Patidar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Asmita Dhiman
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | | | - Rahul Dilawari
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Sharmila Talukdar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Radheshyam Modanwal
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Manoj Raje
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
22
|
Insuela DBR, Ferrero MR, Gonçalves-de-Albuquerque CF, Chaves ADS, da Silva AYO, Castro-Faria-Neto HC, Simões RL, Barja-Fidalgo TC, Silva PMRE, Martins MA, Silva AR, Carvalho VF. Glucagon Reduces Neutrophil Migration and Increases Susceptibility to Sepsis in Diabetic Mice. Front Immunol 2021; 12:633540. [PMID: 34295325 PMCID: PMC8290340 DOI: 10.3389/fimmu.2021.633540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
Sepsis is one of the most common comorbidities observed in diabetic patients, associated with a deficient innate immune response. Recently, we have shown that glucagon possesses anti-inflammatory properties. In this study, we investigated if hyperglucagonemia triggered by diabetes might reduce the migration of neutrophils, increasing sepsis susceptibility. 21 days after diabetes induction by intravenous injection of alloxan, we induced moderate sepsis in Swiss-Webster mice through cecum ligation and puncture (CLP). The glucagon receptor (GcgR) antagonist des-his1-[Glu9]-glucagon amide was injected intraperitoneally 24h and 1h before CLP. We also tested the effect of glucagon on CXCL1/KC-induced neutrophil migration to the peritoneal cavity in mice. Neutrophil chemotaxis in vitro was tested using transwell plates, and the expression of total PKA and phospho-PKA was evaluated by western blot. GcgR antagonist restored neutrophil migration, reduced CFU numbers in the peritoneal cavity and improved survival rate of diabetic mice after CLP procedure, however, the treatment did no alter hyperglycemia, CXCL1/KC plasma levels and blood neutrophilia. In addition, glucagon inhibited CXCL1/KC-induced neutrophil migration to the peritoneal cavity of non-diabetic mice. Glucagon also decreased the chemotaxis of neutrophils triggered by CXCL1/KC, PAF, or fMLP in vitro. The inhibitory action of glucagon occurred in parallel with the reduction of CXCL1/KC-induced actin polymerization in neutrophils in vitro, but not CD11a and CD11b translocation to cell surface. The suppressor effect of glucagon on CXCL1/KC-induced neutrophil chemotaxis in vitro was reversed by pre-treatment with GcgR antagonist and adenylyl cyclase or PKA inhibitors. Glucagon also increased PKA phosphorylation directly in neutrophils in vitro. Furthermore, glucagon impaired zymosan-A-induced ROS production by neutrophils in vitro. Human neutrophil chemotaxis and adherence to endothelial cells in vitro were inhibited by glucagon treatment. According to our results, this inhibition was independent of CD11a and CD11b translocation to neutrophil surface or neutrophil release of CXCL8/IL-8. Altogether, our results suggest that glucagon may be involved in the reduction of neutrophil migration and increased susceptibility to sepsis in diabetic mice. This work collaborates with better understanding of the increased susceptibility and worsening of sepsis in diabetics, which can contribute to the development of new effective therapeutic strategies for diabetic septic patients.
Collapse
Affiliation(s)
| | - Maximiliano Ruben Ferrero
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Immunopharmacology, Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda da Silva Chaves
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Hugo Caire Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Inflammation, National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Rafael Loureiro Simões
- Laboratory of Cellular and Molecular Pharmacology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thereza Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Inflammation, National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Inflammation, National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Ramalingam A, Budin SB, Mohd Fauzi N, Ritchie RH, Zainalabidin S. Targeting mitochondrial reactive oxygen species-mediated oxidative stress attenuates nicotine-induced cardiac remodeling and dysfunction. Sci Rep 2021; 11:13845. [PMID: 34226619 PMCID: PMC8257608 DOI: 10.1038/s41598-021-93234-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023] Open
Abstract
Long-term nicotine intake is associated with an increased risk of myocardial damage and dysfunction. However, it remains unclear whether targeting mitochondrial reactive oxygen species (ROS) prevents nicotine-induced cardiac remodeling and dysfunction. This study investigated the effects of mitoTEMPO (a mitochondria-targeted antioxidant), and resveratrol (a sirtuin activator) , on nicotine-induced cardiac remodeling and dysfunction. Sprague–Dawley rats were administered 0.6 mg/kg nicotine daily with 0.7 mg/kg mitoTEMPO, 8 mg/kg resveratrol, or vehicle alone for 28 days. At the end of the study, rat hearts were collected to analyze the cardiac structure, mitochondrial ROS level, oxidative stress, and inflammation markers. A subset of rat hearts was perfused ex vivo to determine the cardiac function and myocardial susceptibility to ischemia–reperfusion injury. Nicotine administration significantly augmented mitochondrial ROS level, cardiomyocyte hypertrophy, fibrosis, and inflammation in rat hearts. Nicotine administration also induced left ventricular dysfunction, which was worsened by ischemia–reperfusion in isolated rat hearts. MitoTEMPO and resveratrol both significantly attenuated the adverse cardiac remodeling induced by nicotine, as well as the aggravation of postischemic ventricular dysfunction. Findings from this study show that targeting mitochondrial ROS with mitoTEMPO or resveratrol partially attenuates nicotine-induced cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Anand Ramalingam
- Program of Biomedical Science, Centre of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Program of Biomedical Science, Centre of Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Satirah Zainalabidin
- Program of Biomedical Science, Centre of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
The immune response is a critical regulator of zebrafish retinal pigment epithelium regeneration. Proc Natl Acad Sci U S A 2021; 118:2017198118. [PMID: 34006636 DOI: 10.1073/pnas.2017198118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Loss of the retinal pigment epithelium (RPE) because of dysfunction or disease can lead to blindness in humans. Harnessing the intrinsic ability of the RPE to self-repair is an attractive therapeutic strategy; however, mammalian RPE is limited in its regenerative capacity. Zebrafish possess tremendous intrinsic regenerative potential in ocular tissues, including the RPE, but little is known about the mechanisms driving RPE regeneration. Here, utilizing transgenic and mutant zebrafish lines, pharmacological manipulations, transcriptomics, and imaging analyses, we identified elements of the immune response as critical mediators of intrinsic RPE regeneration. After genetic ablation, the RPE express immune-related genes, including leukocyte recruitment factors such as interleukin 34 We demonstrate that macrophage/microglia cells are responsive to RPE damage and that their function is required for the timely progression of the regenerative response. These data identify the molecular and cellular underpinnings of RPE regeneration and hold significant potential for translational approaches aimed toward promoting a pro-regenerative environment in mammalian RPE.
