1
|
Ibrahim MK, Haria A, Mehta NV, Degani MS. Antimicrobial potential of quaternary phosphonium salt compounds: a review. Future Med Chem 2023; 15:2113-2141. [PMID: 37929337 DOI: 10.4155/fmc-2023-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Given that mitochondrial dysregulation is a biomarker of many cancers, cationic quaternary phosphonium salt (QPS) conjugation is a widely utilized strategy for anticancer drug design. QPS-conjugated compounds exhibit greater cell permeation and accumulation in negatively charged mitochondria, and thus, show enhanced activity. Phylogenetic similarities between mitochondria and bacteria have provided a rationale for exploring the antibacterial properties of mitochondria-targeted compounds. Additionally, due to the importance of mitochondria in the survival of pathogenic microbes, including fungi and parasites, this strategy can be extended to these organisms as well. This review examines recent literature on the antimicrobial activities of various QPS-conjugated compounds and provides future directions for exploring the medicinal chemistry of these compounds.
Collapse
Affiliation(s)
- Mahin K Ibrahim
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Akash Haria
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Namrashee V Mehta
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Mariam S Degani
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| |
Collapse
|
2
|
Xiao G, Li J, Sun Z. The Combination of Antibiotic and Non-Antibiotic Compounds Improves Antibiotic Efficacy against Multidrug-Resistant Bacteria. Int J Mol Sci 2023; 24:15493. [PMID: 37895172 PMCID: PMC10607837 DOI: 10.3390/ijms242015493] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial antibiotic resistance, especially the emergence of multidrug-resistant (MDR) strains, urgently requires the development of effective treatment strategies. It is always of interest to delve into the mechanisms of resistance to current antibiotics and target them to promote the efficacy of existing antibiotics. In recent years, non-antibiotic compounds have played an important auxiliary role in improving the efficacy of antibiotics and promoting the treatment of drug-resistant bacteria. The combination of non-antibiotic compounds with antibiotics is considered a promising strategy against MDR bacteria. In this review, we first briefly summarize the main resistance mechanisms of current antibiotics. In addition, we propose several strategies to enhance antibiotic action based on resistance mechanisms. Then, the research progress of non-antibiotic compounds that can promote antibiotic-resistant bacteria through different mechanisms in recent years is also summarized. Finally, the development prospects and challenges of these non-antibiotic compounds in combination with antibiotics are discussed.
Collapse
Affiliation(s)
| | | | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (G.X.); (J.L.)
| |
Collapse
|
3
|
Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist Updat 2023; 68:100954. [PMID: 36905712 DOI: 10.1016/j.drup.2023.100954] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
The problem of drug resistance due to long-term use of antibiotics has been a concern for years. As this problem grows worse, infections caused by multiple bacteria are expanding rapidly and are extremely detrimental to human health. Antimicrobial peptides (AMPs) are a good alternative to current antimicrobials with potent antimicrobial activity and unique antimicrobial mechanisms, which have advantages over traditional antibiotics in fighting against drug-resistant bacterial infections. Currently, researchers have conducted clinical investigations on AMPs for drug-resistant bacterial infections while integrating new technologies in the development of AMPs, such as changing amino acid structure of AMPs and using different delivery methods for AMPs. This article introduces the basic properties of AMPs, deliberates the mechanism of drug resistance in bacteria and the therapeutic mechanism of AMPs. The current disadvantages and advances of AMPs in combating drug-resistant bacterial infections are also discussed. This article provides important insights into the research and clinical application of new AMPs for drug-resistant bacterial infections.
Collapse
|
4
|
Si Z, Pethe K, Chan-Park MB. Chemical Basis of Combination Therapy to Combat Antibiotic Resistance. JACS AU 2023; 3:276-292. [PMID: 36873689 PMCID: PMC9975838 DOI: 10.1021/jacsau.2c00532] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/10/2023]
Abstract
The antimicrobial resistance crisis is a global health issue requiring discovery and development of novel therapeutics. However, conventional screening of natural products or synthetic chemical libraries is uncertain. Combination therapy using approved antibiotics with inhibitors targeting innate resistance mechanisms provides an alternative strategy to develop potent therapeutics. This review discusses the chemical structures of effective β-lactamase inhibitors, outer membrane permeabilizers, and efflux pump inhibitors that act as adjuvant molecules of classical antibiotics. Rational design of the chemical structures of adjuvants will provide methods to impart or restore efficacy to classical antibiotics for inherently antibiotic-resistant bacteria. As many bacteria have multiple resistance pathways, adjuvant molecules simultaneously targeting multiple pathways are promising approaches to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhangyong Si
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459
| | - Kevin Pethe
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Mary B. Chan-Park
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921
| |
Collapse
|
5
|
Turzańska K, Adesanya O, Rajagopal A, Pryce MT, Fitzgerald Hughes D. Improving the Management and Treatment of Diabetic Foot Infection: Challenges and Research Opportunities. Int J Mol Sci 2023; 24:ijms24043913. [PMID: 36835330 PMCID: PMC9959562 DOI: 10.3390/ijms24043913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Diabetic foot infection (DFI) management requires complex multidisciplinary care pathways with off-loading, debridement and targeted antibiotic treatment central to positive clinical outcomes. Local administration of topical treatments and advanced wound dressings are often used for more superficial infections, and in combination with systemic antibiotics for more advanced infections. In practice, the choice of such topical approaches, whether alone or as adjuncts, is rarely evidence-based, and there does not appear to be a single market leader. There are several reasons for this, including a lack of clear evidence-based guidelines on their efficacy and a paucity of robust clinical trials. Nonetheless, with a growing number of people living with diabetes, preventing the progression of chronic foot infections to amputation is critical. Topical agents may increasingly play a role, especially as they have potential to limit the use of systemic antibiotics in an environment of increasing antibiotic resistance. While a number of advanced dressings are currently marketed for DFI, here we review the literature describing promising future-focused approaches for topical treatment of DFI that may overcome some of the current hurdles. Specifically, we focus on antibiotic-impregnated biomaterials, novel antimicrobial peptides and photodynamic therapy.
