1
|
Tsikas D. Acetazolamide and human carbonic anhydrases: retrospect, review and discussion of an intimate relationship. J Enzyme Inhib Med Chem 2024; 39:2291336. [PMID: 38078375 PMCID: PMC11721854 DOI: 10.1080/14756366.2023.2291336] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Acetazolamide (AZM) is a strong pharmacological sulphonamide-type (R-SO2-NH2, pKa 7.2) inhibitor of the activity of several carbonic anhydrase (CA) isoforms, notably of renal CA II (Ki, 12 nM) and CA IV (Ki, 74 nM). AZM is clinically used for about eighty years in various diseases including epilepsy and glaucoma. Pharmacological AZM increases temporarily the urinary excretion of bicarbonate (HCO3-) and sodium ions (Na+) and sustainably the urinary pH. AZM is excreted almost unchanged over several hours at high rates in the urine. Closely parallel concentrations of circulating and excretory AZM are observed upon administration of therapeutical doses of AZM. In a proof-of-principle study, we investigated the effects of the ingestion of a 250-mg AZM-containing tablet by a healthy volunteer on the urinary excretion of organic and inorganic substances over 5 h (range, 0, 0.5, 1, 1.5, 2, 3, 4, 5 h). Measured analytes included: AZM, amino acids and their metabolites such as guanidinoacetate, i.e. the precursor of creatine, of asymmetrically (ADMA) and symmetrically (SDMA) dimethylated arginine, nitrite (O = N-O-, pKa 3.4) and nitrate (O2N-O-, pKa -1.37), the major metabolites of nitric oxide (NO), the C-H acidic malondialdehyde (MDA; (CHO)2CH2, pKa 4.5), and creatinine for correction of analytes excretion. All analytes were measured by validated isotopologues using gas chromatography-mass spectrometry (GC-MS) methods. AZM excretion in the urine reached its maximum value after 2 h and was fairly stable for the next 3 h. Time series analysis by the ARIMA method was performed. AZM ingestion increased temporarily the urinary excretion of the amino acids Leu + Ile, nitrite and nitrate, decreased temporarily the urinary excretion of other amino acids. AZM decreased sustainably the urinary excretion of MDA, a biomarker of oxidative stress (i.e. lipid peroxidation). Whether this decrease is due to inhibition of the excretion of MDA or attenuation of oxidative stress by AZM is unknown. The acute and chronic effects of AZM on the urinary excretion of electrolytes and physiological substances reported in the literature are discussed in depth in the light of its extraordinary pharmacokinetics and pharmacodynamics. Tolerance development/drug resistance to AZM in chronic use and potential mechanisms are also addressed.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Khavinson VK, Linkova NS, Rudskoy AI, Petukhov MG. Feasibility of Transport of 26 Biologically Active Ultrashort Peptides via LAT and PEPT Family Transporters. Biomolecules 2023; 13:biom13030552. [PMID: 36979488 PMCID: PMC10046148 DOI: 10.3390/biom13030552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this work is to verify the possibility of transport of 26 biologically active ultrashort peptides (USPs) into cells via LAT and PEPT family transporters. Molecular modeling and computer-assisted docking of peptide ligands revealed that the size and structure of ligand-binding sites of the amino acid transporters LAT1, LAT2, and of the peptide transporter PEPT1 are sufficient for the transport of the 26 biologically active di-, tri-, and tetra-peptides. Comparative analysis of the binding of all possible di- and tri-peptides (8400 compounds) at the binding sites of the LAT and PEPT family transporters has been carried out. The 26 biologically active USPs systematically showed higher binding scores to LAT1, LAT2, and PEPT1, as compared with di- and tri-peptides, for which no biological activity has been established. This indicates an important possible role which LAT and PEPT family transporters may play in a variety of biological activities of the 26 biologically active peptides under investigation in this study. Most of the 26 studied USPs were found to bind to the LAT1, LAT2, and PEPT1 transporters more efficiently than the known substrates or inhibitors of these transporters. Peptides ED, DS, DR, EDR, EDG, AEDR, AEDL, KEDP, and KEDG, and peptoids DS7 and KE17 with negatively charged Asp- or Glu- amino acid residues at the N-terminus and neutral or positively charged residues at the C-terminus of the peptide are found to be the most effective ligands of the transporters under investigation. It can be assumed that the antitumor effect of the KE, EW, EDG, and AEDG peptides could be associated with their ability to inhibit the LAT1, LAT2, and PEPT1 amino acid transporters. The data obtained lead to new prospects for further study of the mechanisms of transport of USP-based drugs into the cell and design of new antitumor drugs.
Collapse
Affiliation(s)
- Vladimir Khatskelevich Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia
- Group of Peptide Regulation of Aging, Pavlov Institute of Physiology of Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Natalia Sergeevna Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia
- The Department of Therapy, Geriatrics and Anti-Age Medicine, Academy of Postgraduate Education under of FSBU FSCC of FMBA of Russia, 125371 Moscow, Russia
| | - Andrey Ivanovich Rudskoy
- Group of Biophysics, Higher Engineering and Technical School, Peter the Great St., Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Michael Gennadievich Petukhov
- Petersburg Nuclear Physics Institute Named after B.P. Konstantinov, NRC "Kurchatov Institute", 188300 Gatchina, Russia
| |
Collapse
|
3
|
Interactions between the intrarenal dopaminergic and the renin-angiotensin systems in the control of systemic arterial pressure. Clin Sci (Lond) 2022; 136:1205-1227. [PMID: 35979889 DOI: 10.1042/cs20220338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Systemic arterial hypertension is one of the leading causes of morbidity and mortality in the general population, being a risk factor for many cardiovascular diseases. Although its pathogenesis is complex and still poorly understood, some systems appear to play major roles in its development. This review aims to update the current knowledge on the interaction of the intrarenal renin-angiotensin system (RAS) and dopaminergic system in the development of hypertension, focusing on recent scientific hallmarks in the field. The intrarenal RAS, composed of several peptides and receptors, has a critical role in the regulation of blood pressure (BP) and, consequently, the development of hypertension. The RAS is divided into two main intercommunicating axes: the classical axis, composed of angiotensin-converting enzyme, angiotensin II, and angiotensin type 1 receptor, and the ACE2/angiotensin-(1-7)/Mas axis, which appears to modulate the effects of the classical axis. Dopamine and its receptors are also increasingly showing an important role in the pathogenesis of hypertension, as abnormalities in the intrarenal dopaminergic system impair the regulation of renal sodium transport, regardless of the affected dopamine receptor subtype. There are five dopamine receptors, which are divided into two major subtypes: the D1-like (D1R and D5R) and D2-like (D2R, D3R, and D4R) receptors. Mice deficient in any of the five dopamine receptor subtypes have increased BP. Intrarenal RAS and the dopaminergic system have complex interactions. The balance between both systems is essential to regulate the BP homeostasis, as alterations in the control of both can lead to hypertension.
Collapse
|
4
|
Huttunen J, Adla SK, Markowicz-Piasecka M, Huttunen KM. Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics 2022; 14:pharmaceutics14061234. [PMID: 35745806 PMCID: PMC9228667 DOI: 10.3390/pharmaceutics14061234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane transporters have a crucial role in compounds’ brain drug delivery. They allow not only the penetration of a wide variety of different compounds to cross the endothelial cells of the blood–brain barrier (BBB), but also the accumulation of them into the brain parenchymal cells. Solute carriers (SLCs), with nearly 500 family members, are the largest group of membrane transporters. Unfortunately, not all SLCs are fully characterized and used in rational drug design. However, if the structural features for transporter interactions (binding and translocation) are known, a prodrug approach can be utilized to temporarily change the pharmacokinetics and brain delivery properties of almost any compound. In this review, main transporter subtypes that are participating in brain drug disposition or have been used to improve brain drug delivery across the BBB via the prodrug approach, are introduced. Moreover, the ability of selected transporters to be utilized in intrabrain drug delivery is discussed. Thus, this comprehensive review will give insights into the methods, such as computational drug design, that should be utilized more effectively to understand the detailed transport mechanisms. Moreover, factors, such as transporter expression modulation pathways in diseases that should be taken into account in rational (pro)drug development, are considered to achieve successful clinical applications in the future.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic
| | - Magdalena Markowicz-Piasecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Correspondence:
| |
Collapse
|
5
|
Morio H, Reien Y, Hirayama Y, Hashimoto H, Anzai N. Protein kinase C activation upregulates human L-type amino acid transporter 2 function. J Physiol Sci 2021; 71:11. [PMID: 33789576 PMCID: PMC10716992 DOI: 10.1186/s12576-021-00795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/05/2021] [Indexed: 11/10/2022]
Abstract
L-type amino acid transporter 2 (LAT2) is a Na+-independent neutral amino acid transporter, whose function regulation system remains unclarified. Since protein kinase C (PKC) is known to regulate the functions of various transporters, we investigated whether human LAT2 (hLAT2) function is regulated by PKC. In mouse proximal tubule S2 cells, hLAT2 transport activity was upregulated by PKC activation. However, we found that the mRNA and protein expression of hLAT2 was not affected by PKC activation and that the upregulation was independent of the three potential PKC consensus sites in the hLAT2 amino acid sequence. Moreover, we found that PKC activation upregulated the Vmax value for hLAT2-mediated alanine transport, which was not accompanied by the induction of hLAT2 membrane insertion. In conclusion, we showed that hLAT2 function is upregulated by PKC activation, which is not related to either the de novo synthesis, the phosphorylation or the membrane insertion of hLAT2.