Collapse
|
25
|
He YJ, Xu JQ, Sun MM, Fang XZ, Peng ZK, Pan SW, Zhou T, Wang YX, Shang Y. Glucocorticoid-Induced Leucine Zipper: A Promising Marker for Monitoring and Treating Sepsis. Front Immunol 2020; 11:606649. [PMID: 33424852 PMCID: PMC7793647 DOI: 10.3389/fimmu.2020.606649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Sepsis is a clinical syndrome that resulting from a dysregulated inflammatory response to infection that leads to organ dysfunction. The dysregulated inflammatory response transitions from a hyper-inflammatory phase to a hypo-inflammatory or immunosuppressive phase. Currently, no phase-specific molecular-based therapies are available for monitoring the complex immune response and treating sepsis due to individual variations in the timing and overlap of the dysregulated immune response in most patients. Glucocorticoid-induced leucine zipper (GILZ), is broadly present in multiple tissues and circumvent glucocorticoid resistance (GCR) or unwanted side effects. Recently, the characteristics of GILZ downregulation during acute hyperinflammation and GILZ upregulation during the immunosuppressive phase in various inflammatory diseases have been well documented, and the protective effects of GILZ have gained attention in the field of sepsis. However, whether GILZ could be a promising candidate biomarker for monitoring and treating septic patients remains unknown. Here, we discuss the effect of GILZ in sepsis and sepsis-induced immunosuppression.
Collapse
Affiliation(s)
- Ya-Jun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miao-Miao Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Kang Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shang-Wen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Ribeiro AB, Caloi CM, Pimenta STS, Seshayyan S, Govindarajulu S, Souto FJD, Damazo AS. Expression of annexin-A1 in blood and tissue leukocytes of leprosy patients. Rev Soc Bras Med Trop 2020; 53:e20200277. [PMID: 33263684 PMCID: PMC7723367 DOI: 10.1590/0037-8682-0277-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION In leprosy, immune system mediators that regulate the infectious process act in a complex manner and can lead to several clinical outcomes. To understand the behavior of these mediators we quantified the expression of annexin-A1 (ANXA1) in the peripheral blood and plasma as well as tissue leukocytes in all clinical forms of leprosy and compared with healthy controls. METHODS Seventy healthy controls and 70 patients with leprosy, tuberculoid (TT) (n = 13), borderline tuberculoid (BT) (n = 15), borderline borderline (BB) (n = 13), borderline lepromatous (BL) (n = 15), and lepromatous leprosy (LL) (n = 14), were selected. Phenotyping of the lymphocyte cells and the intracellular expression of ANXA1 in leukocytes was performed by immunofluorescence. Plasma protein levels were determined by enzyme-linked immunosorbent assay. RESULTS Histiocytes and CD4+ and CD8+ T cells in the skin of BL and LL patients had higher ANXA1 expression. ANXA1 expression was also high in circulating polymorphonuclear, monocytes, and CD4+ and CD8+ T cells in the blood of LL patients compared to those of TT, BT, BB, and BL patients, and these levels were similar to those in healthy controls. Plasma ANXA1 levels indicate an increase in paracrine release in patients with LL. CONCLUSIONS The data indicate that ANXA1 expression is enhanced in the leukocytes and plasma of patients with LL, and may contribute to the inhibition of leukocyte action, leading to inadequate functioning of the immune system and thus contributing to the spread of M. leprae infection.
Collapse
Affiliation(s)
- Afonso Bezerra Ribeiro
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil
| | - Caroline Marques Caloi
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil
| | | | - Sudha Seshayyan
- The Tamil Nadu Dr. MGR Medical University, Guindy, Chennai, India
| | - Srinivas Govindarajulu
- The Tamil Nadu Dr. MGR Medical University, Department of Epidemiology, Guindy, Chennai, India
| | - Francisco José Dutra Souto
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil.,Universidade Federal de Mato Grosso, Faculdade de Medicina, Departamento de Clínica Médica, Cuiabá, MT, Brasil
| | - Amílcar Sabino Damazo
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil.,Universidade Federal de Mato Grosso, Faculdade de Medicina, Departamento de Ciências Básicas em Saúde, Cuiabá, MT, Brazil
| |
Collapse
|
27
|
McArthur S, Juban G, Gobbetti T, Desgeorges T, Theret M, Gondin J, Toller-Kawahisa JE, Reutelingsperger CP, Chazaud B, Perretti M, Mounier R. Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. J Clin Invest 2020; 130:1156-1167. [PMID: 32015229 PMCID: PMC7269594 DOI: 10.1172/jci124635] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding the circuits that promote an efficient resolution of inflammation is crucial to deciphering the molecular and cellular processes required to promote tissue repair. Macrophages play a central role in the regulation of inflammation, resolution, and repair/regeneration. Using a model of skeletal muscle injury and repair, herein we identified annexin A1 (AnxA1) as the extracellular trigger of macrophage skewing toward a pro-reparative phenotype. Brought into the injured tissue initially by migrated neutrophils, and then overexpressed in infiltrating macrophages, AnxA1 activated FPR2/ALX receptors and the downstream AMPK signaling cascade, leading to macrophage skewing, dampening of inflammation, and regeneration of muscle fibers. Mice lacking AnxA1 in all cells or only in myeloid cells displayed a defect in this reparative process. In vitro experiments recapitulated these properties, with AMPK-null macrophages lacking AnxA1-mediated polarization. Collectively, these data identified the AnxA1/FPR2/AMPK axis as an important pathway in skeletal muscle injury regeneration.
Collapse
Affiliation(s)
- Simon McArthur
- Institute of Dentistry and.,William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gaëtan Juban
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Thomas Gobbetti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Thibaut Desgeorges
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Marine Theret
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Julien Gondin
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Juliana E Toller-Kawahisa
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Chris P Reutelingsperger
- Department of Biochemistry and.,Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Bénédicte Chazaud
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Rémi Mounier
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| |
Collapse
|
28
|
Huang JJ, Xia CJ, Wei Y, Yao Y, Dong MW, Lin KZ, Yu LS, Gao Y, Fan YY. Annexin A1-derived peptide Ac2-26 facilitates wound healing in diabetic mice. Wound Repair Regen 2020; 28:772-779. [PMID: 32856346 DOI: 10.1111/wrr.12860] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
Impaired wound healing is a common complication of diabetes. In diabetic wounds, macrophages present dysfunctional efferocytosis and abnormal phenotypes, which could result in excessive neutrophil accumulation and prolonged inflammation, thereby eventually hindering wound repair. ANXA1 N-terminal peptide Ac2-26 exhibits a high potential in mitigating inflammation and improving repair; however, its efficacy in diabetic wound repair remains unclear. In this study, a cutaneous excisional wound model was built in genetically diabetic mice. Ac2-26 or a vehicle solution was employed locally in wound sites. Subsequently, wound zones were measured and sampled at different time intervals post-wounding. Using hematoxylin-eosin and Masson's trichrome staining, we observed the histopathological variations and collagen deposition in wound samples. Based on immunohistochemistry and immunofluorescence, the numbers of neutrophils, macrophages, and CD206-positive macrophages in the wound samples were determined. Cytokine expression in wound samples was studied by immunoblot assay. Results showed that Ac2-26 treatment could facilitate diabetic wound closure, down-regulate the number of neutrophils, and improve angiogenesis and collagen deposition. In addition, Ac2-26 application expedited macrophage recruitment and up-regulated the percentage of macrophages expressing CD206, which is a marker for M2 macrophages. Moreover, Ac2-26 inhibited the expressions of TNF-α and IL-6 and up-regulated the expressions of IL-10, TGF-β, and VEGFA during diabetic wound healing. Hence, based on the aforementioned findings, Ac2-26 application in diabetic wounds could exert anti-inflammatory and pro-repair effects by reducing neutrophil accumulation and facilitating M2 macrophage development.