Collapse
Affiliation(s)
- Kaja Turzańska
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin, Ireland
| | - Oluwafolajimi Adesanya
- School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Ashwene Rajagopal
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin, Ireland
| | - Mary T. Pryce
- School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland
| | - Deirdre Fitzgerald Hughes
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin, Ireland
- Correspondence: ; Tel.: +353-1-8093711
| |
Collapse
|
6
|
Morici P, Rizzato C, Ghelardi E, Rossolini GM, Lupetti A. Sensitization of KPC and NDM Klebsiella pneumoniae To Rifampicin by the Human Lactoferrin-Derived Peptide hLF1-11. Microbiol Spectr 2023; 11:e0276722. [PMID: 36537823 PMCID: PMC9927577 DOI: 10.1128/spectrum.02767-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A synergistic effect of non-bactericidal concentrations of the human lactoferrin (hLF)-derived peptide hLF1-11 and rifampicin against multidrug-resistant KPC (Klebsiella pneumoniae carbapenemase)-producing K. pneumoniae has been previously shown. The present study focuses on the mechanism(s) underlying this synergistic effect. The contribution of hLF1-11 and rifampicin to the synergistic effect was evaluated by killing assays with KPC K. pneumoniae cells incubated with hLF1-11 and, after washing, with rifampicin, or vice versa. Cell membrane permeability and polarization upon exposure to hLF1-11 and/or rifampicin were evaluated by ethidium bromide (EtBr) and DiBAC4(3) (bis-1,3-dibutylbarbituric acid trimethine oxonol) permeability, respectively. The effect of carbonyl cyanide m-chlorophenyl hydrazone (CCCP), an uncoupler of oxidative phosphorylation, was also evaluated. KPC K. pneumoniae cells were effectively killed after prior exposure to rifampicin for 30 to 60 min followed by treatment with hLF1-11, while no antibacterial activity was observed when cells were incubated with hLF1-11 first and then with rifampicin. EtBr accumulation increased upon exposure to hLF1-11 or the combination of hLF1-11 and rifampicin, but not upon exposure to rifampicin alone. Moreover, hLF1-11 induced a dose-dependent membrane depolarization. As expected, the antibacterial activity of hLF1-11 alone or combined with rifampicin was significantly reduced in the presence of CCCP. Furthermore, hLF1-11 and rifampicin were synergistic also against a colistin-resistant NDM (New Delhi metallo-β-lactamase)-producing K. pneumoniae strain. The results suggest that rifampicin was accumulated by KPC cells during the 30-to-60-min incubation and that the addition of hLF1-11 sensitized bacterial cells to rifampicin by inducing a transient loss of membrane potential and increased cell membrane permeability, thus facilitating the entrance and retention of rifampicin into the cytoplasm. IMPORTANCE The present study describes a synergistic effect between rifampicin, an impermeable hydrophobic antibiotic with an intracellular target, and an hLF1-11, an antimicrobial peptide derived from human lactoferrin, against multidrug-resistant Klebsiella pneumoniae. Carbapenem-resistant K. pneumoniae has recently caused an outbreak in Tuscany, Italy, thus pressing the need for the development of new treatment options. The mechanisms underlying such a synergistic effect have been studied. The results suggest that the synergistic effect was due to the transient loss of membrane potential induced by hLF1-11 and the subsequent increase in cell membrane permeability which allowed rifampicin to enter the bacterial cell. Therefore, it is likely that a sub-inhibitory concentration of hLF1-11 can efficiently permeabilize K. pneumoniae cells to rifampicin, allowing the antibiotic to reach its intracellular target. These results encourage further exploration of possible applications of this synergistic combination in the treatment of K. pneumoniae infections.
Collapse
Affiliation(s)
- Paola Morici
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Zayed NE, El Fakharany K, Mehriz Naguib Abozaid M. Intrapleural Instillation of Sodium Bicarbonate versus Urokinase in Management of Complicated Pleural Effusion: A Comparative Cohort Study. Int J Gen Med 2022; 15:8705-8713. [PMID: 36575733 PMCID: PMC9790168 DOI: 10.2147/ijgm.s388488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Aim The main target is evacuation; however, with evidence about the value of intrapleural instillation of different fibrinolytic agents still under evaluation, our aim was comparing the effectiveness and safety of intrapleural instillation of sodium bicarbonate (NaHCO3) in comparison with urokinase in patients with infected pleural effusion. Methods Our prospective cohort study included 40 patients with complicated empyema; the diagnosis was based on analysis of aspirated fluid in association with radiological and bacteriological culture. The patients were subjected to instillation of two different fibrinolytic agents; the first one was NaHCO3, the second was urokinase. Results The commonest underlying chest infection that was visualized by CT was pneumonia 70%. Nearly half of cases had community-acquired infection (45%), and more than half of them (55%) had anaerobic infection, and only five cases had TB pleural effusion based on ADA-positive, tuberculin skin test in addition to Abram's needles closed biopsy. The rate of repeated therapeutic thoracentesis success in each group was 85%; 80% in NaHCO3 group, and 90% in urokinase group, both of them was significantly equal, P=0.37. Moreover, the frequency of complications in all patients was less than 13%, hence hemothorax and iatrogenic pneumothorax was 12.5%, and only 10% of cases were admitted in ICU after the maneuver, with insignificant difference in between the groups. However, looking at the smaller rate of RTT failure of NaHCO3 or urokinase, the logistic regression model showed that RTT-NaHCO3 was insignificantly related to failure in both unadjusted and adjusted models, P=0.37 and 0.32, respectively, and only smoking habits increase the likelihood of failure 9-fold (OR=8.9, P=0.04) with respect to age, sex, and treatment methods. Conclusion The efficacy of repeated therapeutic thoracentesis (RTT) with intrapleural instillation of NaHCO3 was effective and safe, the same as urokinase, with consideration that NaHCO3 was much more available and affordable than urokinase.
Collapse
Affiliation(s)
- Niveen E Zayed
- Department of Chest Disease, Faculty of Medicine, Zagazig University, Zagazig City, Egypt,Correspondence: Niveen E Zayed, Chest Department, Zagazig University, Faculty of Medicine, Sharkia Government, Zagazig City, 44519, Egypt, Tel +201024831444, Email ;
| | - Karim El Fakharany
- Department of Cardiothoracic Surgery, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| | | |
Collapse
|
8
|
Zhang F, Yang P, Mao W, Zhong C, Zhang J, Chang L, Wu X, Liu H, Zhang Y, Gou S, Ni J. Short, mirror-symmetric antimicrobial peptides centered on "RRR" have broad-spectrum antibacterial activity with low drug resistance and toxicity. Acta Biomater 2022; 154:145-167. [PMID: 36241015 DOI: 10.1016/j.actbio.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
The increasingly severe bacterial resistance worldwide pushes people to discover and design potential antibacterial drugs unavoidably. In this work, a series of short, mirror-symmetric peptides were designed and successfully synthesized, centered on "RRR" and labeled with hydrophobic amino acids at both ends. Based on the structure-activity relationship analysis, LWWR (LWWRRRWWL-NH2) was screened as a desirable mirror-symmetric peptide for further study. As expected, LWWR displayed broad-spectrum antibacterial activity against the standard bacteria and antibiotic-resistant strains. Undoubtedly, the high stability of LWWR in a complex physiological environment was an essential guarantee to maximizing its antibacterial activity. Indeed, LWWR also exhibited a rapid bactericidal speed and a low tendency to develop bacterial resistance, based on the multiple actions of non-receptor-mediated membrane actions and intra-cellular mechanisms. Surprisingly, although LWWR showed similar in vivo antibacterial activity compared with Polymyxin B and Melittin, the in vivo safety of LWWR was far higher than that of them, so LWWR had better therapeutic potential. In summary, the desirable mirror-symmetric peptide LWWR was promised as a potential antibacterial agent to confront the antibiotics resistance crisis. STATEMENT OF SIGNIFICANCE: Witnessing the growing problem of antibiotic resistance, a series of short, mirror-symmetric peptides based on the symmetric center "RRR" and hydrophobic terminals were designed and synthesized in this study. Among, LWWR (LWWRRRWWL-NH2) presented broad-spectrum antibacterial activity both in vitro and in vivo due to its multiple mechanisms and good stability. Meanwhile, the low drug resistance and toxicity of LWWR also suggested its potential for clinical application. The findings of this study will provide some inspiration for the design and development of potential antibacterial agents, and contribute to the elimination of bacterial infections worldwide as soon as possible.