Collapse
Affiliation(s)
- Hanae Morio
- Department of Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba, 260-8670, Japan
| | - Yoshie Reien
- Department of Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba, 260-8670, Japan
| | - Yuri Hirayama
- Department of Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba, 260-8670, Japan
| | - Hirofumi Hashimoto
- Department of Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba, 260-8670, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba, 260-8670, Japan.
- Department of Pharmacology and Toxicology, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Shimotsuga-gun, Tochigi, 321-0293, Japan.
| |
Collapse
|
6
|
Kouyoumdzian NM, Rukavina Mikusic NL, Robbesaul GD, Gorzalczany SB, Carranza A, Trida V, Fernández BE, Choi MR. Acute infusion of angiotensin II regulates organic cation transporters function in the kidney: its impact on the renal dopaminergic system and sodium excretion. Hypertens Res 2021; 44:286-298. [PMID: 32934369 DOI: 10.1038/s41440-020-00552-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/13/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
A close relationship between angiotensin II (ANG II) and the renal dopaminergic system (RDS) has been reported. Our aim was to study whether renal dopamine and ANG II can interact to modify renal sodium handling and then to elucidate the related mechanism. Anesthetized male Sprague-Dawley rats were used in experiments. ANG II, exogenous dopamine, and decynium-22 (or D-22, an isocyanine that specifically blocks electrogenic organic cation transporters, OCTs), were infused in vivo for 120 min. We analyzed renal and hemodynamic parameters, renal Na+, K+-ATPase levels, OCT activity, and urinary dopamine concentrations. We also evaluated the expression of D1 receptor, electroneutral organic cation transporters (OCTNs), and OCTs. ANG II decreased renal excretion of sodium in the presence of exogenous dopamine, increased Na+, K+-ATPase activity, and decreased the urinary dopamine concentration. D-22 treatment exacerbated the ANG II-mediated decrease in renal excretion of sodium and dopamine urine excretion but did not modify ANG II stimulation of Na+, K+-ATPase activity. The infusion of ANG II did not affect the expression of D1 receptor, OCTs, or OCTNs. However, the activity of OCTs was diminished by the presence of ANG II. Although ANG II did not alter the expression of D1 receptor, OCTs, and OCTNs in renal tissues, it modified the activity of OCTs and thereby decreased the urinary dopamine concentration, showing a novel mechanism by which ANG II decreases dopamine transport and its availability in the tubular lumen to stimulate D1 receptor. This study demonstrates a relationship between ANG II and dopamine, where both agents counteract their effects on sodium excretion.
Collapse
Affiliation(s)
- Nicolás M Kouyoumdzian
- Universidad de Buenos Aires. CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina.
| | - Natalia L Rukavina Mikusic
- Universidad de Buenos Aires. CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
| | - Gabriel D Robbesaul
- Universidad de Buenos Aires. CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
| | - Susana B Gorzalczany
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Andrea Carranza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Verónica Trida
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Bioquímica Clínica, Buenos Aires, Argentina
| | - Belisario E Fernández
- Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
| | - Marcelo R Choi
- Universidad de Buenos Aires. CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
- Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| |
Collapse
|
7
|
Bik-Multanowski M, Madetko-Talowska A, Betka I, Swieczka E, Didycz B, Orchel-Szastak K, Bik-Multanowska K, Starostecka E, Jaglowska J, Mozrzymas R, Zolkowska J, Chyz K, Korycinska-Chaaban D. Carriership of the rs113883650/rs2287120 haplotype of the SLC7A5 ( LAT1) gene increases the risk of obesity in infants with phenylketonuria. Mol Genet Metab Rep 2020; 25:100640. [PMID: 32874918 PMCID: PMC7451426 DOI: 10.1016/j.ymgmr.2020.100640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose Phenylketonuria (PKU) can be effectively treated with the use of a low-phenylalanine diet. However, some patients become overweight despite proper dietary treatment. We hypothesized that this phenomenon could be explained by the presence of specific variants within the genes involved in phenylalanine transport or in the phenylalanine transamination/oxygenation pathway. Methods We selected a clinically homogenous group of 100 infants with PKU and assessed their growth patterns in the context of dietary phenylalanine tolerance. Next, within the sample, we performed exome sequencing and assessed a potential relationship between the observed phenotypical variability and the presence of structural variants in a priori selected genes of interest. Results We detected a highly significant association between overweight and carriership of the rs113883650/rs2287120 haplotype of the SLC7A5 (LAT1) gene, which encodes the main transmembrane transporter of large neutral amino acids and of thyroid hormones. Conclusions Our findings suggest a pharmacogenetic effect of the relatively common rs113883650/rs2287120 haplotype of the SLC7A5 gene. This can have practical implications for patients with PKU, since treatment protocols need to be reassessed to better prevent overweight in the carriers of the above variant.
Collapse
Affiliation(s)
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Jagiellonian University Medical College, Krakow, Poland
| | - Iwona Betka
- Department of Medical Genetics, Jagiellonian University Medical College, Krakow, Poland
| | - Elzbieta Swieczka
- Department of Medical Genetics, Jagiellonian University Medical College, Krakow, Poland
| | - Bozena Didycz
- Department of Medical Genetics, Jagiellonian University Medical College, Krakow, Poland
| | | | - Kinga Bik-Multanowska
- Department of Medical Genetics, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Starostecka
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Health Memorial Institute, Lodz, Poland
| | - Joanna Jaglowska
- Department Pediatrics, Hematology and Oncology, Medical University, Gdansk, Poland
| | | | - Joanna Zolkowska
- Department of Inborn Errors of Metabolism and Paediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Katarzyna Chyz
- Department of Inborn Errors of Metabolism and Paediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Dorota Korycinska-Chaaban
- Department of Inborn Errors of Metabolism and Paediatrics, Institute of Mother and Child, Warsaw, Poland
| |
Collapse
|
8
|
Tiu AC, Yang J, Asico LD, Konkalmatt P, Zheng X, Cuevas S, Wang X, Lee H, Mazhar M, Felder RA, Jose PA, Villar VAM. Lipid rafts are required for effective renal D 1 dopamine receptor function. FASEB J 2020; 34:6999-7017. [PMID: 32259353 DOI: 10.1096/fj.201902710rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Effective receptor signaling is anchored on the preferential localization of the receptor in lipid rafts, which are plasma membrane platforms replete with cholesterol and sphingolipids. We hypothesized that the dopamine D1 receptor (D1 R) contains structural features that allow it to reside in lipid rafts for its activity. Mutation of C347 palmitoylation site and Y218 of a newly identified Cholesterol Recognition Amino Acid Consensus motif resulted in the exclusion of D1 R from lipid rafts, blunted cAMP response, impaired sodium transport, and increased oxidative stress in renal proximal tubule cells (RPTCs). Kidney-restricted silencing of Drd1 in C57BL/6J mice increased blood pressure (BP) that was normalized by renal tubule-restricted rescue with D1 R-wild-type but not the mutant D1 R 347A that lacks a palmitoylation site. Kidney-restricted disruption of lipid rafts by β-MCD jettisoned the D1 R from the brush border, decreased sodium excretion, and increased oxidative stress and BP in C57BL/6J mice. Deletion of the PX domain of the novel D1 R-binding partner sorting nexin 19 (SNX19) resulted in D1 R partitioning solely to non-raft domains, while silencing of SNX19 impaired D1 R function in RPTCs. Kidney-restricted silencing of Snx19 resulted in hypertension in C57BL/6J mice. Our results highlight the essential role of lipid rafts for effective D1 R signaling.