Collapse
Affiliation(s)
- Jun-Jie Huang
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Chong-Jian Xia
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Ying Wei
- Taizhou Municipal Hospital of Zhejiang Province, Taizhou, PR China
| | - Yi Yao
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Miao-Wu Dong
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Ke-Zhi Lin
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Lin-Sheng Yu
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Yuan Gao
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Yan-Yan Fan
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
29
|
Genome-Wide Association Analysis Identified ANXA1 Associated with Shoulder Impingement Syndrome in UK Biobank Samples. G3-GENES GENOMES GENETICS 2020; 10:3279-3284. [PMID: 32690583 PMCID: PMC7466970 DOI: 10.1534/g3.120.401257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Shoulder impingement syndrome (SIS) is a common shoulder disorder with unclear genetic mechanism. In this study, Genome-wide Association Study (GWAS) was conducted to identify the candidate loci associated with SIS by using the UK Biobank samples (including 3,626 SIS patients and 3,626 control subjects). Based on the GWAS results, gene set enrichment analysis was further performed to detect the candidate gene ontology and pathways associated with SIS. We identified multiple risk loci associated with SIS, such as rs750968 (P = 4.82 × 10−8), rs754832 (P = 4.83 × 10−8) and rs1873119 (P = 6.39 × 10−8) of ANXA1 gene. Some candidate pathways have been identified related to SIS, including those linked to infection response and hypoxia, “ZHOU_INFLAMMATORY_RESPONSE_FIMA_DN” (P = 0.012) and “MANALO_HYPOXIA_UP” (P = 5.00 × 10−5). Our results provide novel clues for understanding the genetic mechanism of SIS.
Collapse
|
30
|
Xia W, Zhu J, Wang X, Tang Y, Zhou P, Hou M, Li S. ANXA1 directs Schwann cells proliferation and migration to accelerate nerve regeneration through the FPR2/AMPK pathway. FASEB J 2020; 34:13993-14005. [PMID: 32856352 DOI: 10.1096/fj.202000726rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
Many factors are involved in the process of nerve regeneration. Understanding the mechanisms regarding how these factors promote an efficient remyelination is crucial to deciphering the molecular and cellular processes required to promote nerve repair. Schwann cells (SCs) play a central role in the process of peripheral nerve repair/regeneration. Using a model of facial nerve crush injury and repair, we identified Annexin A1 (ANXA1) as the extracellular trigger of SC proliferation and migration. ANXA1 activated formyl peptide receptor 2 (FPR2) receptors and the downstream adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling cascade, leading to SC proliferation and migration in vitro. SCs lacking FPR2 or AMPK displayed a defect in proliferation and migration. After facial nerve injury (FNI), ANXA1 promoted the proliferation of SCs and nerve regeneration in vivo. Collectively, these data identified the ANXA1/FPR2/AMPK axis as an important pathway in SC proliferation and migration. ANXA1-induced remyelination and SC proliferation promotes FNI regeneration.
Collapse
Affiliation(s)
- Wenzheng Xia
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Zhu
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyi Wang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Yinda Tang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Zhou
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Filep JG, Ariel A. Neutrophil heterogeneity and fate in inflamed tissues: implications for the resolution of inflammation. Am J Physiol Cell Physiol 2020; 319:C510-C532. [PMID: 32667864 DOI: 10.1152/ajpcell.00181.2020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neutrophils are polymorphonuclear leukocytes that play a central role in host defense against infection and tissue injury. They are rapidly recruited to the inflamed site and execute a variety of functions to clear invading pathogens and damaged cells. However, many of their defense mechanisms are capable of inflicting collateral tissue damage. Neutrophil-driven inflammation is a unifying mechanism underlying many common diseases. Efficient removal of neutrophils from inflammatory loci is critical for timely resolution of inflammation and return to homeostasis. Accumulating evidence challenges the classical view that neutrophils represent a homogeneous population and that halting neutrophil influx is sufficient to explain their rapid decline within inflamed loci during the resolution of protective inflammation. Hence, understanding the mechanisms that govern neutrophil functions and their removal from the inflammatory locus is critical for minimizing damage to the surrounding tissue and for return to homeostasis. In this review, we briefly address recent advances in characterizing neutrophil phenotypic and functional heterogeneity and the molecular mechanisms that determine the fate of neutrophils within inflammatory loci and the outcome of the inflammatory response. We also discuss how these mechanisms may be harnessed as potential therapeutic targets to facilitate resolution of inflammation.
Collapse
Affiliation(s)
- János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Amiram Ariel
- Departmentof Biology and Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
32
|
Giannarelli C, Wong CK. Crosstalk Between Inflammatory Cells to Promote Cardioprotective Angiogenesis. J Am Coll Cardiol 2020; 73:3003-3005. [PMID: 31196458 DOI: 10.1016/j.jacc.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Chiara Giannarelli
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Christine K Wong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
33
|
Márquez-Ropero M, Benito E, Plaza-Zabala A, Sierra A. Microglial Corpse Clearance: Lessons From Macrophages. Front Immunol 2020; 11:506. [PMID: 32292406 PMCID: PMC7135884 DOI: 10.3389/fimmu.2020.00506] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
From development to aging and disease, the brain parenchyma is under the constant threat of debris accumulation, in the form of dead cells and protein aggregates. To prevent garbage buildup, the brain is equipped with efficient phagocytes: the microglia. Microglia are similar, but not identical to other tissue macrophages, and in this review, we will first summarize the differences in the origin, lineage and population maintenance of microglia and macrophages. Then, we will discuss several principles that govern macrophage phagocytosis of apoptotic cells (efferocytosis), including the existence of redundant recognition mechanisms ("find-me" and "eat-me") that lead to a tight coupling between apoptosis and phagocytosis. We will then describe that resulting from engulfment and degradation of apoptotic cargo, phagocytes undergo an epigenetic, transcriptional and metabolic rewiring that leads to trained immunity, and discuss its relevance for microglia and brain function. In summary, we will show that neuroimmunologists can learn many lessons from the well-developed field of macrophage phagocytosis biology.