Collapse
Affiliation(s)
- Fangyan Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Yang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Mao
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Zhong
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingying Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Linlin Chang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Wu
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liu
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sanhu Gou
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingman Ni
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
9
|
Wang M, Bai Z, Liu S, Liu Y, Wang Z, Zhou G, Gong X, Jiang Y, Sui Z. Accurate quantification of total bacteria in raw milk by flow cytometry using membrane potential as a key viability parameter. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Meir O, Zaknoon F, Mor A. An efflux-susceptible antibiotic-adjuvant with systemic efficacy against mouse infections. Sci Rep 2022; 12:17673. [PMID: 36271103 PMCID: PMC9586926 DOI: 10.1038/s41598-022-21526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023] Open
Abstract
Scarcity of effective treatments against sepsis is daunting, especially under the contemporary standpoints on antibiotics resistance, entailing the development of alternative treatment strategies. Here, we describe the design and antibiotic adjuvant properties of a new lipopeptide-like pentamer, decanoyl-bis.diaminobutyrate-aminododecanoyl-diaminobutyrate-amide (C10BBc12B), whose sub-maximal tolerated doses combinations with inefficient antibiotics demonstrated systemic efficacies in murine models of peritonitis-sepsis and urinary-tract infections. Attempts to shed light into the mechanism of action using membrane-active fluorescent probes, suggest outer-membrane interactions to dominate the pentamer's adjuvant properties, which were not associated with typical inner-membrane damages or with delayed bacterial growth. Yet, checkerboard titrations with low micromolar concentrations of C10BBc12B exhibited unprecedented capacities in potentiation of hydrophobic antibiotics towards Gram-negative ESKAPE pathogens, with an apparent low propensity for prompting resistance to the antibiotics. Assessment of the pentamer's potentiating activities upon efflux inhibition incites submission of a hitherto unreported, probable action mechanism implicating the pentamer's de-facto capacity to hijack bacterial efflux pumps for boosting its adjuvant activity through repetitive steps including outer-membrane adhesion, translocation and subsequent expulsion.
Collapse
Affiliation(s)
- Ohad Meir
- grid.6451.60000000121102151Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, 3200003 Haifa, Israel
| | - Fadia Zaknoon
- grid.6451.60000000121102151Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, 3200003 Haifa, Israel
| | - Amram Mor
- grid.6451.60000000121102151Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
11
|
Meng F, Nie T, Lyu Y, Lyu F, Bie X, Lu Y, Zhao M, Lu Z. Plantaricin A reverses resistance to ciprofloxacin of multidrug‐resistant
Staphylococcus aureus
by inhibiting efflux pumps. Environ Microbiol 2022; 24:4818-4833. [DOI: 10.1111/1462-2920.16158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Fanqiang Meng
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
- Microbiology Department, College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Nanjing Agricultural University Nanjing Jiangsu China
| | - Ting Nie
- School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Yunbin Lyu
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Fengxia Lyu
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Xiaomei Bie
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Yingjian Lu
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Mingwen Zhao
- Microbiology Department, College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Nanjing Agricultural University Nanjing Jiangsu China
| | - Zhaoxin Lu
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| |
Collapse
|
12
|
Si Z, Zheng W, Prananty D, Li J, Koh CH, Kang ET, Pethe K, Chan-Park MB. Polymers as advanced antibacterial and antibiofilm agents for direct and combination therapies. Chem Sci 2022; 13:345-364. [PMID: 35126968 PMCID: PMC8729810 DOI: 10.1039/d1sc05835e] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
The growing prevalence of antimicrobial drug resistance in pathogenic bacteria is a critical threat to global health. Conventional antibiotics still play a crucial role in treating bacterial infections, but the emergence and spread of antibiotic-resistant micro-organisms are rapidly eroding their usefulness. Cationic polymers, which target bacterial membranes, are thought to be the last frontier in antibacterial development. This class of molecules possesses several advantages including a low propensity for emergence of resistance and rapid bactericidal effect. This review surveys the structure-activity of advanced antimicrobial cationic polymers, including poly(α-amino acids), β-peptides, polycarbonates, star polymers and main-chain cationic polymers, with low toxicity and high selectivity to potentially become useful for real applications. Their uses as potentiating adjuvants to overcome bacterial membrane-related resistance mechanisms and as antibiofilm agents are also covered. The review is intended to provide valuable information for design and development of cationic polymers as antimicrobial and antibiofilm agents for translational applications.
Collapse
Affiliation(s)
- Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Wenbin Zheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Dicky Prananty
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Jianghua Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Chong Hui Koh
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Kent Ridge Singapore 117585 Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore 636921 Singapore
- School of Biological Sciences, Nanyang Technological University Singapore 637551 Singapore
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore 636921 Singapore
- School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
13
|
Zaknoon F, Meir O, Mor A. Mechanistic Studies of Antibiotic Adjuvants Reducing Kidney's Bacterial Loads upon Systemic Monotherapy. Pharmaceutics 2021; 13:pharmaceutics13111947. [PMID: 34834362 PMCID: PMC8621570 DOI: 10.3390/pharmaceutics13111947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/01/2022] Open
Abstract
We describe the design and attributes of a linear pentapeptide-like derivative (C14(ω5)OOc10O) screened for its ability to elicit bactericidal competences of plasma constituents against Gram-negative bacteria (GNB). In simpler culture media, the lipopeptide revealed high aptitudes to sensitize resilient GNB to hydrophobic and/or efflux-substrate antibiotics, whereas in their absence, C14(ω5)OOc10O only briefly delayed bacterial proliferation. Instead, at low micromolar concentrations, the lipopeptide has rapidly lowered bacterial proton and ATP levels, although significantly less than upon treatment with its bactericidal analog. Mechanistic studies support a two-step scenario providing a plausible explanation for the lipopeptide’s biological outcomes against GNB: initially, C14(ω5)OOc10O permeabilizes the outer membrane similarly to polymyxin B, albeit in a manner not necessitating as much LPS-binding affinity. Subsequently, C14(ω5)OOc10O would interact with the inner membrane gently yet intensively enough to restrain membrane-protein functions such as drug efflux and/or ATP generation, while averting the harsher inner membrane perturbations that mediate the fatal outcome associated with bactericidal peers. Preliminary in vivo studies where skin wound infections were introduced in mice, revealed a significant efficacy in affecting bacterial viability upon topical treatment with creams containing C14(ω5)OOc10O, whereas synergistic combination therapies were able to secure the pathogen’s eradication. Further, capitalizing on the finding that C14(ω5)OOc10O plasma-potentiating concentrations were attainable in mice blood at sub-maximal tolerated doses, we used a urinary tract infection model to acquire evidence for the lipopeptide’s systemic capacity to reduce the kidney’s bacterial loads. Collectively, the data establish the role of C14(ω5)OOc10O as a compelling antibacterial potentiator and suggest its drug-like potential.