Collapse
Affiliation(s)
- Andrew C Tiu
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.,Department of Medicine, Einstein Medical Center, Philadelphia, PA, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Laureano D Asico
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Prasad Konkalmatt
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Xiaoxu Zheng
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Santiago Cuevas
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Xiaoyan Wang
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Hewang Lee
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Momina Mazhar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Robin A Felder
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.,Department of Pharmacology/Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| |
Collapse
|
9
|
Igreja B, Pires N, Loureiro A, Wright L, Soares-da-Silva P. Cardiometabolic and Inflammatory Benefits of Sympathetic Down-Regulation with Zamicastat in Aged Spontaneously Hypertensive Rats. ACS Pharmacol Transl Sci 2019; 2:353-360. [PMID: 32259069 PMCID: PMC7089015 DOI: 10.1021/acsptsci.9b00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 11/28/2022]
Abstract
The hyperactivity of the sympathetic nervous system (SNS) plays a major role in the development and progression of several cardiovascular diseases. One strategy to mitigate the SNS overdrive is by restricting the biosynthesis of norepinephrine via the inhibition of dopamine β-hydroxylase (DBH). Zamicastat is a new DBH inhibitor that decreases norepinephrine and increases dopamine levels in peripherally sympathetic-innervated tissues. The cardiometabolic and inflammatory effects of sympathetic down-regulation were evaluated in 50 week old male spontaneously hypertensive rats (SHRs) receiving zamicastat (30 mg/kg/day) for 9 weeks. After 8 weeks of treatment, the blood pressure (BP) and heart rate (HR) were assessed by tail cuff plethysmography. At the end of the study, 24 h urine, plasma, heart, and kidney were collected for biochemical and morphometric analyses. Zamicastat-induced sympathetic down-regulation decreased the high BP in SHRs, with no observed effect on HR. The heart-to-body weight ratio was lower in SHRs treated with zamicastat, whereas the body weight and kidney-to-body weight ratio were similar between both SHR cohorts. Zamicastat-treated SHRs showed reduced 24 h urine output, but the urinary amount of protein excreted and creatinine clearance rate remained unchanged. Zamicastat treatment significantly decreased plasma triglycerides, free fatty acids, and aspartate aminotransferase levels. Aged SHRs showed higher plasma levels of inflammatory markers as compared with age-matched normotensive Wistar-Kyoto rats. The inflammatory benefits attained with DBH inhibition were expressed by a decrease in CRP, MCP-1, IL-5, IL-17α, GRO/KC, MIP-1α, and RANTES plasma levels as compared with untreated SHRs. In conclusion, DBH inhibition decreased norepinephrine levels, reduced end-organ damage, and improved cardiometabolic and inflammatory biomarkers in aged male SHRs.
Collapse
Affiliation(s)
- Bruno Igreja
- Department
of Research, BIAL - Portela & C, S.A., Coronado
(S. Mamede e S. Romão) 4747-457, Portugal
| | - Nuno Pires
- Department
of Research, BIAL - Portela & C, S.A., Coronado
(S. Mamede e S. Romão) 4747-457, Portugal
| | - Ana Loureiro
- Department
of Research, BIAL - Portela & C, S.A., Coronado
(S. Mamede e S. Romão) 4747-457, Portugal
| | - Lyndon Wright
- Department
of Research, BIAL - Portela & C, S.A., Coronado
(S. Mamede e S. Romão) 4747-457, Portugal
| | - Patrício Soares-da-Silva
- Department
of Research, BIAL - Portela & C, S.A., Coronado
(S. Mamede e S. Romão) 4747-457, Portugal
- Department
of Biomedicine, Unit of Pharmacology & Therapeutics, Faculty of
Medicine, University of Porto, Porto 4200-319, Portugal
- MedInUP
- Center for Drug Discovery and Innovative Medicines, University of Porto, Porto 4200-319, Portugal
| |
Collapse
|
10
|
Banday AA, Diaz AD, Lokhandwala M. Kidney dopamine D 1-like receptors and angiotensin 1-7 interaction inhibits renal Na + transporters. Am J Physiol Renal Physiol 2019; 317:F949-F956. [PMID: 31411069 DOI: 10.1152/ajprenal.00135.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of dopamine D1-like receptors (DR) in the regulation of renal Na+ transporters, natriuresis, and blood pressure is well established. However, the involvement of the angiotensin 1-7 (ANG 1-7)-Mas receptor in the regulation of Na+ balance and blood pressure is not clear. The present study aimed to investigate the hypothesis that ANG 1-7 can regulate Na+ homeostasis by modulating the renal dopamine system. Sprague-Dawley rats were infused with saline alone (vehicle) or saline with ANG 1-7, ANG 1-7 antagonist A-779, DR agonist SKF38393, and antagonist SCH23390. Infusion of ANG 1-7 caused significant natriuresis and diuresis compared with saline alone. Both natriuresis and diuresis were blocked by A-779 and SCH23390. SKF38393 caused a significant, SCH23390-sensitive natriuresis and diuresis, and A-779 had no effect on the SKF38393 response. Concomitant infusion of ANG 1-7 and SKF38393 did not show a cumulative effect compared with either agonist alone. Treatment of renal proximal tubules with ANG 1-7 or SKF38393 caused a significant decrease in Na+-K+-ATPase and Na+/H+ exchanger isoform 3 activity. While SCH23390 blocked both ANG 1-7- and SKF38393-induced inhibition, the DR response was not sensitive to A-779. Additionally, ANG 1-7 activated PKG, enhanced tyrosine hydroxylase activity via Ser40 phosphorylation, and increased renal dopamine production. These data suggest that ANG 1-7, via PKG, enhances tyrosine hydroxylase activity, which increases renal dopamine production and activation of DR and subsequent natriuresis. This study provides evidence for a unidirectional functional interaction between two G protein-coupled receptors to regulate renal Na+ transporters and induce natriuresis.
Collapse
Affiliation(s)
- Anees A Banday
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas
| | - Andrea Diaz Diaz
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Mustafa Lokhandwala
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas
| |
Collapse
|
11
|
Schlimpert M, Lagies S, Müller B, Budnyk V, Blanz KD, Walz G, Kammerer B. Metabolic perturbations caused by depletion of nephronophthisis factor Anks6 in mIMCD3 cells. Metabolomics 2019; 15:71. [PMID: 31041607 DOI: 10.1007/s11306-019-1535-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Nephronophthisis (NPH) is an inherited form of cystic kidney disease with various extrarenal manifestations accounting for the largest amount of endstage renal disease in childhood. Patient mutations of Anks6 have also been found to cause NPH like phenotypes in animal models. However, little is known about functionality of Anks6. OBJECTIVES/METHODS We investigated the impact of Anks6 depletion on cellular metabolism of inner medullary collecting duct cells by GC-MS profiling and targeted LC-MS/MS analysis using two different shRNA cell lines for tetracycline-inducible Anks6 downregulation, namely mIMCD3 krab shANKS6 i52 and mIMCD3 krab shANKS6 i12. RESULTS In combination, we could successfully identify 158 metabolites of which 20 compounds showed similar alterations in both knockdown systems. Especially, large neutral amino acids, such as phenylalanine, where found to be significantly downregulated indicating disturbances in amino acid metabolism. Arginine, lysine and spermidine, which play an important role in cell survival and proliferation, were found to be downregulated. Accordingly, cell growth was diminished in tet treated mIMCD3 krab shANKS6 i52 knockdown cells. Deoxynucleosides were significantly downregulated in both knockdown systems. Hence, PARP1 levels were increased in tet treated mIMCD3 krab shANKS6 i52 cells, but not in tet treated mIMCD3 krab shANKS6 i12 cells. However, yH2AX was found to be increased in the latter. CONCLUSION In combination, we hypothesise that Anks6 affects DNA damage responses and proliferation and plays a crucial role in physiological amino acid and purine/pyrimidine metabolism.