Collapse
Affiliation(s)
- Mar Márquez-Ropero
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Eva Benito
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| | - Ainhoa Plaza-Zabala
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| |
Collapse
|
34
|
Kurd NS, Lutes LK, Yoon J, Chan SW, Dzhagalov IL, Hoover AR, Robey EA. A role for phagocytosis in inducing cell death during thymocyte negative selection. eLife 2019; 8:48097. [PMID: 31868579 PMCID: PMC6957271 DOI: 10.7554/elife.48097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022] Open
Abstract
Autoreactive thymocytes are eliminated during negative selection in the thymus, a process important for establishing self-tolerance. Thymic phagocytes serve to remove dead thymocytes, but whether they play additional roles during negative selection remains unclear. Here, using a murine thymic slice model in which thymocytes undergo negative selection in situ, we demonstrate that phagocytosis promotes negative selection, and provide evidence for the escape of autoreactive CD8 T cells to the periphery when phagocytosis in the thymus is impaired. We also show that negative selection is more efficient when the phagocyte also presents the negative selecting peptide. Our findings support a model for negative selection in which the death process initiated following strong TCR signaling is facilitated by phagocytosis. Thus, the phagocytic capability of cells that present self-peptides is a key determinant of thymocyte fate.
Collapse
Affiliation(s)
- Nadia S Kurd
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Lydia K Lutes
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jaewon Yoon
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Shiao Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ivan L Dzhagalov
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ashley R Hoover
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
35
|
Ramalingam A, Budin SB, Mohd Fauzi N, Ritchie RH, Zainalabidin S. Angiotensin II Type I Receptor Antagonism Attenuates Nicotine-Induced Cardiac Remodeling, Dysfunction, and Aggravation of Myocardial Ischemia-Reperfusion Injury in Rats. Front Pharmacol 2019; 10:1493. [PMID: 31920673 PMCID: PMC6920178 DOI: 10.3389/fphar.2019.01493] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Increased exposure to nicotine contributes to the development of cardiac dysfunction by promoting oxidative stress, fibrosis, and inflammation. These deleterious events altogether render cardiac myocytes more susceptible to acute cardiac insults such as ischemia-reperfusion (I/R) injury. This study sought to elucidate the role of angiotensin II type I (AT1) receptors in cardiac injury resulting from prolonged nicotine administration in a rat model. Male Sprague-Dawley rats were given nicotine (0.6 mg/kg ip) for 28 days to induce cardiac dysfunction, alone or in combination with the AT1 receptor antagonist, irbesartan (10 mg/kg, po). Vehicle-treated rats were used as controls. Rat hearts isolated from each experimental group at study endpoint were examined for changes in function, histology, gene expression, and susceptibility against acute I/R injury determined ex vivo. Rats administered nicotine alone exhibited significantly increased cardiac expression of angiotensin II and angiotensin-converting enzyme (ACE) in addition to elevated systolic blood pressure (SBP) and heart rate. Furthermore, nicotine administration markedly reduced left ventricular (LV) performance with concomitant increases in myocardial oxidative stress, fibrosis, and inflammation. Concomitant treatment with irbesartan attenuated these effects, lowering blood pressure, heart rate, oxidative stress, and expression of fibrotic and inflammatory genes. Importantly, the irbesartan-treated group also manifested reduced susceptibility to I/R injury ex vivo. These findings suggest that AT1 receptors play an important role in nicotine-induced cardiac dysfunction, and pharmacological approaches targeting cardiac AT1 receptors may thus benefit patients with sustained exposure to nicotine.
Collapse
Affiliation(s)
- Anand Ramalingam
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Extracellular annexin-A1 promotes myeloid/granulocytic differentiation of hematopoietic stem/progenitor cells via the Ca 2+/MAPK signalling transduction pathway. Cell Death Discov 2019; 5:135. [PMID: 31552142 PMCID: PMC6755131 DOI: 10.1038/s41420-019-0215-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 12/14/2022] Open
Abstract
Annexin A1 (AnxA1) modulates neutrophil life span and bone marrow/blood cell trafficking thorough activation of formyl-peptide receptors (FPRs). Here, we investigated the effect of exogenous AnxA1 on haematopoiesis in the mouse. Treatment of C57BL/6 mice with recombinant AnxA1 (rAnxA1) reduced the granulocyte–macrophage progenitor (GMP) population in the bone marrow, enhanced the number of mature granulocytes Gr-1+Mac-1+ in the bone marrow as well as peripheral granulocytic neutrophils and increased expression of mitotic cyclin B1 on hematopoietic stem cells (HSCs)/progenitor cells (Lin−Sca-1+c-Kit+: LSK). These effects were abolished by simultaneous treatment with Boc-2, an FPR pan-antagonist. In in vitro studies, rAnxA1 reduced both HSC (LSKCD90lowFLK-2−) and GMP populations while enhancing mature cells (Gr1+Mac1+). Moreover, rAnxA1 induced LSK cell proliferation (Ki67+), increasing the percentage of cells in the S/G2/M cell cycle phases and reducing Notch-1 expression. Simultaneous treatment with WRW4, a selective FPR2 antagonist, reversed the in vitro effects elicited by rAnxA1. Treatment of LSK cells with rAnxA1 led to phosphorylation of PCLγ2, PKC, RAS, MEK, and ERK1/2 with increased expression of NFAT2. In long-term bone marrow cultures, rAnxA1 did not alter the percentage of LSK cells but enhanced the Gr-1+Mac-1+ population; treatment with a PLC (U73122), but not with a PKC (GF109203), inhibitor reduced rAnxA1-induced phosphorylation of ERK1/2 and Elk1. Therefore, we identify here rAnxA1 as an inducer of HSC/progenitor cell differentiation, favouring differentiation of the myeloid/granulocytic lineage, via Ca2+/MAPK signalling transduction pathways.