Collapse
|
14
|
Terekhova N, Khailova LS, Rokitskaya TI, Nazarov PA, Islamov DR, Usachev KS, Tatarinov DA, Mironov VF, Kotova EA, Antonenko YN. Trialkyl(vinyl)phosphonium Chlorophenol Derivatives as Potent Mitochondrial Uncouplers and Antibacterial Agents. ACS OMEGA 2021; 6:20676-20685. [PMID: 34396013 PMCID: PMC8359139 DOI: 10.1021/acsomega.1c02909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 05/08/2023]
Abstract
Trialkyl phosphonium derivatives of vinyl-substituted p-chlorophenol were synthesized here by a recently developed method of preparing quaternary phosphonium salts from phosphine oxides using Grignard reagents. All the derivatives with a number (n) of carbon atoms in phosphonium alkyl substituents varying from 4 to 7 showed pronounced uncoupling activity in isolated rat liver mitochondria at micromolar concentrations, with a tripentyl derivative being the most effective both in accelerating respiration and causing membrane potential collapse, as well as in provoking mitochondrial swelling in a potassium-acetate medium. Remarkably, the trialkyl phosphonium derivatives with n from 4 to 7 also proved to be rather potent antibacterial agents. Methylation of the chlorophenol hydroxyl group suppressed the effects of P555 and P444 on the respiration and membrane potential of mitochondria but not those of P666, thereby suggesting a mechanistic difference in the mitochondrial uncoupling by these derivatives, which was predominantly protonophoric (carrier-like) in the case of P555 and P444 but detergent-like with P666. The latter was confirmed by the carboxyfluorescein leakage assay on model liposomal membranes.
Collapse
Affiliation(s)
- Natalia
V. Terekhova
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Lyudmila S. Khailova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Tatyana I. Rokitskaya
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Pavel A. Nazarov
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Daut R. Islamov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Konstantin S. Usachev
- Institute
of Fundamental Medicine and Biology, Kazan
Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Dmitry A. Tatarinov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Vladimir F. Mironov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Elena A. Kotova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Yuri N. Antonenko
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| |
Collapse
|
15
|
Structurally nanoengineered antimicrobial peptide polymers: design, synthesis and biomedical applications. World J Microbiol Biotechnol 2021; 37:139. [PMID: 34278535 PMCID: PMC8286942 DOI: 10.1007/s11274-021-03109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 11/02/2022]
Abstract
Antimicrobial resistance not only increases the contagiousness of infectious diseases but also a threat for the future as it is one of the health care concern around the globe. Conventional antibiotics are unsuccessful in combating chronic infections caused by multidrug-resistant (MDR) bacteria, therefore it is important to design and develop novel strategies to tackle this problems. Among various novel strategies, Structurally Nanoengineered Antimicrobial Peptide Polymers (SNAPPs) have been introduced in recent years to overcome this global health care issue and they are found to be more efficient in their performance. Many facile methods are adapted to synthesize complex SNAPPs with required dimensions and unique functionalities. Their unique characteristics and remarkable properties have been exploited for their immense applications in various fields including biomedicine, targeting therapies, gene delivery, bioimaging, and many more. This review article deals with its background, design, synthesis, mechanism of action, and wider applications in various fields of SNAPPs.
Collapse
|
16
|
Zhu N, Zhong C, Liu T, Zhu Y, Gou S, Bao H, Yao J, Ni J. Newly designed antimicrobial peptides with potent bioactivity and enhanced cell selectivity prevent and reverse rifampin resistance in Gram-negative bacteria. Eur J Pharm Sci 2021; 158:105665. [DOI: 10.1016/j.ejps.2020.105665] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 01/10/2023]
|
17
|
Hyun S, Choi Y, Jo D, Choo S, Park TW, Park SJ, Kim S, Lee S, Park S, Jin SM, Cheon DH, Yoo W, Arya R, Chong YP, Kim KK, Kim YS, Lee Y, Yu J. Proline Hinged Amphipathic α-Helical Peptide Sensitizes Gram-Negative Bacteria to Various Gram-Positive Antibiotics. J Med Chem 2020; 63:14937-14950. [DOI: 10.1021/acs.jmedchem.0c01506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Soonsil Hyun
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Yoonhwa Choi
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Doyeon Jo
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Seolah Choo
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Tae Woo Park
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Su-Jin Park
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seoyeon Kim
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Seonju Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sohyun Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sun Mi Jin
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Dae Hee Cheon
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Wanki Yoo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Rekha Arya
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Yong Pil Chong
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Yang Soo Kim
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jaehoon Yu
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
18
|
Zhang D, Hu Y, Zhu Q, Huang J, Chen Y. Proteomic interrogation of antibiotic resistance and persistence in Escherichia coli - progress and potential for medical research. Expert Rev Proteomics 2020; 17:393-409. [PMID: 32567419 DOI: 10.1080/14789450.2020.1784731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction Escherichia coli strains possess two survival strategies to endure lethal antibiotic exposure including antibiotic resistance and persistence, in which persistence can contribute to the emergence of antibiotic resistance and increasing the risk of multidrug resistance. Using high-throughput proteomics for the comprehensive understanding of mechanisms of antibiotic resistance and persistence is an effective strategy for development of target-based anti-bacterial therapies. Areas covered In this review, we summarize a comprehensive proteomic perspective of antibiotic resistance and persistence in E. coli, and overview of anti-antibiotic resistance and anti-persister molecules and strategies for the development of potential therapies. Expert opinion Proteomics allows us to globally identify the critical proteins and pathways involved in antibiotic resistance and persistence. Advancements in methodologies of proteomics and multi-omic strategies are required to overcome the limitations of proteomics and better understand mechanisms of antibiotic resistance and persistence in E. coli, and to open the possibility for identification of new targets for alternative strategies in therapeutics.