Collapse
Affiliation(s)
- Manuel Schlimpert
- Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Simon Lagies
- Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Barbara Müller
- Renal Division, Department of Medicine, Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Vadym Budnyk
- Renal Division, Department of Medicine, Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Kelly Daryll Blanz
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Bernd Kammerer
- Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Pires NM, Igreja B, Serrão MP, Matias EF, Moura E, António T, Campos FL, Brion L, Bertorello A, Soares-da-Silva P. Acute salt loading induces sympathetic nervous system overdrive in mice lacking salt-inducible kinase 1 (SIK1). Hypertens Res 2019; 42:1114-1124. [DOI: 10.1038/s41440-019-0249-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/29/2018] [Accepted: 01/22/2019] [Indexed: 01/11/2023]
|
13
|
Taveira-da-Silva R, da Silva Sampaio L, Vieyra A, Einicker-Lamas M. L-Tyr-Induced Phosphorylation of Tyrosine Hydroxylase at Ser40: An Alternative Route for Dopamine Synthesis and Modulation of Na+/K+-ATPase in Kidney Cells. Kidney Blood Press Res 2019; 44:1-11. [PMID: 30808844 DOI: 10.1159/000497806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Dopamine (DA) is a natriuretic hormone that inhibits renal sodium reabsorption, being Angiotensin II (Ang II) its powerful counterpart. These two systems work together to maintain sodium homeostasis and consequently, the blood pressure (BP) within normal limits. We hypothesized that L-tyrosine (L-tyr) or L-dihydroxyphenylalanine (L-dopa) could inhibit the Na+/K+-ATPase activity. We also evaluated whether L-tyr treatment modulates Tyrosine Hydroxylase (TH). METHODS Experiments involved cultured LLCPK1 cells treated with L-tyr or L-dopa for 30 minutes a 37°C. In experiments on the effect of Dopa Descarboxylase (DDC) inhibition, cells were pre incubated for 15 minutes with 3-Hydroxybenzylhydrazine dihydrochloride (HBH), and them L-dopa was added for 30 minutes. Na+/K+-ATPase activity was quantified colorimetrically. We used immunoblotting and immunocytochemistry to identify the enzymes TH, DDC and the dopamine receptor D1R in LLCPK1 cells. TH activity was accessed by immunoblotting (increase in the phosphorylation). TH and DDC activities were also evaluated by the modulation of the Na+/K+-ATPase activity, which can be ascribed to the synthesis of dopamine. RESULTS LLCPK1 cells express the required machinery for DA synthesis: the enzymes TH, and (DDC) as well as its receptor D1R, were detected in control steady state cells. Cells treated with L-tyr or L-dopa showed an inhibition of the basolateral Na+/K+-ATPase activity. We can assume that DA formed in the cytoplasm from L-tyr or L-dopa led to inhibition of the Na+/K+-ATPase activity compared to control. L-tyr treatment increases TH phosphorylation at Ser40 by 100%. HBH, a specific DDC inhibitor; BCH, a LAT2 inhibitor; and Sch 23397, a specific D1R antagonist, totally suppressed the inhibition of Na+/K+-ATPase activity due to L-dopa or L-tyr administration, as indicated in the figures. CONCLUSION The results indicate that DA formed mainly from luminal L-tyr or L-dopa uptake by LAT2, can inhibit the Na+/K+-ATPase. In addition, our results showed for the very first time that TH activity is also significantly increased when the cells were exposed to L-tyr.
Collapse
Affiliation(s)
| | - Luzia da Silva Sampaio
- Carlos Chagas Filho Biophysics Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Biophysics Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bio Imaging (CENABIO), Rio de Janeiro Federal University, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine (REGENERA), Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Carlos Chagas Filho Biophysics Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil,
| |
Collapse
|
14
|
Yang M, Yu Z, Chen X, Guo Z, Deng S, Chen L, Wu Q, Liang F. Active Acupoints Differ from Inactive Acupoints in Modulating Key Plasmatic Metabolites of Hypertension: A Targeted Metabolomics Study. Sci Rep 2018; 8:17824. [PMID: 30546033 PMCID: PMC6292875 DOI: 10.1038/s41598-018-36199-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
The effect of active acupoints versus inactive acupoints in treating hypertension is not well documented. Metabolic phenotypes, depicted by metabolomics analysis, reflect the influence of external exposures, nutrition, and lifestyle on the integrated system of the human body. Therefore, we utilized high-performance liquid chromatography tandem mass spectrometry to compare the targeted metabolic phenotype changes induced by two different acupoint treatments. The clinical outcomes show that active acupoint treatment significantly lowers 24-hour systolic blood pressure but not diastolic blood pressure, as compared with inactive acupoint treatment. Furthermore, distinctive changes are observed between the metabolomics data of the two groups. Multivariate analysis shows that only in the active acupoint treatment group can the follow-up plasma be clearly separated from the baseline plasma. Moreover, the follow-up plasma of these two groups can be clearly separated, indicating two different post-treatment metabolic phenotypes. Three metabolites, sucrose, cellobiose, and hypoxanthine, are shown to be the most important features of active acupoint treatment. This study demonstrates that metabolomic analysis is a potential tool that can be used to efficiently differentiate the effect of active acupoints from inactive acupoints in treating hypertension. Possible mechanisms are the alternation of hypothalamic microinflammation and the restoration of host-gut microbiota interactions induced by acupuncture.
Collapse
Affiliation(s)
- Mingxiao Yang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu Street, Chengdu, 610075, Sichuan, China
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, 1 Haiyuan Road, Futian District, Shenzhen, 518053, Guangdong, China
| | - Zheng Yu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu Street, Chengdu, 610075, Sichuan, China
| | - Xiaomin Chen
- Metabolomics, Scientific Technology Department, BGI, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, Guangdong, China
| | - Zhenyu Guo
- Metabolomics, Scientific Technology Department, BGI, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, Guangdong, China
| | - Shufang Deng
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu Street, Chengdu, 610075, Sichuan, China
| | - Lin Chen
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu Street, Chengdu, 610075, Sichuan, China
| | - Qiaofeng Wu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu Street, Chengdu, 610075, Sichuan, China.
| | - Fanrong Liang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu Street, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
15
|
Ye Z, Lu X, Deng Y, Wang X, Zheng S, Ren H, Zhang M, Chen T, Jose PA, Yang J, Zeng C. In Utero Exposure to Fine Particulate Matter Causes Hypertension Due to Impaired Renal Dopamine D1 Receptor in Offspring. Cell Physiol Biochem 2018; 46:148-159. [PMID: 29614490 PMCID: PMC6437669 DOI: 10.1159/000488418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 01/23/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND/AIMS Adverse environment in utero can modulate adult phenotypes including blood pressure. Fine particulate matter (PM2.5) exposure in utero causes hypertension in the offspring, but the exact mechanisms are not clear. Renal dopamine D1 receptor (D1R), regulated by G protein-coupled receptor kinase type 4 (GRK4), plays an important role in the regulation of renal sodium transport and blood pressure. In this present study, we determined if renal D1R dysfunction is involved in PM2.5-induced hypertension in the offspring. METHODS Pregnant Sprague-Dawley rats were given an oropharyngeal drip of PM2.5 (1.0 mg/kg) at gestation day 8, 10, and 12. The blood pressure, 24-hour sodium excretion, and urine volume were measured in the offspring. The expression levels of GRK4 and D1R were determined by immunoblotting. The phosphorylation of D1R was investigated using immunoprecipitation. Plasma malondialdehyde and superoxide dismutase levels were also measured in the offspring. RESULTS As compared with saline-treated dams, offspring of PM2.5-treated dams had increased blood pressure, impaired sodium excretion, and reduced D1R-mediated natriuresis and diuresis, accompanied by decreased renal D1R expression and GRK4 expression. The impaired renal D1R function and increased GRK4 expression could be caused by increased reactive oxidative stress (ROS) induced by PM2.5 exposure. Administration of tempol, a redox-cycling nitroxide, for 4 weeks in the offspring of PM2.5-treated dam normalized the decreased renal D1R expression and increased renal D1R phosphorylation and GRK4 expression. Furthermore, tempol normalized the increased renal expression of c-Myc, a transcription factor that regulates GRK4 expression. CONCLUSIONS In utero exposure to PM2.5 increases ROS and GRK4 expression, impairs D1R-mediated sodium excretion, and increases blood pressure in the offspring. These studies suggest that normalization of D1R function may be a target for the prevention and treatment of the hypertension in offspring of mothers exposed to PM2.5 during pregnancy.