Collapse
|
37
|
Colamatteo A, Maggioli E, Azevedo Loiola R, Hamid Sheikh M, Calì G, Bruzzese D, Maniscalco GT, Centonze D, Buttari F, Lanzillo R, Perna F, Zuccarelli B, Mottola M, Cassano S, Galgani M, Solito E, De Rosa V. Reduced Annexin A1 Expression Associates with Disease Severity and Inflammation in Multiple Sclerosis Patients. THE JOURNAL OF IMMUNOLOGY 2019; 203:1753-1765. [PMID: 31462505 DOI: 10.4049/jimmunol.1801683] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Abstract
Chronic neuroinflammation is a key pathological hallmark of multiple sclerosis (MS) that suggests that resolution of inflammation by specialized proresolving molecules is dysregulated in the disease. Annexin A1 (ANXA1) is a protein induced by glucocorticoids that facilitates resolution of inflammation through several mechanisms that include an inhibition of leukocyte recruitment and activation. In this study, we investigated the ability of ANXA1 to influence T cell effector function in relapsing/remitting MS (RRMS), an autoimmune disease sustained by proinflammatory Th1/Th17 cells. Circulating expression levels of ANXA1 in naive-to-treatment RRMS subjects inversely correlated with disease score and progression. At the cellular level, there was an impaired ANXA1 production by CD4+CD25- conventional T and CD4+RORγt+ T (Th17) cells from RRMS subjects that associated with an increased migratory capacity in an in vitro model of blood brain barrier. Mechanistically, ANXA1 impaired monocyte maturation secondarily to STAT3 hyperactivation and potently reduced T cell activation, proliferation, and glycolysis. Together, these findings identify impaired disease resolution pathways in RRMS caused by dysregulated ANXA1 expression that could represent new potential therapeutic targets in RRMS.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy
| | - Elisa Maggioli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Rodrigo Azevedo Loiola
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Madeeha Hamid Sheikh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Gaetano Calì
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Dario Bruzzese
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy
| | - Giorgia Teresa Maniscalco
- Dipartimento di Neurologia, Centro Regionale Sclerosi Multipla, Azienda Ospedaliera "A. Cardarelli," 80131 Naples, Italy
| | - Diego Centonze
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, 86077 Pozzilli, Italy.,Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Fabio Buttari
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, 86077 Pozzilli, Italy
| | - Roberta Lanzillo
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy
| | - Francesco Perna
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy
| | - Bruno Zuccarelli
- Unità Operativa Complessa di Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli Monaldi-Cotugno, Centro Traumatologico Ortopedico, 80131 Naples, Italy; and
| | - Maria Mottola
- Unità Operativa Complessa di Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli Monaldi-Cotugno, Centro Traumatologico Ortopedico, 80131 Naples, Italy; and
| | - Silvana Cassano
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Mario Galgani
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Egle Solito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy; .,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; .,Unità di NeuroImmunologia, Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
38
|
Ehrchen JM, Roth J, Barczyk-Kahlert K. More Than Suppression: Glucocorticoid Action on Monocytes and Macrophages. Front Immunol 2019; 10:2028. [PMID: 31507614 PMCID: PMC6718555 DOI: 10.3389/fimmu.2019.02028] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
Uncontrolled inflammation is a leading cause of many clinically relevant diseases. Current therapeutic strategies focus mainly on immunosuppression rather than on the mechanisms of inflammatory resolution. Glucocorticoids (GCs) are still the most widely used anti-inflammatory drugs. GCs affect most immune cells but there is growing evidence for cell type specific mechanisms. Different subtypes of monocytes and macrophages play a pivotal role both in generation as well as resolution of inflammation. Activation of these cells by microbial products or endogenous danger signals results in production of pro-inflammatory mediators and initiation of an inflammatory response. GCs efficiently inhibit these processes by down-regulating pro-inflammatory mediators from macrophages and monocytes. On the other hand, GCs act on “naïve” monocytes and macrophages and induce anti-inflammatory mediators and differentiation of anti-inflammatory phenotypes. GC-induced anti-inflammatory monocytes have an increased ability to migrate toward inflammatory stimuli. They remove endo- and exogenous danger signals by an increased phagocytic capacity, produce anti-inflammatory mediators and limit T-cell activation. Thus, GCs limit amplification of inflammation by repressing pro-inflammatory macrophage activation and additionally induce anti-inflammatory monocyte and macrophage populations actively promoting resolution of inflammation. Further investigation of these mechanisms should lead to the development of novel therapeutic strategies to modulate undesirable inflammation with fewer side effects via induction of inflammatory resolution rather than non-specific immunosuppression.
Collapse
Affiliation(s)
- Jan M Ehrchen
- Department of Dermatology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | | |
Collapse
|
39
|
Purvis GSD, Solito E, Thiemermann C. Annexin-A1: Therapeutic Potential in Microvascular Disease. Front Immunol 2019; 10:938. [PMID: 31114582 PMCID: PMC6502989 DOI: 10.3389/fimmu.2019.00938] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Annexin-A1 (ANXA1) was first discovered in the early 1980's as a protein, which mediates (some of the) anti-inflammatory effects of glucocorticoids. Subsequently, the role of ANXA1 in inflammation has been extensively studied. The biology of ANXA1 is complex and it has many different roles in both health and disease. Its effects as a potent endogenous anti-inflammatory mediator are well-described in both acute and chronic inflammation and its role in activating the pro-resolution phase receptor, FPR2, has been described and is now being exploited for therapeutic benefit. In the present mini review, we will endeavor to give an overview of ANXA1 biology in relation to inflammation and functions that mediate pro-resolution that are independent of glucocorticoid induction. We will focus on the role of ANXA1 in diseases with a large inflammatory component focusing on diabetes and microvascular disease. Finally, we will explore the possibility of exploiting ANXA1 as a novel therapeutic target in diabetes and the treatment of microvascular disease.
Collapse
Affiliation(s)
- Gareth S D Purvis
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Egle Solito
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Christoph Thiemermann
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
40
|
Jachetti E, D'Incà F, Danelli L, Magris R, Dal Secco C, Vit F, Cancila V, Tripodo C, Scapini P, Colombo MP, Pucillo C, Frossi B. Frontline Science: Mast cells regulate neutrophil homeostasis by influencing macrophage clearance activity. J Leukoc Biol 2019; 105:633-644. [PMID: 30817046 DOI: 10.1002/jlb.4hi1018-390r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/13/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
The receptor tyrosine kinase cKit and its ligand stem cell factor are essential for mast cells (MC) development and survival. Strains with mutations affecting the Kit gene display a profound MC deficiency in all tissues and have been extensively used to investigate the role of MC in both physiologic and pathologic conditions. However, these mice present a variety of abnormalities in other immune cell populations that can affect the interpretation of MC-related responses. C57BL/6 KitW-sh are characterized by an aberrant extramedullary myelopoiesis and systemic neutrophilia. MC deficiency in KitW-sh mice can be selectively repaired by engraftment with in vitro-differentiated MC to validate MC-specific functions. Nevertheless, the impact of MC reconstitution on other immune populations has never been evaluated in detail. Here, we specifically investigated the neutrophil compartment in primary and secondary lymphoid organs of C57BL/6 KitW-sh mice before and after MC reconstitution. We found that, albeit not apparently affecting neutrophils phenotype or maturation, MC reconstitution of KitW-sh mice restored the number of neutrophils at a level similar to that of wild-type C57BL/6 mice. In vitro and ex vivo experiments indicated that MC can influence neutrophil clearance by increasing macrophages' phagocytic activity. Furthermore, the G-CSF/IL-17 axis was also influenced by the presence or absence of MC in KitW-sh mice. These data suggest that MC play a role in the control of neutrophil homeostasis and that this aspect should be taken into account in the interpretation of results obtained using KitW-sh mice.