Collapse
Affiliation(s)
- Danfeng Zhang
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China
| | - Yuanqing Hu
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China
| | - Qiuqiang Zhu
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China
| | - Jiafu Huang
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China.,Engineering Technological Center of Mushroom Industry , Zhangzhou, China
| | - Yiyun Chen
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China
| |
Collapse
|
19
|
Si Z, Lim HW, Tay MYF, Du Y, Ruan L, Qiu H, Zamudio‐Vazquez R, Reghu S, Chen Y, Tiong WS, Marimuthu K, De PP, Ng OT, Zhu Y, Gan Y, Chi YR, Duan H, Bazan GC, Greenberg EP, Chan‐Park MB, Pethe K. A Glycosylated Cationic Block Poly(β‐peptide) Reverses Intrinsic Antibiotic Resistance in All ESKAPE Gram‐Negative Bacteria. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhangyong Si
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Hui Wen Lim
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 636921 Singapore
| | - Moon Y. F. Tay
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Yu Du
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Lin Ruan
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Haofeng Qiu
- Medical School of Ningbo UniversityNingbo University Ningbo 315211 China
| | - Rubí Zamudio‐Vazquez
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Sheethal Reghu
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Yahua Chen
- Department of BiochemistryNational University of Singapore Singapore 117596 Singapore
| | - Wen Shuo Tiong
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 636921 Singapore
| | - Kalisvar Marimuthu
- Tan Tock Seng Hospital Singapore 308433 Singapore
- Yong Loo Lin School of MedicineNational University of Singapore Singapore 119228 Singapore
- National Centre for Infectious Diseases Singapore
| | | | - Oon Tek Ng
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 636921 Singapore
- Tan Tock Seng Hospital Singapore 308433 Singapore
- National Centre for Infectious Diseases Singapore
| | - Yabin Zhu
- Medical School of Ningbo UniversityNingbo University Ningbo 315211 China
| | - Yunn‐Hwen Gan
- Department of BiochemistryNational University of Singapore Singapore 117596 Singapore
| | - Yonggui Robin Chi
- Division of Chemistry & Biological ChemistryNanyang Technological University Singapore 637371 Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Guillermo C. Bazan
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
- Department of Chemistry and BiochemistryUniversity of California Santa Barbara CA 93106-9510 USA
| | - E. Peter Greenberg
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
- Department of MicrobiologyUniversity of Washington Seattle WA 98195 USA
| | - Mary B. Chan‐Park
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 636921 Singapore
| | - Kevin Pethe
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 636921 Singapore
- School of Biological SciencesNanyang Technological University Singapore 637551 Singapore
| |
Collapse
|
20
|
Si Z, Lim HW, Tay MYF, Du Y, Ruan L, Qiu H, Zamudio-Vazquez R, Reghu S, Chen Y, Tiong WS, Marimuthu K, De PP, Ng OT, Zhu Y, Gan YH, Chi YR, Duan H, Bazan GC, Greenberg EP, Chan-Park MB, Pethe K. A Glycosylated Cationic Block Poly(β-peptide) Reverses Intrinsic Antibiotic Resistance in All ESKAPE Gram-Negative Bacteria. Angew Chem Int Ed Engl 2020; 59:6819-6826. [PMID: 32011781 DOI: 10.1002/anie.201914304] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/07/2020] [Indexed: 02/02/2023]
Abstract
Carbapenem-resistant Gram-negative bacteria (GNB) are heading the list of pathogens for which antibiotics are the most critically needed. Many antibiotics are either unable to penetrate the outer-membrane or are excluded by efflux mechanisms. Here, we report a cationic block β-peptide (PAS8-b-PDM12) that reverses intrinsic antibiotic resistance in GNB by two distinct mechanisms of action. PAS8-b-PDM12 does not only compromise the integrity of the bacterial outer-membrane, it also deactivates efflux pump systems by dissipating the transmembrane electrochemical potential. As a result, PAS8-b-PDM12 sensitizes carbapenem- and colistin-resistant GNB to multiple antibiotics in vitro and in vivo. The β-peptide allows the perfect alternation of cationic versus hydrophobic side chains, representing a significant improvement over previous antimicrobial α-peptides sensitizing agents. Together, our results indicate that it is technically possible for a single adjuvant to reverse innate antibiotic resistance in all pathogenic GNB of the ESKAPE group, including those resistant to last resort antibiotics.
Collapse
Affiliation(s)
- Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Hui Wen Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Moon Y F Tay
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yu Du
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lin Ruan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Haofeng Qiu
- Medical School of Ningbo University, Ningbo University, Ningbo, 315211, China
| | - Rubí Zamudio-Vazquez
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Sheethal Reghu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yahua Chen
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Wen Shuo Tiong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Kalisvar Marimuthu
- Tan Tock Seng Hospital, Singapore, 308433, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,National Centre for Infectious Diseases, Singapore
| | | | - Oon Tek Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore.,Tan Tock Seng Hospital, Singapore, 308433, Singapore.,National Centre for Infectious Diseases, Singapore
| | - Yabin Zhu
- Medical School of Ningbo University, Ningbo University, Ningbo, 315211, China
| | - Yunn-Hwen Gan
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry, Nanyang Technological University, Singapore, 637371, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Guillermo C Bazan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106-9510, USA
| | - E Peter Greenberg
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore.,Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
21
|
Nazarov PA, Kirsanov RS, Denisov SS, Khailova LS, Karakozova MV, Lyamzaev KG, Korshunova GA, Lukyanov KA, Kotova EA, Antonenko YN. Fluorescein Derivatives as Antibacterial Agents Acting via Membrane Depolarization. Biomolecules 2020; 10:biom10020309. [PMID: 32075319 PMCID: PMC7072581 DOI: 10.3390/biom10020309] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Appending a lipophylic alkyl chain by ester bond to fluorescein has been previously shown to convert this popular dye into an effective protonophoric uncoupler of oxidative phosphorylation in mitochondria, exhibiting neuro- and nephroprotective effects in murine models. In line with this finding, we here report data on the pronounced depolarizing effect of a series of fluorescein decyl esters on bacterial cells. The binding of the fluorescein derivatives to Bacillus subtilis cells was monitored by fluorescence microscopy and fluorescence correlation spectroscopy (FCS). FCS revealed the energy-dependent accumulation of the fluorescein esters with decyl(triphenyl)- and decyl(tri-p-tolyl)phosphonium cations in the bacterial cells. The latter compound proved to be the most potent in suppressing B. subtilis growth.
Collapse
Affiliation(s)
- Pavel A. Nazarov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.S.K.); (L.S.K.); (K.G.L.); (G.A.K.); (Y.N.A.)
- Correspondence: (P.A.N.); (E.A.K.)
| | - Roman S. Kirsanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.S.K.); (L.S.K.); (K.G.L.); (G.A.K.); (Y.N.A.)
| | - Stepan S. Denisov
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands;
| | - Ljudmila S. Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.S.K.); (L.S.K.); (K.G.L.); (G.A.K.); (Y.N.A.)
| | - Marina V. Karakozova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (M.V.K.); (K.A.L.)
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.S.K.); (L.S.K.); (K.G.L.); (G.A.K.); (Y.N.A.)
| | - Galina A. Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.S.K.); (L.S.K.); (K.G.L.); (G.A.K.); (Y.N.A.)
| | - Konstantin A. Lukyanov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (M.V.K.); (K.A.L.)
| | - Elena A. Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.S.K.); (L.S.K.); (K.G.L.); (G.A.K.); (Y.N.A.)
- Correspondence: (P.A.N.); (E.A.K.)
| | - Yuri N. Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.S.K.); (L.S.K.); (K.G.L.); (G.A.K.); (Y.N.A.)
| |
Collapse
|
22
|
Konai MM, Haldar J. Lysine-Based Small Molecule Sensitizes Rifampicin and Tetracycline against Multidrug-Resistant Acinetobacter baumannii and Pseudomonas aeruginosa. ACS Infect Dis 2020; 6:91-99. [PMID: 31646866 DOI: 10.1021/acsinfecdis.9b00221] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The priority pathogen list published by the World Health Organization (WHO) has categorized carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa as the top two critical pathogens, and hence, the development of novel antibacterial strategies to tackle such bacteria is highly necessary. Toward this aim, herein we report the efficacy of the combination of a lysine-based membrane-active small molecule, D-LANA-14 (d-lysine conjugated aliphatic norspermidine analogue bearing tetradecanoyl chain) and the obsolete/inactive antibiotics (such as tetracycline and rifampicin) to combat these superbugs. The combination of D-LANA-14 and the antibiotics tetracycline or rifampicin showed not only synergistic activity against growing planktonic cells of meropenem-resistant A. baumannii and P. aeruginosa clinical isolates but was also able to disrupt their established biofilms. More importantly, this synergistic effect was retained under the in vivo scenario, wherein the combination showed excellent efficacy in mice model of burn-wound infection with a drastic reduction of bacterial burden. A combined treatment of D-LANA-14 (40 mg/kg) and rifampicin (40 mg/kg) showed 4.9 log and 4.0 log reduction in A. baumannii and P. aeruginosa viability, respectively. On the contrary, individual treatment of D-LANA-14 decreased bacterial burden by 2.3 log (A. baumannii) and 1.3 log (P. aeruginosa) and rifampicin reduced about 3.0 log (A. baumannii) and 1.6 log (P. aeruginosa). Owing to the membrane-active nature imparted by D-LANA-14, bacteria could not develop resistance against the combined treatment, whereas a high-level of resistance development was observed against the last resort Gram-negative antibiotic, colistin. Taken together, the results therefore indicate a great potential of this novel combination to be developed as therapeutic regimen to combat infections caused by critical Gram-negative pathogens.