Collapse
Affiliation(s)
- Zhengmeng Ye
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Xi Lu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Yi Deng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Xinquan Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Miao Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Tingting Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| |
Collapse
|
16
|
Lu X, Ye Z, Zheng S, Ren H, Zeng J, Wang X, Jose PA, Chen K, Zeng C. Long-Term Exposure of Fine Particulate Matter Causes Hypertension by Impaired Renal D 1 Receptor-Mediated Sodium Excretion via Upregulation of G-Protein-Coupled Receptor Kinase Type 4 Expression in Sprague-Dawley Rats. J Am Heart Assoc 2018; 7:e007185. [PMID: 29307864 PMCID: PMC5778966 DOI: 10.1161/jaha.117.007185] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Epidemiological evidence supports an important association between air pollution exposure and hypertension. However, the mechanisms are not clear. METHODS AND RESULTS Our present study found that long-term exposure to fine particulate matter (PM2.5) causes hypertension and impairs renal sodium excretion, which might be ascribed to lower D1 receptor expression and higher D1 receptor phosphorylation, accompanied with a higher G-protein-coupled receptor kinase type 4 (GRK4) expression. The in vivo results were confirmed in in vitro studies (ie, PM2.5 increased basal and decreased D1 receptor mediated inhibitory effect on Na+-K+ ATPase activity, decreased D1 receptor expression, and increased D1 receptor phosphorylation in renal proximal tubule cells). The downregulation of D1 receptor expression and function might be attributable to a higher GRK4 expression after the exposure of renal proximal tubule cells to PM2.5, because downregulation of GRK4 by small-interfering RNA reversed the D1 receptor expression and function. Because of the role of reactive oxygen species on D1 receptor dysfunction and its relationship with air pollution exposure, we determined plasma reactive oxygen species and found the levels higher in PM2.5-treated Sprague-Dawley rats. Inhibition of reactive oxygen species by tempol (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl) reduced blood pressure and increased sodium excretion in PM2.5-treated Sprague-Dawley rats, accompanied by an increase in the low D1 receptor expression, and decreased the hyperphosphorylated D1 receptor and GRK4 expression. CONCLUSIONS Our present study indicated that long-term exposure of PM2.5 increases blood pressure by decreasing D1 receptor expression and function; reactive oxygen species, via regulation of GRK4 expression, plays an important role in the pathogenesis of PM2.5-induced hypertension.
Collapse
Affiliation(s)
- Xi Lu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Zhengmeng Ye
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Jing Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Xinquan Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Pedro A Jose
- Division of Renal Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| |
Collapse
|
17
|
Wu Y, Yin Q, Lin S, Huang X, Xia Q, Chen Z, Zhang X, Yang D. Increased SLC7A8 expression mediates L-DOPA uptake by renal tubular epithelial cells. Mol Med Rep 2017; 16:887-893. [DOI: 10.3892/mmr.2017.6620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 01/17/2017] [Indexed: 11/05/2022] Open
|
18
|
Ameta K, Gupta A, Kumar S, Sethi R, Kumar D, Mahdi AA. Essential hypertension: A filtered serum based metabolomics study. Sci Rep 2017; 7:2153. [PMID: 28526818 PMCID: PMC5438387 DOI: 10.1038/s41598-017-02289-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Despite the easy and reliable methods of blood pressure measurement, the screening of essential hypertension (EH) is usually ignored due to delayed onset of symptoms. A probe into the biochemical changes in hypertension would serve as a welcome asset to provide insight into the mechanistic aspects of EH. Filtered serum samples from 64 EH patients and 59 healthy controls (HC) were analysed using 800 MHz nuclear magnetic resonance (NMR) spectroscopy. Application of principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) following receiver operating characteristic (ROC) curve of NMR data reveals significantly perturbed metabolites: alanine, arginine, methionine, pyruvate, adenine, and uracil. This set of metabolites correctly classified 99% of cases from HC and also showed excellent correlation in both isolated elevated diastolic blood pressure (DBP) cases and combined elevated systolic-diastolic blood pressure cases. Proton NMR metabolomics of EH may prove helpful in defining associated biomarkers and serve as an alternate diagnostic tool with judicious clinical assessment.
Collapse
Affiliation(s)
- Keerti Ameta
- Department of Biochemistry, King George's Medical University, Lucknow, India
| | - Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India.
| | - Sudeep Kumar
- Department of Cardiology, SGPGIMS, Lucknow, India
| | - Rishi Sethi
- Department of Cardiology, King George's Medical University, Lucknow, India
| | - Deepak Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, India
| |
Collapse
|
19
|
High Fat Diets Sex-Specifically Affect the Renal Transcriptome and Program Obesity, Kidney Injury, and Hypertension in the Offspring. Nutrients 2017; 9:nu9040357. [PMID: 28368364 PMCID: PMC5409696 DOI: 10.3390/nu9040357] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/12/2017] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
Obesity and related disorders have increased concurrently with an increased consumption of saturated fatty acids. We examined whether post-weaning high fat (HF) diet would exacerbate offspring vulnerability to maternal HF-induced programmed hypertension and kidney disease sex-specifically, with a focus on the kidney. Next, we aimed to elucidate the gene–diet interactions that contribute to maternal HF-induced renal programming using the next generation RNA sequencing (NGS) technology. Female Sprague-Dawley rats received either a normal diet (ND) or HF diet (D12331, Research Diets) for five weeks before the delivery. The offspring of both sexes were put on either the ND or HF diet from weaning to six months of age, resulting in four groups of each sex (maternal diet/post-weaning diet; n = 5–7/group): ND/ND, ND/HF, HF/ND, and HF/HF. Post-weaning HF diet increased bodyweights of both ND/HF and HF/HF animals from three to six months only in males. Post-weaning HF diet increased systolic blood pressure in male and female offspring, irrespective of whether they were exposed to maternal HF or not. Male HF/HF offspring showed greater degrees of glomerular and tubular injury compared to the ND/ND group. Our NGS data showed that maternal HF diet significantly altered renal transcriptome with female offspring being more HF-sensitive. HF diet induced hypertension and renal injury are associated with oxidative stress, activation of renin-angiotensin system, and dysregulated sodium transporters and circadian clock. Post-weaning HF diet sex-specifically exacerbates the development of obesity, kidney injury, but not hypertension programmed by maternal HF intake. Better understanding of the sex-dependent mechanisms that underlie HF-induced renal programming will help develop a novel personalized dietary intervention to prevent obesity and related disorders.
Collapse
|
20
|
Wassenberg T, Willemsen M, Dijkman H, Deinum J, Monnens L. Congenital eyelid ptosis, decreased glomerular filtration, and orthostatic hypotension: Answers. Pediatr Nephrol 2017; 32:1171-1174. [PMID: 27858196 PMCID: PMC5440496 DOI: 10.1007/s00467-016-3515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Tessa Wassenberg
- Department of Neurology and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen (935), The Netherlands.
| | - Michèl Willemsen
- 0000 0004 0444 9382grid.10417.33Department of Neurology and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen (935), The Netherlands
| | - Henry Dijkman
- 0000 0004 0444 9382grid.10417.33Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Deinum
- 0000 0004 0444 9382grid.10417.33Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo Monnens
- 0000 0004 0444 9382grid.10417.33Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Jiang X, Zhang Y, Yang Y, Yang J, Asico LD, Chen W, Felder RA, Armando I, Jose PA, Yang Z. Gastrin stimulates renal dopamine production by increasing the renal tubular uptake of l-DOPA. Am J Physiol Endocrinol Metab 2017; 312:E1-E10. [PMID: 27780818 PMCID: PMC5283882 DOI: 10.1152/ajpendo.00116.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/18/2016] [Accepted: 10/23/2016] [Indexed: 01/02/2023]
Abstract
Gastrin is a peptide hormone that is involved in the regulation of sodium balance and blood pressure. Dopamine, which is also involved in the regulation of sodium balance and blood pressure, directly or indirectly interacts with other blood pressure-regulating hormones, including gastrin. This study aimed to determine the mechanisms of the interaction between gastrin and dopamine and tested the hypothesis that gastrin produced in the kidney increases renal dopamine production to keep blood pressure within the normal range. We show that in human and mouse renal proximal tubule cells (hRPTCs and mRPTCs, respectively), gastrin stimulates renal dopamine production by increasing the cellular uptake of l-DOPA via the l-type amino acid transporter (LAT) at the plasma membrane. The uptake of l-DOPA in RPTCs from C57Bl/6J mice is lower than in RPTCs from normotensive humans. l-DOPA uptake in renal cortical slices is also lower in salt-sensitive C57Bl/6J than in salt-resistant BALB/c mice. The deficient renal cortical uptake of l-DOPA in C57Bl/6J mice may be due to decreased LAT-1 activity that is related to its decreased expression at the plasma membrane, relative to BALB/c mice. We also show that renal-selective silencing of Gast by the renal subcapsular injection of Gast siRNA in BALB/c mice decreases renal dopamine production and increases blood pressure. These results highlight the importance of renal gastrin in stimulating renal dopamine production, which may give a new perspective in the prevention and treatment of hypertension.