Collapse
Affiliation(s)
- Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica D'Incà
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Luca Danelli
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Raffaella Magris
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Chiara Dal Secco
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Filippo Vit
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Patrizia Scapini
- Division of General Pathology, University of Verona, Verona, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carlo Pucillo
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Barbara Frossi
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
41
|
Vermeren S, Karmakar U, Rossi AG. Immune complex-induced neutrophil functions: A focus on cell death. Eur J Clin Invest 2018; 48 Suppl 2:e12948. [PMID: 29734519 DOI: 10.1111/eci.12948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Neutrophils are amongst the first cells to be recruited to sites of infection or trauma. Neutrophil functional responsiveness is tightly regulated by many agents including immune complexes. These immune cells can generate reactive oxygen species and degranulate to release abundant cytotoxic products, making them efficient at killing invading microorganisms. If neutrophil function is dysregulated, however, these cells have the potential to cause unwanted host tissue damage as exemplified by pathological and chronic inflammatory conditions. In physiological inflammation, once the initial insult has efficiently been dealt with, neutrophils are thought to leave the tissues or undergo programmed cells death, especially apoptosis. Apoptotic neutrophils are then rapidly removed by other phagocytes, primarily macrophages, by mechanisms that do not elicit a pro-inflammatory response. In this review, we discuss the interesting observations and consequences that immune complexes have on neutrophil cell death processes such as apoptosis.
Collapse
Affiliation(s)
- Sonja Vermeren
- The MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Utsa Karmakar
- The MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- The MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
42
|
Fang MM, Barman PK, Thiruppathi M, Mirza RE, McKinney RD, Deng J, Christman JW, Du X, Fukai T, Ennis WJ, Koh TJ, Ushio-Fukai M, Urao N. Oxidant Signaling Mediated by Nox2 in Neutrophils Promotes Regenerative Myelopoiesis and Tissue Recovery following Ischemic Damage. THE JOURNAL OF IMMUNOLOGY 2018; 201:2414-2426. [PMID: 30201810 DOI: 10.4049/jimmunol.1800252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/06/2018] [Indexed: 01/09/2023]
Abstract
Ischemic tissue damage activates hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM)-generating myeloid cells, and persistent HSPC activity may drive chronic inflammation and impair tissue recovery. Although increased reactive oxygen species in the BM regulate HSPC functions, their roles in myelopoiesis of activated HSPCs and subsequent tissue recovery during ischemic damage are not well understood. In this paper, we report that deletion of Nox2 NADPH oxidase in mice results in persistent elevations in BM HSPC activity and levels of inflammatory monocytes/macrophages in BM and ischemic tissue in a model of hindlimb ischemia. Ischemic tissue damage induces oxidants in BM such as elevations of hydrogen peroxide and oxidized phospholipids, which activate redox-sensitive Lyn kinase in a Nox2-dependent manner. Moreover, during tissue recovery after ischemic injury, this Nox2-ROS-Lyn kinase axis is induced by Nox2 in neutrophils that home to the BM, which inhibits HSPC activity and inflammatory monocyte generation and promotes tissue regeneration after ischemic damage. Thus, oxidant signaling in the BM mediated by Nox2 in neutrophils regulates myelopoiesis of HSPCs to promote regeneration of damaged tissue.
Collapse
Affiliation(s)
- Milie M Fang
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Pijus K Barman
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Muthusamy Thiruppathi
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Rita E Mirza
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Ronald D McKinney
- Department of Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL 60612
| | - Jing Deng
- Department of Medicine, Ohio State University School of Medicine, Columbus, OH 43210.,Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612
| | - John W Christman
- Department of Medicine, Ohio State University School of Medicine, Columbus, OH 43210.,Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612
| | - Xiaoping Du
- Department of Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL 60612
| | - Tohru Fukai
- Vascular Biology Center, Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912.,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904
| | - William J Ennis
- Department of Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL 60612; and
| | - Timothy J Koh
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Department of Medicine (Cardiology), Medical College of Georgia at Augusta University, Augusta, GA 30912
| | - Norifumi Urao
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612; .,Department of Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL 60612
| |
Collapse
|
43
|
Hebeda CB, Machado ID, Reif-Silva I, Moreli JB, Oliani SM, Nadkarni S, Perretti M, Bevilacqua E, Farsky SHP. Endogenous annexin A1 (AnxA1) modulates early-phase gestation and offspring sex-ratio skewing. J Cell Physiol 2018; 233:6591-6603. [PMID: 29115663 DOI: 10.1002/jcp.26258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Abstract
Annexin A1 (AnxA1) is a glucocorticoid-regulated anti-inflammatory protein secreted by phagocytes and other specialised cells. In the endocrine system, AnxA1 controls secretion of steroid hormones and it is abundantly expressed in the testis, ovaries, placenta and seminal fluid, yet its potential modulation of fertility has not been described. Here, we observed that AnxA1 knockout (KO) mice delivered a higher number of pups, with a higher percentage of female offsprings. This profile was not dependent on the male features, as sperm from KO male mice did not present functional alterations, and had an equal proportion of Y and X chromosomes, comparable to wild type (WT) male mice. Furthermore, mismatched matings of male WT mice with female KO yielded a higher percentage of female pups per litter, a phenomenon which was not observed when male KO mice mated with female WT animals. Indeed, AnxA1 KO female mice displayed several differences in parameters related to gestation including (i) an arrested estrous cycle at proestrus phase; (ii) increased sites of implantation; (iii) reduced pre- and post-implantation losses; (iv) exacerbated features of the inflammatory reaction in the uterine fluid during implantation phase; and (v) enhanced plasma progesterone in the beginning of pregnancy. In summary, herein we highlight that AnxA1 pathway as a novel determinant of fundamental non-redundant regulatory functions during early pregnancy.