Collapse
Affiliation(s)
- Mohini Mohan Konai
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
23
|
Sundaram K, Miller DP, Kumar A, Teng Y, Sayed M, Mu J, Lei C, Sriwastva MK, Zhang L, Yan J, Merchant ML, He L, Fang Y, Zhang S, Zhang X, Park JW, Lamont RJ, Zhang HG. Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas gingivalis. iScience 2019; 21:308-327. [PMID: 31678913 PMCID: PMC6838522 DOI: 10.1016/j.isci.2019.10.032] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/01/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Plant exosomes protect plants against infection; however, whether edible plant exosomes can protect mammalian hosts against infection is not known. In this study, we show that ginger exosome-like nanoparticles (GELNs) are selectively taken up by the periodontal pathogen Porphyromonas gingivalis in a GELN phosphatidic acid (PA) dependent manner via interactions with hemin-binding protein 35 (HBP35) on the surface of P. gingivalis. Compared with PA (34:2), PA (34:1) did not interact with HBP35, indicating that the degree of unsaturation of PA plays a critical role in GELN-mediated interaction with HBP35. On binding to HBP35, pathogenic mechanisms of P. gingivalis were significantly reduced following interaction with GELN cargo molecules, including PA and miRs. These cargo molecules interacted with multiple pathogenic factors in the recipient bacteria simultaneously. Using edible plant exosome-like nanoparticles as a potential therapeutic agent to prevent/treat chronic periodontitis was further demonstrated in a mouse model.
Collapse
Affiliation(s)
- Kumaran Sundaram
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Anil Kumar
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Yun Teng
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Mohammed Sayed
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Chao Lei
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Mukesh K Sriwastva
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Jun Yan
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Liqing He
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Yuan Fang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Shuangqin Zhang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Juw W Park
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA; KBRIN Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Huang-Ge Zhang
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309, 505 South Hancock Street, Louisville, KY 40202, USA.
| |
Collapse
|
24
|
HAMLET, a protein complex from human milk has bactericidal activity and enhances the activity of antibiotics against pathogenic Streptococci. Antimicrob Agents Chemother 2019:AAC.01193-19. [PMID: 31591115 DOI: 10.1128/aac.01193-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
HAMLET is a protein-lipid complex derived from human milk that was first described for its tumoricidal activity. Later studies showed that HAMLET also has direct bactericidal activity against select species of bacteria, with highest activity against Streptococcus pneumoniae Additionally, HAMLET in combination with various antimicrobial agents can make a broader range of antibiotic-resistant bacterial species sensitive to antibiotics. Here, we show that HAMLET has direct antibacterial activity not only against pneumococci, but also against Streptococcus pyogenes (GAS) and Streptococcus agalactiae (GBS). Analogous to pneumococci, HAMLET-treatment of GAS and GBS resulted in depolarization of the bacterial membrane followed by membrane permeabilization and death that could be inhibited by calcium and sodium transport inhibitors. Treatment of clinical antibiotic-resistant isolates of S. pneumoniae, GAS, and GBS with sublethal concentrations of HAMLET in combination with antibiotics decreased the minimal inhibitory concentrations of the respective antibiotic into the sensitive range. This effect could also be blocked by ion transport inhibitors, suggesting that HAMLET's bactericidal and combination treatment effects used similar mechanisms. Finally, we show that HAMLET potentiated the effects of erythromycin against erythromycin-resistant bacteria more effectively than it potentiated killing by penicillin G of bacteria resistant to penicillin G. These results show for the first time that HAMLET effectively kills three different species of pathogenic Streptococci using similar mechanisms and also potentiate the activity of macrolides and lincosamides more effectively than combination treatment with beta-lactams. These findings suggest a potential therapeutic role for HAMLET in repurposing antibiotics currently causing treatment failures in patients.
Collapse
|
25
|
Baker KR, Jana B, Hansen AM, Nielsen HM, Franzyk H, Guardabassi L. Repurposing Azithromycin and Rifampicin Against Gram-Negative Pathogens by Combination With Peptidomimetics. Front Cell Infect Microbiol 2019; 9:236. [PMID: 31334131 PMCID: PMC6615261 DOI: 10.3389/fcimb.2019.00236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Synthetic peptidomimetics may be designed to mimic functions of antimicrobial peptides, including potentiation of antibiotics, yet possessing improved pharmacological properties. Pairwise screening of 42 synthetic peptidomimetics combined with the antibiotics azithromycin and rifampicin in multidrug-resistant (MDR) Escherichia coli ST131 and Klebsiella pneumoniae ST258 led to identification of two subclasses of α-peptide/β-peptoid hybrids that display synergy with azithromycin and rifampicin (fractional inhibitory concentration indexes of 0.03–0.38). Further screening of the best three peptidomimetics in combination with a panel of 21 additional antibiotics led to identification of peptidomimetics that potentiated ticarcillin/clavulanate and erythromycin against E. coli, and clindamycin against K. pneumoniae. The study of six peptidomimetics was extended to Pseudomonas aeruginosa, confirming synergy with antibiotics for five of them. The most promising compound, H-(Lys-βNPhe)8-NH2, exerted only a minor effect on the viability of mammalian cells (EC50 ≥ 124–210 μM), and thus exhibited the highest selectivity toward bacteria. This compound also synergized with rifampicin and azithromycin at sub-micromolar concentrations (0.25–0.5 μM), thereby inducing susceptibility to these antibiotics at clinically relevant concentrations in clinical MDR isolates. This peptidomimetic lead and its analogs constitute promising candidates for efficient repurposing of rifampicin and azithromycin against Gram-negative pathogens.