Collapse
MESH Headings
- Amino Acid Transport System y+L/drug effects
- Amino Acid Transport System y+L/metabolism
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cells, Cultured
- Dopamine/biosynthesis
- Dopamine/urine
- Down-Regulation
- Gastrins/genetics
- Gastrins/metabolism
- Gastrins/pharmacology
- Gene Silencing
- Humans
- Immunoblotting
- Kidney/drug effects
- Kidney/metabolism
- Kidney Cortex/drug effects
- Kidney Cortex/metabolism
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Levodopa/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- RNA, Small Interfering
- Real-Time Polymerase Chain Reaction
- Receptor, Cholecystokinin B/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Xiaoliang Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical, Beijing, China
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yanrong Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical, Beijing, China
| | - Yu Yang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland;
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - Jian Yang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland;
- Department of Cardiology, Daping Hospital, The Third Military Medical University and Chongqing Institute of Cardiology, Chongqing, China
| | - Laureano D Asico
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wei Chen
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical, Beijing, China
| | - Robin A Felder
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ines Armando
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Medicine, Division of Kidney Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC; and
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Zhiwei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical, Beijing, China;
| |
Collapse
|
22
|
Kajiwara M, Ban T, Matsubara K, Nakanishi Y, Masuda S. Urinary Dopamine as a Potential Index of the Transport Activity of Multidrug and Toxin Extrusion in the Kidney. Int J Mol Sci 2016; 17:ijms17081228. [PMID: 27483254 PMCID: PMC5000626 DOI: 10.3390/ijms17081228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 01/11/2023] Open
Abstract
Dopamine is a cationic natriuretic catecholamine synthesized in proximal tubular cells (PTCs) of the kidney before secretion into the lumen, a key site of its action. However, the molecular mechanisms underlying dopamine secretion into the lumen remain unclear. Multidrug and toxin extrusion (MATE) is a H+/organic cation antiporter that is highly expressed in the brush border membrane of PTCs and mediates the efflux of organic cations, including metformin and cisplatin, from the epithelial cells into the urine. Therefore, we hypothesized that MATE mediates dopamine secretion, a cationic catecholamine, into the tubule lumen, thereby regulating natriuresis. Here, we show that [3H]dopamine uptake in human (h) MATE1-, hMATE-2K- and mouse (m) MATE-expressing cells exhibited saturable kinetics. Fluid retention and decreased urinary excretion of dopamine and Na+ were observed in Mate1-knockout mice compared to that in wild-type mice. Imatinib, a MATE inhibitor, inhibited [3H]dopamine uptake by hMATE1-, hMATE2-K- and mMATE1-expressing cells in a concentration-dependent manner. At clinically-relevant concentrations, imatinib inhibited [3H]dopamine uptake by hMATE1- and hMATE2-K-expressing cells. The urinary excretion of dopamine and Na+ decreased and fluid retention occurred in imatinib-treated mice. In conclusion, MATE transporters secrete renally-synthesized dopamine, and therefore, urinary dopamine has the potential to be an index of the MATE transporter activity.
Collapse
Affiliation(s)
- Moto Kajiwara
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Tsuyoshi Ban
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
23
|
Hsu CN, Wu KLH, Lee WC, Leu S, Chan JYH, Tain YL. Aliskiren Administration during Early Postnatal Life Sex-Specifically Alleviates Hypertension Programmed by Maternal High Fructose Consumption. Front Physiol 2016; 7:299. [PMID: 27462279 PMCID: PMC4941125 DOI: 10.3389/fphys.2016.00299] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/28/2016] [Indexed: 01/15/2023] Open
Abstract
Key points summaryMaternal high-fructose (HF) induces programmed hypertension in adult offspring. Early aliskiren administration prevents HF-induced hypertension in both sexes of adult offspring. HF regulates RAS components in the offspring kidney in a sex-specific manner. HF alters renal transcriptome, with female offspring being more sensitive. Deprogramming strategy to prevent hypertension might be sex-specific.
Background: Maternal high fructose (HF) intake induced renal programming and hypertension in male adult offspring. We examined whether maternal HF intake causes programmed hypertension and whether aliskiren administration confers protection against the process in a sex-specific manner, with a focus on the transcriptome changes in the kidney using next-generation RNA sequencing (NGS) technology and renin-angiotensin system (RAS). Methods: Pregnant Sprague—Dawley rats received regular chow or chow supplemented with 60% fructose throughout pregnancy and lactation. Offspring were assigned to six groups: male control, male HF (MHF), MHF+Aliskiren, female control, female HF (FHF), and FHF+Aliskiren. Oral aliskiren 10 mg/kg/day was administered via gastric gavage between 2 and 4 weeks of age. Rats were sacrificed at 12 weeks of age. Results: Maternal HF intake induced programmed hypertension in 12-week-old offspring of both sexes. HF regulated renal transcriptome and RAS components in the offspring kidney in a sex-specific manner. Aliskiren administration prevented HF-induced programmed hypertension in both sexes of adult offspring. Aliskiren administration increased ACE2 and MAS protein levels in female kidneys exposed to maternal HF intake. Conclusion: Maternal HF induced programmed hypertension in both sexes of adult offspring, which was sex-specifically mitigated by early aliskiren administration. Better understanding of the sex-dependent mechanisms that underlie maternal HF-induced renal programming will help develop a novel sex-specific strategy to prevent programmed hypertension.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan; School of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Wei-Chia Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Steve Leu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
| |
Collapse
|
24
|
Affiliation(s)
- Pedro A Jose
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.).
| | - Robin A Felder
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| | - Zhiwei Yang
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| | - Chunyu Zeng
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| | - Gilbert M Eisner
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| |
Collapse
|
25
|
Chiotellis A, Müller Herde A, Rössler SL, Brekalo A, Gedeonova E, Mu L, Keller C, Schibli R, Krämer SD, Ametamey SM. Synthesis, Radiolabeling, and Biological Evaluation of 5-Hydroxy-2-[18F]fluoroalkyl-tryptophan Analogues as Potential PET Radiotracers for Tumor Imaging. J Med Chem 2016; 59:5324-40. [DOI: 10.1021/acs.jmedchem.6b00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Aristeidis Chiotellis
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Adrienne Müller Herde
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Simon L. Rössler
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Ante Brekalo
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Erika Gedeonova
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Linjing Mu
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Department of Nuclear
Medicine, University Hospital Zurich, Zurich 8091, Switzerland
| | - Claudia Keller
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Roger Schibli
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Stefanie D. Krämer
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Simon M. Ametamey
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| |
Collapse
|
26
|
Yang M, Yu Z, Deng S, Chen X, Chen L, Guo Z, Zheng H, Chen L, Cai D, Wen B, Wu Q, Liang F. A Targeted Metabolomics MRM-MS Study on Identifying Potential Hypertension Biomarkers in Human Plasma and Evaluating Acupuncture Effects. Sci Rep 2016; 6:25871. [PMID: 27181907 PMCID: PMC4867614 DOI: 10.1038/srep25871] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/22/2016] [Indexed: 02/08/2023] Open
Abstract
The critical role of metabolic abnormality in hypertension is increasingly recognized, but its biomarkers are not clearly identified. In this study, 47 chemical compounds recorded by literature were employed as target metabolites of essential hypertension (EH). We detected their content in the plasma of EH patients and healthy subjects by using the Multiple Reaction Monitoring-Mass Spectrometry (MRM-MS). After screening the most altered compounds, acupuncture was used to treat patients for 3 months and these plasma metabolites were tested again. The results showed that oleic acid (OA) and myoinositol (MI) were the most important differential metabolites between the hypertensive plasma and the healthy plasma. They were also closely correlated with 24-hour blood pressure and nocturnal dipping. Moreover, plasma OA and MI could be restored to normal levels by acupuncture, accompanying with reduction of 24-hour systolic and diastolic blood pressure [from 145.10 ± 9.28 mm Hg to 140.70 ± 9.59 mm Hg (P < 0.0001), and 88.35 ± 7.92 mm Hg to 85.86 ± 7.95 mm Hg (P = 0.0024), respectively] and improvement of circadian blood pressure rhythm. This study demonstrated that plasma OA and MI were potential hypertension biomarkers and they could be used to preliminarily assess the treating effects such as acupuncture.