Collapse
Affiliation(s)
- Cristina B Hebeda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Isabel D Machado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Isadora Reif-Silva
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Jusciele B Moreli
- Federal University of São Paulo (UNIFESP), Botucatu, São Paulo, Brazil
| | - Sonia M Oliani
- Federal University of São Paulo (UNIFESP), Botucatu, São Paulo, Brazil.,Department of Biology, IBILCE, University of São Paulo State (UNESP), São Paulo, Brazil
| | - Suchita Nadkarni
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Mauro Perretti
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Estela Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Renaud-Picard B, Toussaint J, Leclercq A, Reeb J, Kessler L, Toti F, Kessler R. [Membranous microparticles and respiratory disease]. Rev Mal Respir 2017; 34:1058-1071. [PMID: 29132745 DOI: 10.1016/j.rmr.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/05/2017] [Indexed: 01/30/2023]
Abstract
Microparticles (MP) are plasmic membrane fragments released from cells after physiological stimulation or stress conditions like inflammation or infection. Their production is correlated to the rate of cell apoptosis. All types of cells can produce MP but they are produced mainly by platelets, endothelial cells, and leukocytes. They carry many bio-active molecules on their surface, specific to the parental cell, giving them the ability to be biomarkers and bio-effectors. MP are present in circulating blood, tissues and many biological fluids. Circulating MP levels can change during the course of many diseases. They have been the subject of many studies in the fields of cardiovascular disease and oncology. In the lungs, they are present in circulating blood and in the airways. They seem to have a role in pulmonary homeostasis in physiological situations and also in the expression of several disease processes. In this review of the literature, we were interested in the quantitative and qualitative variations in MP and their impact in airway diseases like chronic obstructive pulmonary disease (COPD) and asthma, pulmonary fibrosis and pulmonary hypertension.
Collapse
Affiliation(s)
- B Renaud-Picard
- Service de pneumologie, nouvel hôpital Civil, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France; EA 7293, fédération de médecine translationnelle, université de Strasbourg, 67000 Strasbourg, France.
| | - J Toussaint
- EA 7293, fédération de médecine translationnelle, université de Strasbourg, 67000 Strasbourg, France
| | - A Leclercq
- Service de pneumologie, nouvel hôpital Civil, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France; EA 7293, fédération de médecine translationnelle, université de Strasbourg, 67000 Strasbourg, France
| | - J Reeb
- EA 7293, fédération de médecine translationnelle, université de Strasbourg, 67000 Strasbourg, France
| | - L Kessler
- EA 7293, fédération de médecine translationnelle, université de Strasbourg, 67000 Strasbourg, France
| | - F Toti
- EA 7293, fédération de médecine translationnelle, université de Strasbourg, 67000 Strasbourg, France
| | - R Kessler
- Service de pneumologie, nouvel hôpital Civil, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France; EA 7293, fédération de médecine translationnelle, université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
45
|
De Blasio MJ, Ramalingam A, Cao AH, Prakoso D, Ye JM, Pickering R, Watson AM, de Haan JB, Kaye DM, Ritchie RH. The superoxide dismutase mimetic tempol blunts diabetes-induced upregulation of NADPH oxidase and endoplasmic reticulum stress in a rat model of diabetic nephropathy. Eur J Pharmacol 2017; 807:12-20. [DOI: 10.1016/j.ejphar.2017.04.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
46
|
Lima KM, Vago JP, Caux TR, Negreiros-Lima GL, Sugimoto MA, Tavares LP, Arribada RG, Carmo AAF, Galvão I, Costa BRC, Soriani FM, Pinho V, Solito E, Perretti M, Teixeira MM, Sousa LP. The resolution of acute inflammation induced by cyclic AMP is dependent on annexin A1. J Biol Chem 2017; 292:13758-13773. [PMID: 28655761 DOI: 10.1074/jbc.m117.800391] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Indexed: 12/17/2022] Open
Abstract
Annexin A1 (AnxA1) is a glucocorticoid-regulated protein known for its anti-inflammatory and pro-resolving effects. We have shown previously that the cAMP-enhancing compounds rolipram (ROL; a PDE4 inhibitor) and Bt2cAMP (a cAMP mimetic) drive caspase-dependent resolution of neutrophilic inflammation. In this follow-up study, we investigated whether AnxA1 could be involved in the pro-resolving properties of these compounds using a model of LPS-induced inflammation in BALB/c mice. The treatment with ROL or Bt2cAMP at the peak of inflammation shortened resolution intervals, improved resolution indices, and increased AnxA1 expression. In vitro studies showed that ROL and Bt2cAMP induced AnxA1 expression and phosphorylation, and this effect was prevented by PKA inhibitors, suggesting the involvement of PKA in ROL-induced AnxA1 expression. Akin to these in vitro findings, H89 prevented ROL- and Bt2cAMP-induced resolution of inflammation, and it was associated with decreased levels of intact AnxA1. Moreover, two different strategies to block the AnxA1 pathway (by using N-t-Boc-Met-Leu-Phe, a nonselective AnxA1 receptor antagonist, or by using an anti-AnxA1 neutralizing antiserum) prevented ROL- and Bt2cAMP-induced resolution and neutrophil apoptosis. Likewise, the ability of ROL or Bt2cAMP to induce neutrophil apoptosis was impaired in AnxA-knock-out mice. Finally, in in vitro settings, ROL and Bt2cAMP overrode the survival-inducing effect of LPS in human neutrophils in an AnxA1-dependent manner. Our results show that AnxA1 is at least one of the endogenous determinants mediating the pro-resolving properties of cAMP-elevating agents and cAMP-mimetic drugs.
Collapse
Affiliation(s)
- Kátia M Lima
- From the Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas.,the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Juliana P Vago
- From the Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas.,the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Thaís R Caux
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Graziele Letícia Negreiros-Lima
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Michelle A Sugimoto
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Luciana P Tavares
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Raquel G Arribada
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Aline Alves F Carmo
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Izabela Galvão
- the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Bruno Rocha C Costa
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Frederico M Soriani
- the Departamento de Biologia Geral, Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha 31270-901, Belo Horizonte, Brazil and
| | - Vanessa Pinho
- From the Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas.,the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Egle Solito
- the William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Mauro Perretti
- the William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Mauro M Teixeira
- the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Lirlândia P Sousa
- From the Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, .,the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| |
Collapse
|
47
|
Leoni G, Nusrat A. Annexin A1: shifting the balance towards resolution and repair. Biol Chem 2017; 397:971-9. [PMID: 27232634 DOI: 10.1515/hsz-2016-0180] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/21/2016] [Indexed: 12/11/2022]
Abstract
Epithelial barriers play an important role in regulating mucosal homeostasis. Upon injury, the epithelium and immune cells orchestrate repair mechanisms that re-establish homeostasis. This process is highly regulated by protein and lipid mediators such as Annexin A1 (ANXA1). In this review, we focus on the pro-repair properties of ANXA1.