Collapse
Affiliation(s)
- Kristin R Baker
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Bimal Jana
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Anna Mette Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
26
|
Hershkovits AS, Pozdnyakov I, Meir O, Mor A. Sub-inhibitory membrane damage undermines Staphylococcus aureus virulence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1172-1179. [PMID: 30974095 DOI: 10.1016/j.bbamem.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
Abstract
We investigated antibacterial properties of a recently described membrane-active lipopeptide, C10OOc12O (decanoyl-ornithyl-ornithyl-dodecanoyl-ornithyl-amide) against Gram-positive bacteria (GPB). Minimal inhibitory concentrations (MICs) and kinetics were compared in culture media and plasma. Chemo-sensitization to antibiotics was determined using the checkerboard assay. Membrane damages were estimated using diverse membrane potential sensitive dyes. ATP levels and relevant enzymes activities were measured using commercial bioassay kits. While relatively weakly active in simple culture media, sub-MIC levels (~ten-fold) of C10OOc12O have significantly improved the antibacterial function of Human plasma. Mechanistic studies indicated that C10OOc12O-treated bacteria have sustained mild membrane damage(s) in association with rapid (within 2 min) but low (<10%) dissipation of the trans-membrane potential; Intracellular ATP levels were transiently reduced (~20%) whereas extracellular ATP increased only at MIC values; Sub-inhibitory concentrations were sufficient for inhibiting major agr-regulated virulence factors (lipase and α-toxin) and for sensitizing MRSA USA300 to the antibiotic oxacillin to the point of reverting the bacteria status from oxacillin-resistant to oxacillin-sensitive (i.e., oxacillin MIC was reduced from 32 to 0.1 mg/l). These findings argue that by means of mild depolarization, C10OOc12O affects the quorum sensing regulator in a manner that transiently weakens bacterial defenses, thereby enforcing studies that support the potential usefulness of fighting S. aureus (and possibly other GPB) infections, by targeting its virulence.
Collapse
Affiliation(s)
- Ayelet Sarah Hershkovits
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Igor Pozdnyakov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ohad Meir
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amram Mor
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
27
|
Jammal J, Zaknoon F, Mor A. Eliciting improved antibacterial efficacy of host proteins in the presence of antibiotics. FASEB J 2017; 32:369-376. [DOI: 10.1096/fj.201700652r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/28/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Joanna Jammal
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of Technology Haifa Israel
| | - Fadia Zaknoon
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of Technology Haifa Israel
| | - Amram Mor
- Department of Biotechnology and Food EngineeringTechnion‐Israel Institute of Technology Haifa Israel
| |
Collapse
|
28
|
Molchanova N, Hansen PR, Franzyk H. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs. Molecules 2017; 22:E1430. [PMID: 28850098 PMCID: PMC6151827 DOI: 10.3390/molecules22091430] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 01/19/2023] Open
Abstract
The rapid emergence of multidrug-resistant pathogens has evolved into a global health problem as current treatment options are failing for infections caused by pan-resistant bacteria. Hence, novel antibiotics are in high demand, and for this reason antimicrobial peptides (AMPs) have attracted considerable interest, since they often show broad-spectrum activity, fast killing and high cell selectivity. However, the therapeutic potential of natural AMPs is limited by their short plasma half-life. Antimicrobial peptidomimetics mimic the structure and biological activity of AMPs, but display extended stability in the presence of biological matrices. In the present review, focus is on the developments reported in the last decade with respect to their design, synthesis, antimicrobial activity, cytotoxic side effects as well as their potential applications as anti-infective agents. Specifically, only peptidomimetics with a modular structure of residues connected via amide linkages will be discussed. These comprise the classes of α-peptoids (N-alkylated glycine oligomers), β-peptoids (N-alkylated β-alanine oligomers), β³-peptides, α/β³-peptides, α-peptide/β-peptoid hybrids, α/γ N-acylated N-aminoethylpeptides (AApeptides), and oligoacyllysines (OAKs). Such peptidomimetics are of particular interest due to their potent antimicrobial activity, versatile design, and convenient optimization via assembly by standard solid-phase procedures.
Collapse
Affiliation(s)
- Natalia Molchanova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
29
|
Uppu DSSM, Konai MM, Sarkar P, Samaddar S, Fensterseifer ICM, Farias-Junior C, Krishnamoorthy P, Shome BR, Franco OL, Haldar J. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria. PLoS One 2017; 12:e0183263. [PMID: 28837596 PMCID: PMC5570306 DOI: 10.1371/journal.pone.0183263] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections.
Collapse
Affiliation(s)
- Divakara S. S. M. Uppu
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Mohini M. Konai
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Paramita Sarkar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Sandip Samaddar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Isabel C. M. Fensterseifer
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia UC, Brası´lia, Brazil
- Molecular Pathology Post-Graduate Program, University of Brasília, Brasília, Brazil
| | | | - Paramanandam Krishnamoorthy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | - Bibek R. Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia UC, Brası´lia, Brazil
- Molecular Pathology Post-Graduate Program, University of Brasília, Brasília, Brazil
- S-inova Biotech, Pos-Graduação em Biotecnoloia, Universidade Catolica Dom Bosco, Campo Grande, Brazil
| | - Jayanta Haldar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
30
|
Koh JJ, Lin S, Beuerman RW, Liu S. Recent advances in synthetic lipopeptides as anti-microbial agents: designs and synthetic approaches. Amino Acids 2017; 49:1653-1677. [PMID: 28823054 DOI: 10.1007/s00726-017-2476-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
Infectious diseases impose serious public health burdens and continue to be a global public health crisis. The treatment of infections caused by multidrug-resistant pathogens is challenging because only a few viable therapeutic options are clinically available. The emergence and risk of drug-resistant superbugs and the dearth of new classes of antibiotics have drawn increasing awareness that we may return to the pre-antibiotic era. To date, lipopeptides have been received considerable attention because of the following properties: They exhibit potent antimicrobial activities against a broad spectrum of pathogens, rapid bactericidal activity and have a different antimicrobial action compared with most of the conventional antibiotics used today and very slow development of drug resistance tendency. In general, lipopeptides can be structurally classified into two parts: a hydrophilic peptide moiety and a hydrophobic fatty acyl chain. To date, a significant amount of design and synthesis of lipopeptides have been done to improve the therapeutic potential of lipopeptides. This review will present the current knowledge and the recent research in design and synthesis of new lipopeptides and their derivatives in the last 5 years.
Collapse
Affiliation(s)
- Jun-Jie Koh
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore
| | - Shuimu Lin
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Roger W Beuerman
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore.
- SRP Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore.
| | - Shouping Liu
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore.
- SRP Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore.
| |
Collapse
|
31
|
Meir O, Zaknoon F, Cogan U, Mor A. A broad-spectrum bactericidal lipopeptide with anti-biofilm properties. Sci Rep 2017; 7:2198. [PMID: 28526864 PMCID: PMC5438364 DOI: 10.1038/s41598-017-02373-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/10/2017] [Indexed: 11/30/2022] Open
Abstract
Previous studies of the oligoacyllysyl (OAK) series acyl-lysyl-lysyl-aminoacyl-lysine-amide, suggested their utility towards generating robust linear lipopeptide-like alternatives to antibiotics, although to date, none exhibited potent broad-spectrum bactericidal activity. To follow up on this premise, we produced a new analog (C14KKc12K) and investigated its properties in various media. Mechanistic studies suggest that C14KKc12K uses a non-specific membrane-disruptive mode of action for rapidly reducing viability of Gram-negative bacteria (GNB) similarly to polymyxin B (PMB), a cyclic lipopeptide used as last resort antibiotic. Indeed, C14KKc12K displayed similar affinity for lipopolysaccharides and induced cell permeabilization associated with rapid massive membrane depolarization. Unlike PMB however, C14KKc12K was also bactericidal to Gram-positive bacteria (GPB) at or near the minimal inhibitory concentration (MIC), as assessed against a multispecies panel of >50 strains, displaying MIC50 at 3 and 6 µM, respectively for GPB and GNB. C14KKc12K retained activity in human saliva, reducing the viability of cultivable oral microflora by >99% within two minutes of exposure, albeit at higher concentrations, which, nonetheless, were similar to the commercial gold standard, chlorhexidine. This equipotent bactericidal activity was also observed in pre-formed biofilms of Streptococcus mutans, a major periodontal pathogen. Such compounds therefore, may be useful for eradication of challenging poly-microbial infections.