Collapse
Affiliation(s)
- Mingxiao Yang
- College of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, 610075, China
| | - Zheng Yu
- College of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, 610075, China
| | - Shufang Deng
- College of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, 610075, China
| | - Xiaomin Chen
- Metabolomics, Scientific Technology Department, BGI, Shenzhen, 518083, China
| | - Liang Chen
- College of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, 610075, China
| | - Zhenyu Guo
- Metabolomics, Scientific Technology Department, BGI, Shenzhen, 518083, China
| | - Hui Zheng
- College of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, 610075, China
| | - Lin Chen
- College of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, 610075, China
| | - Dingjun Cai
- College of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, 610075, China
| | - Bo Wen
- Metabolomics, Scientific Technology Department, BGI, Shenzhen, 518083, China
| | - Qiaofeng Wu
- College of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, 610075, China
| | - Fanrong Liang
- College of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, 610075, China
| |
Collapse
|
27
|
Igreja B, Wright LC, Soares-da-Silva P. Sustained high blood pressure reduction with etamicastat, a peripheral selective dopamine β-hydroxylase inhibitor. ACTA ACUST UNITED AC 2015; 10:207-16. [PMID: 26803288 DOI: 10.1016/j.jash.2015.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/03/2015] [Accepted: 12/16/2015] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to evaluate the influence of chronic inhibition of dopamine ß-hydroxylase by etamicastat on the development of hypertension in the spontaneously hypertensive rat (SHR) and the sustainability of effects on the systolic and diastolic blood pressure in the SHR and the normotensive Wistar-Kyoto rat (WKY). WKY and SHR received etamicastat (10 mg/kg/d) from 5 weeks of age for 35 weeks in drinking water, and cardiovascular assessments were performed on a weekly basis. Etamicastat reduced systolic and diastolic blood pressure when SHRs reached the age of 16 weeks with mean decreases of 37 and 32 mm Hg, respectively, for the subsequent for 24 weeks of treatment, but did not prevent the increase in blood pressure (BP) aged between 5 and 11 week. The BP lowering effect of etamicastat in SHR was reversible on discontinuation and quickly resumed after reinstatement of therapy and was not accompanied by changes in heart rate. Etamicastat affected neither BP nor heart rate in WKY during 36 weeks of treatment. Etamicastat reduced urinary excretion of norepinephrine to a similar extent in WKY and SHR, accompanied by significant increases in urinary dopamine in SHR. Chronic administration of etamicastat did not adversely affected development of animals. Chronic dopamine ß-hydroxylase inhibition with etamicastat effectively decreases BP, although does not prevent the development of hypertension in the SHR.
Collapse
Affiliation(s)
- Bruno Igreja
- Department of Research and Development, BIAL-Portela & C(a), S.A., Portugal
| | - Lyndon C Wright
- Department of Research and Development, BIAL-Portela & C(a), S.A., Portugal
| | - Patricio Soares-da-Silva
- Department of Research and Development, BIAL-Portela & C(a), S.A., Portugal; Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Portugal; MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal.
| |
Collapse
|
28
|
Soares-da-Silva P, Cabral JM, Magalhães D, Fraga S, Magro F. Amine neurotransmitters, inflammation and epithelial sodium transport. Exp Physiol 2015; 101:459-64. [PMID: 26548358 DOI: 10.1113/ep085284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? The present work reviews the roles of renal and intestinal dopamine and 5-HT in the maintenance of fluid and electrolyte homeostasis. The role of inflammatory agents at the intestinal level that affect fluid and electrolyte homeostasis is also addressed. What advances does it highlight? General mechanisms of epithelial cell ion transport in the gastrointestinal tract and kidney share considerable similarities, particularly with regard to basolateral Na(+) ,K(+-) ATPase as a driving force for the movement of numerous substrates across the cell membrane. The physiological importance of the renal actions of monoamines (dopamine, noradrenaline and 5-HT) mainly depends on the sources of the amines in the kidney and on their availability to activate the amine-specific receptors. Dopamine and 5-HT are also relatively abundant in the mucosal cell layer of the intestine, and recent evidence suggests their physiological relevance in regulating electrolyte transport. The gastrointestinal tract can be an important site for the loss of water and electrolytes, in the presence of intestinal inflammation. General mechanisms of epithelial cell ion transport in the gastrointestinal tract and kidney share considerable similarities with regard to basolateral Na(+) ,K(+) -ATPase as a driving force for the movement of numerous substrates across the cell membrane. The present work reviews the roles of renal and intestinal dopamine and 5-HT in the maintenance of fluid and electrolyte homeostasis. The role of inflammatory agents at the intestinal level that affect fluid and electrolyte homeostasis is also addressed.
Collapse
Affiliation(s)
- Patrício Soares-da-Silva
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - José Miguel Cabral
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Diogo Magalhães
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sónia Fraga
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Fernando Magro
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
29
|
Corsetti R, Barassi A, Perego S, Sansoni V, Rossi A, Damele CAL, Melzi D'Eril G, Banfi G, Lombardi G. Changes in urinary amino acids excretion in relationship with muscle activity markers over a professional cycling stage race: in search of fatigue markers. Amino Acids 2015; 48:183-92. [PMID: 26306846 DOI: 10.1007/s00726-015-2077-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/17/2015] [Indexed: 11/25/2022]
Abstract
The aim of this study was to identify the relationship between metabolic effort, muscular damage/activity indices, and urinary amino acids profile over the course of a strenuous prolonged endurance activity, as a cycling stage race is, in order to identify possible fatigue markers. Nine professional cyclists belonging to a single team, competing in the Giro d'Italia cycling stage race, were anthropometrically characterized and sampled for blood and urine the day before the race started, and on days 12 and 23 of the race. Diet was kept the same over the race, and power output and energy expenditure were recorded. Sera were assayed for muscle markers (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase activities, and blood urea nitrogen), and creatinine, all corrected for plasma volume changes. Urines were profiled for amino acid concentrations, normalized on creatinine excretion. Renal function, in terms of glomerular filtration rate, was monitored by MDRD equation corrected on body surface area. Creatine kinase activity and blood urea were increased during the race as did serum creatinine while kidney function remained stable. Among the amino acids, taurine, glycine, cysteine, leucine, carnosine, 1-methyl histidine, and 3-methyl histidine showed a net decreased, while homocysteine was increased. Taurine and the dipeptide carnosine (β-alanyl-L-histidine) were significantly correlated with the muscle activity markers and the indices of effort. In conclusion, the metabolic profile is modified strikingly due to the effort. Urinary taurine and carnosine seem useful tools to evaluate the muscle damage and possibly the fatigue status on a long-term basis.
Collapse
Affiliation(s)
- Roberto Corsetti
- Cannondale Pro-Cycling Team, Medical Board, Sesto al Reghena, Italy
| | - Alessandra Barassi
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
| | - Silvia Perego
- Laboratory of Experimental Biochemistry and Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, 20161, Milan, Italy
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, 20161, Milan, Italy
| | - Alessandra Rossi
- U.O. Epidemiology, National Institute for Health, Migration, and Poverty, Rome, Italy
| | | | | | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry and Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, 20161, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, 20161, Milan, Italy.
| |
Collapse
|
30
|
Li F, Yang J, Jones JE, Villar VAM, Yu P, Armando I, Felder RA, Jose PA. Sorting nexin 5 and dopamine d1 receptor regulate the expression of the insulin receptor in human renal proximal tubule cells. Endocrinology 2015; 156:2211-21. [PMID: 25825816 PMCID: PMC4430625 DOI: 10.1210/en.2014-1638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sorting nexin 5 (SNX5) belongs to the SNX family, which is composed of a diverse group of proteins that mediate trafficking of plasma membrane proteins, receptors, and transporters. SNX5 is important in the resensitization of the dopamine D1-like receptor (D1R). D1R is uncoupled from its effector proteins in hypertension and diabetes, and treatment of diabetes restores D1R function and insulin receptor (IR) expression. We tested the hypothesis that the D1R and SNX5 regulate IR by studying the expression, distribution, dynamics, and functional consequences of their interaction in human renal proximal tubule cells (hRPTCs). D1R, SNX5, and IR were expressed and colocalized in the brush border of RPTs. Insulin promoted the colocalization of SNX5 and IR at the perinuclear area of hRPTCs. Unlike SNX5, the D1R colocalized and coimmunoprecipitated with IR, and this interaction was enhanced by insulin. To evaluate the role of SNX5 and D1R on IR signaling, we silenced via RNA interference the endogenous expression of SNX5 or the D1R gene DRD1 in hRPTCs. We observed a decrease in IR expression and abundance of phosphorylated IR substrate and phosphorylated protein kinase B, which are crucial components of the IR signal transduction pathway. Our data indicate that SNX5 and D1R are necessary for normal IR expression and activity. It is conceivable that D1R and SNX5 may interact to increase the sensitivity to insulin via a positive regulation of IR and insulin signaling.