Collapse
|
48
|
A-Gonzalez N, Quintana JA, García-Silva S, Mazariegos M, González de la Aleja A, Nicolás-Ávila JA, Walter W, Adrover JM, Crainiciuc G, Kuchroo VK, Rothlin CV, Peinado H, Castrillo A, Ricote M, Hidalgo A. Phagocytosis imprints heterogeneity in tissue-resident macrophages. J Exp Med 2017; 214:1281-1296. [PMID: 28432199 PMCID: PMC5413334 DOI: 10.1084/jem.20161375] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Macrophages are important for tissue function, and adapt phenotypically to each tissue by factors produced locally. A-Gonzalez et al. now show that phagocytosis of unwanted cells additionally contributes to imprinting macrophage heterogeneity, thus promoting tissue homeostasis. Tissue-resident macrophages display varying phenotypic and functional properties that are largely specified by their local environment. One of these functions, phagocytosis, mediates the natural disposal of billions of cells, but its mechanisms and consequences within living tissues are poorly defined. Using a parabiosis-based strategy, we identified and isolated macrophages from multiple tissues as they phagocytosed blood-borne cellular material. Phagocytosis was circadianally regulated and mediated by distinct repertoires of receptors, opsonins, and transcription factors in macrophages from each tissue. Although the tissue of residence defined the core signature of macrophages, phagocytosis imprinted a distinct antiinflammatory profile. Phagocytic macrophages expressed CD206, displayed blunted expression of Il1b, and supported tissue homeostasis. Thus, phagocytosis is a source of macrophage heterogeneity that acts together with tissue-derived factors to preserve homeostasis.
Collapse
Affiliation(s)
- Noelia A-Gonzalez
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Juan A Quintana
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Susana García-Silva
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Marina Mazariegos
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Arturo González de la Aleja
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - José A Nicolás-Ávila
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Wencke Walter
- Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Jose M Adrover
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Georgiana Crainiciuc
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Vijay K Kuchroo
- Evergrande Center for Immunological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Carla V Rothlin
- Immunobiology Department, Yale School of Medicine, New Haven, CT 06510
| | - Héctor Peinado
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas de Madrid, Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas, Spain
| | - Mercedes Ricote
- Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain.,Institute for Cardiovascular Prevention, Ludwig Maximilians University, 80539 Munich, Germany
| |
Collapse
|
49
|
Plasmin and plasminogen induce macrophage reprogramming and regulate key steps of inflammation resolution via annexin A1. Blood 2017; 129:2896-2907. [PMID: 28320709 DOI: 10.1182/blood-2016-09-742825] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/14/2017] [Indexed: 12/15/2022] Open
Abstract
Inflammation resolution is an active process that functions to restore tissue homeostasis. The participation of the plasminogen (Plg)/plasmin (Pla) system in the productive phase of inflammation is well known, but its involvement in the resolution phase remains unclear. Therefore, we aimed to investigate the potential role of Plg/Pla in key events during the resolution of acute inflammation and its underlying mechanisms. Plg/Pla injection into the pleural cavity of BALB/c mice induced a time-dependent influx of mononuclear cells that were primarily macrophages of anti-inflammatory (M2 [F4/80high Gr1- CD11bhigh]) and proresolving (Mres [F4/80med CD11blow]) phenotypes, without changing the number of macrophages with a proinflammatory profile (M1 [F4/80low Gr1+ CD11bmed]). Pleural injection of Plg/Pla also increased M2 markers (CD206 and arginase-1) and secretory products (transforming growth factor β and interleukin-6) and decreased the expression of inducible nitric oxide synthase (M1 marker). During the resolving phase of lipopolysaccharide (LPS)-induced inflammation when resolving macrophages predominate, we found increased Plg expression and Pla activity, further supporting a link between the Plg/Pla system and key cellular events in resolution. Indeed, Plg or Pla given at the peak of inflammation promoted resolution by decreasing neutrophil numbers and increasing neutrophil apoptosis and efferocytosis in a serine-protease inhibitor-sensitive manner. Next, we confirmed the ability of Plg/Pla to both promote efferocytosis and override the prosurvival effect of LPS via annexin A1. These findings suggest that Plg and Pla regulate several key steps in inflammation resolution, namely, neutrophil apoptosis, macrophage reprogramming, and efferocytosis, which have a major impact on the establishment of an efficient resolution process.
Collapse
|
50
|
Galvão I, Vago JP, Barroso LC, Tavares LP, Queiroz-Junior CM, Costa VV, Carneiro FS, Ferreira TP, Silva PMR, Amaral FA, Sousa LP, Teixeira MM. Annexin A1 promotes timely resolution of inflammation in murine gout. Eur J Immunol 2017; 47:585-596. [PMID: 27995621 DOI: 10.1002/eji.201646551] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/27/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022]
Abstract
Gout is a self-limited inflammatory disease caused by deposition of monosodium urate (MSU) crystals in the joints. Resolution of inflammation is an active process leading to restoration of tissue homeostasis. Here, we studied the role of Annexin A1 (AnxA1), a glucocorticoid-regulated protein that has anti-inflammatory and proresolving actions, in resolution of acute gouty inflammation. Injection of MSU crystals in the knee joint of mice induced inflammation that was associated with expression of AnxA1 during the resolving phase of inflammation. Neutralization of AnxA1 with antiserum or blockade of its receptor with BOC-1 (nonselective) or WRW4 (selective) prevented the spontaneous resolution of gout. There was greater neutrophil infiltration after challenge with MSU crystals in AnxA1 knockout mice (AnxA1-/- ) and delayed resolution associated to decreased neutrophil apoptosis and efferocytosis. Pretreatment of mice with AnxA1-active N-terminal peptide (Ac2-26 ) decreased neutrophil influx, IL-1β, and CXCL1 production in periarticular joint. Posttreatment with Ac2-26 decreased neutrophil accumulation, IL-1β, and hypernociception, and improved the articular histopathological score. Importantly, the therapeutic effects of Ac2-26 were associated with increased neutrophils apoptosis and shortened resolution intervals. In conclusion, AnxA1 plays a crucial role in the context of acute gouty inflammation by promoting timely resolution of inflammation.
Collapse
Affiliation(s)
- Izabela Galvão
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P Vago
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Livia C Barroso
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P Tavares
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian V Costa
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda S Carneiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiana P Ferreira
- Laboratório de Inflamação, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Patricia M R Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Flávio A Amaral
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|