Collapse
Affiliation(s)
- Fengmin Li
- Department of Physiology and Biophysics (F.L., P.A.J.), Georgetown University Medical Center, Washington, DC 20057; Liver Disease Branch (F.L.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Department of Nutrition (J.Y.), Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China; Division of Nephrology (J.Y.J.E.J., V.A.M.V., P.Y., I.A., P.A.J.), Department of Medicine, and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore, Maryland 21201; and University of Virginia Health Sciences Center (R.A.F.), Charlottesville, Virginia 22908
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Quelhas-Santos J, Serrão MP, Soares-Silva I, Fernandes-Cerqueira C, Simões-Silva L, Pinho MJ, Remião F, Sampaio-Maia B, Desir GV, Pestana M. Renalase regulates peripheral and central dopaminergic activities. Am J Physiol Renal Physiol 2014; 308:F84-91. [PMID: 25411385 DOI: 10.1152/ajprenal.00274.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Renalase is a recently identified FAD/NADH-dependent amine oxidase mainly expressed in kidney that is secreted into blood and urine where it was suggested to metabolize catecholamines. The present study evaluated central and peripheral dopaminergic activities in the renalase knockout (KO) mouse model and examined the changes induced by recombinant renalase (RR) administration on plasma and urine catecholamine levels. Compared with wild-type (WT) mice, KO mice presented increased plasma levels of epinephrine (Epi), norepinephrine (NE), and dopamine (DA) that were accompanied by increases in the urinary excretion of Epi, NE, DA. In addition, the KO mice presented an increase in urinary DA-to-l-3,4-dihydroxyphenylalanine (l-DOPA) ratios without changes in renal tubular aromatic-l-amino acid decarboxylase (AADC) activity. By contrast, the in vivo administration of RR (1.5 mg/kg sc) to KO mice was accompanied by significant decreases in plasma levels of Epi, DA, and l-DOPA as well as in urinary excretion of Epi, DA, and DA-to-l-DOPA ratios notwithstanding the accompanied increase in renal AADC activity. In addition, the increase in renal DA output observed in renalase KO mice was accompanied by an increase in the expression of the L-type amino acid transporter like (LAT) 1 that is reversed by the administration of RR in these animals. These results suggest that the overexpression of LAT1 in the renal cortex of the renalase KO mice might contribute to the enhanced l-DOPA availability/uptake and consequently to the activation of the renal dopaminergic system in the presence of renalase deficiency.
Collapse
Affiliation(s)
- Janete Quelhas-Santos
- Nephrology Research and Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal; Nephrology and Infectious Diseases Research and Development Group, Instituto Nacional de Engenharia Biomédica-(I3S);
| | - Maria Paula Serrão
- Faculdade de Medicina da Universidade do Porto, Department of Pharmacology and Therapeutics, Porto, Portugal
| | - Isabel Soares-Silva
- Nephrology Research and Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal; Nephrology and Infectious Diseases Research and Development Group, Instituto Nacional de Engenharia Biomédica-(I3S)
| | | | - Liliana Simões-Silva
- Nephrology Research and Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria João Pinho
- Faculdade de Medicina da Universidade do Porto, Department of Pharmacology and Therapeutics, Porto, Portugal
| | - Fernando Remião
- Centro de Química da Universidade do Porto/Serviço de Toxicologia, Faculdade de Farmácia, University of Porto, Porto, Portugal
| | - Benedita Sampaio-Maia
- Nephrology Research and Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal; Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Gary V Desir
- Department of Medicine, Veterans Affairs Connecticut Healthcree System, Yale University, New Haven, Connecticut
| | - Manuel Pestana
- Nephrology and Infectious Diseases Research and Development Group, Instituto Nacional de Engenharia Biomédica-(I3S); Faculdade de Medicina da Universidade do Porto, Department of Renal, Urological, and Infectious Diseases, Porto, Portugal; and Department of Nephrology, São João Hospital Center, Entidade Pública Empresarial, Porto, Portugal
| |
Collapse
|
32
|
Horita S, Nakamura M, Shirai A, Yamazaki O, Satoh N, Suzuki M, Seki G. Regulatory roles of nitric oxide and angiotensin II on renal tubular transport. World J Nephrol 2014; 3:295-301. [PMID: 25374825 PMCID: PMC4220364 DOI: 10.5527/wjn.v3.i4.295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/05/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Renal tubules regulate blood pressure and humoral homeostasis. Mediators that play a significant role in regulating the transport of solutes and water include angiotensin II (AngII) and nitric oxide (NO). AngIIcan significantly raise blood pressure via effects on the heart, vasculature, and renal tubules. AngII generally stimulates sodium reabsorption by triggering sodium and fluid retention in almost all segments of renal tubules. Stimulation of renal proximal tubule (PT) transport is thought to be essential for AngII-mediated hypertension. However, AngII has a biphasic effect on in vitro PT transport in mice, rats, and rabbits: stimulation at low concentrations and inhibition at high concentrations. On the other hand, NO is generally thought to inhibit renal tubular transport. In PTs, NO seems to be involved in the inhibitory effect of AngII. A recent study reports a surprising finding: AngII has a monophasic stimulatory effect on human PT transport. Detailed analysis of signalling mechanisms indicates that in contrast to other species, the human NO/guanosine 3’,5’-cyclic monophosphate/extracellular signal-regulated kinase pathway seems to mediate this effect of Ang II on PT transport. In this review we will discuss recent progress in understanding the effects of AngII and NO on renal tubular transport.
Collapse
|
33
|
Wang X, Luo H, Chen C, Chen K, Wang J, Cai Y, Zheng S, Yang X, Zhou L, Jose PA, Zeng C. Prenatal lipopolysaccharide exposure results in dysfunction of the renal dopamine D1 receptor in offspring. Free Radic Biol Med 2014; 76:242-50. [PMID: 25236748 PMCID: PMC6873924 DOI: 10.1016/j.freeradbiomed.2014.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/23/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022]
Abstract
Adverse environment in early life can modulate the adult phenotype, including blood pressure. Lipopolysaccharide (LPS) exposure in utero results in increased blood pressure in the offspring, but the exact mechanisms are not clear. Studies have shown that the renal dopamine D1 receptor (D1R) plays an important role in maintaining sodium homeostasis and normal blood pressure; dysfunction of D1R is associated with oxidative stress and hypertension. In this study, we determined if dysfunction of the renal D1R is involved in fetal-programmed hypertension, and if oxidative stress contributes to this process. Pregnant Sprague-Dawley (SD) rats were intraperitoneally injected with LPS (0.79 mg/kg) or saline at gestation days 8, 10, and 12. As compared with saline-injected (control) dams, offspring of LPS-treated dams had increased blood pressure, decreased renal sodium excretion, and increased markers of oxidative stress. In addition, offspring of LPS-treated dams had decreased renal D1R expression, increased D1R phosphorylation, and G protein-coupled receptor kinase type 2 (GRK2) and type 4 (GRK4) protein expression, and impaired D1R-mediated natriuresis and diuresis. All of the findings in the offspring of LPS-treated dams were normalized after treatment with TEMPOL, an oxygen free radical scavenger. In conclusion, prenatal LPS exposure, via an increase in oxidative stress, impairs renal D1R function and leads to hypertension in the offspring. Normalization of renal D1R function by amelioration of oxidative stress may be a therapeutic target of fetal programming of hypertension.
Collapse
Affiliation(s)
- Xinquan Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Yue Cai
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Xiaoli Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China.
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China.
| |
Collapse
|
34
|
Dopamine D₄ receptors inhibit proliferation and migration of vascular smooth muscle cells induced by insulin via down-regulation of insulin receptor expression. Cardiovasc Diabetol 2014; 13:97. [PMID: 24888351 PMCID: PMC4078019 DOI: 10.1186/1475-2840-13-97] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/26/2014] [Indexed: 01/11/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) proliferation and migration, which are central in the development of vascular diseases, are regulated by numerous hormones and humoral factors. Activation of the insulin receptor stimulates VSMCs proliferation while dopamine receptors, via D1 and D3 receptors, inhibit the stimulatory effects of norepinephrine on VSMCs proliferation. We hypothesize that activation of the D4 dopamine receptor may also inhibit the proliferation and migration of VSMCs, therefore, inhibit atherosclerosis. Our current study found that insulin increased the proliferation and migration of A10 cells, an effect that was reduced in the presence of a D4 receptor agonist, PD168077. The negative effect of the D4 receptor on insulin’s action may be via decreasing insulin receptor expression, because activation of the D4 receptor inhibited insulin receptor protein and mRNA expressions, indicating that the regulation occured at the transcriptional or post-transcriptional levels. To determine whether or not the inhibition of D4 receptor on insulin-mediated proliferation and migration of VSMCs has physiological significance, hyper-insulinemic Sprague–Dawley rats with balloon-injured carotid artery were treated with a D4 agonist, PD168077, (6 mg/kg/d) for 14 days. We found that PD168077 significantly inhibited neointimal formation by inhibition of VSMC proliferation. This study suggests that activation of the D4 receptor suppresses the proliferation and migration of VSMCs, therefore, inhibit atherosclerosis. The D4 receptor may be a potential therapeutic target to reduce the effects of insulin on artery remodeling.
Collapse
|