Collapse
Affiliation(s)
- Ohad Meir
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Fadia Zaknoon
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Uri Cogan
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Amram Mor
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
32
|
Kalily E, Hollander A, Korin B, Cymerman I, Yaron S. Adaptation of Salmonella enterica Serovar Senftenberg to Linalool and Its Association with Antibiotic Resistance and Environmental Persistence. Appl Environ Microbiol 2017; 83:e03398-16. [PMID: 28258149 PMCID: PMC5411494 DOI: 10.1128/aem.03398-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/22/2017] [Indexed: 11/20/2022] Open
Abstract
A clinical isolate of Salmonella enterica serovar Senftenberg, isolated from an outbreak linked to the herb Ocimum basilicum L. (basil), has been shown to be resistant to basil oil and to the terpene alcohol linalool. To better understand how human pathogens might develop resistance to linalool and to investigate the association of this resistance with resistance to different antimicrobial agents, selective pressure was applied to the wild-type strain by sequential exposure to increasing concentrations of linalool. The results demonstrated that S Senftenberg adapted to linalool with a MIC increment of at least 8-fold, which also resulted in better resistance to basil oil and better survival on harvested basil leaves. Adaptation to linalool was shown to confer cross protection against the antibiotics trimethoprim, sulfamethoxazole, piperacillin, chloramphenicol, and tetracycline, increasing their MICs by 2- to 32-fold. The improved resistance was shown to correlate with multiple phenotypes that included changes in membrane fatty acid composition, induced efflux, reduced influx, controlled motility, and the ability to form larger aggregates in the presence of linalool. The adaptation to linalool obtained in vitro did not affect survival on the basil phyllosphere in planta and even diminished survival in soil, suggesting that development of extreme resistance to linalool may be accompanied by a loss of fitness. Altogether, this report notes the concern regarding the ability of human pathogens to develop resistance to commercial essential oils, a resistance that is also associated with cross-resistance to antibiotics and may endanger public health.IMPORTANCE Greater consumer awareness and concern regarding synthetic chemical additives have led producers to control microbial spoilage and hazards by the use of natural preservatives, such as plant essential oils with antimicrobial activity. This report establishes, however, that these compounds may provoke the emergence of resistant human pathogens. Herein, we demonstrate the acquisition of resistance to basil oil by Salmonella Senftenberg. Exposure to linalool, a component of basil oil, resulted in adaptation to the basil oil mixture, as well as cross protection against several antibiotics and better survival on harvested basil leaves. Collectively, this work highlights the hazard to public health while using plant essential oils without sufficient knowledge about their influence on pathogens at subinhibitory concentrations.
Collapse
Affiliation(s)
- Emmanuel Kalily
- Faculty of Biotechnology and Food Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amit Hollander
- Faculty of Biotechnology and Food Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ben Korin
- Faculty of Biotechnology and Food Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Itamar Cymerman
- Faculty of Biotechnology and Food Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sima Yaron
- Faculty of Biotechnology and Food Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
33
|
Mitochondria-targeted antioxidants as highly effective antibiotics. Sci Rep 2017; 7:1394. [PMID: 28469140 PMCID: PMC5431119 DOI: 10.1038/s41598-017-00802-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondria-targeted antioxidants are known to alleviate mitochondrial oxidative damage that is associated with a variety of diseases. Here, we showed that SkQ1, a decyltriphenyl phosphonium cation conjugated to a quinone moiety, exhibited strong antibacterial activity towards Gram-positive Bacillus subtilis, Mycobacterium sp. and Staphylococcus aureus and Gram-negative Photobacterium phosphoreum and Rhodobacter sphaeroides in submicromolar and micromolar concentrations. SkQ1 exhibited less antibiotic activity towards Escherichia coli due to the presence of the highly effective multidrug resistance pump AcrAB-TolC. E. coli mutants lacking AcrAB-TolC showed similar SkQ1 sensitivity, as B. subtilis. Lowering of the bacterial membrane potential by SkQ1 might be involved in the mechanism of its bactericidal action. No significant cytotoxic effect on mammalian cells was observed at bacteriotoxic concentrations of SkQ1. Therefore, SkQ1 may be effective in protection of the infected mammals by killing invading bacteria.
Collapse
|
34
|
Lyu Y, Yang X, Goswami S, Gorityala BK, Idowu T, Domalaon R, Zhanel GG, Shan A, Schweizer F. Amphiphilic Tobramycin-Lysine Conjugates Sensitize Multidrug Resistant Gram-Negative Bacteria to Rifampicin and Minocycline. J Med Chem 2017; 60:3684-3702. [PMID: 28409644 DOI: 10.1021/acs.jmedchem.6b01742] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromosomally encoded low membrane permeability and highly efficient efflux systems are major mechanisms by which Pseudomonas aeruginosa evades antibiotic actions. Our previous reports have shown that amphiphilic tobramycin-fluoroquinolone hybrids can enhance efficacy of fluoroquinolone antibiotics against multidrug-resistant (MDR) P. aeruginosa isolates. Herein, we report on a novel class of tobramycin-lysine conjugates containing an optimized amphiphilic tobramycin-C12 tether that sensitize Gram-negative bacteria to legacy antibiotics. Combination studies indicate the ability of these conjugates to synergize rifampicin and minocycline against MDR and extensively drug resistant (XDR) P. aeruginosa isolates and enhance efficacy of both antibiotics in the Galleria mellonella larvae in vivo infection model. Mode of action studies indicate that the amphiphilic tobramycin-lysine adjuvants enhance outer membrane cell penetration and affect the proton motive force, which energizes efflux pumps. Overall, this study provides a strategy for generating effective antibiotic adjuvants that overcome resistance of rifampicin and minocycline in MDR and XDR Gram-negative bacteria including P. aeruginosa.
Collapse
Affiliation(s)
- Yinfeng Lyu
- Institute of Animal Nutrition, Northeast Agricultural University , Harbin, Heilongjiang 150030, P.R. China.,Department of Chemistry, University of Manitoba , Winnipeg, MB R3T 2N2, Canada
| | - Xuan Yang
- Department of Chemistry, University of Manitoba , Winnipeg, MB R3T 2N2, Canada
| | - Sudeep Goswami
- Department of Chemistry, University of Manitoba , Winnipeg, MB R3T 2N2, Canada
| | | | - Temilolu Idowu
- Department of Chemistry, University of Manitoba , Winnipeg, MB R3T 2N2, Canada
| | - Ronald Domalaon
- Department of Chemistry, University of Manitoba , Winnipeg, MB R3T 2N2, Canada
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba , Winnipeg, MB R3T 1R9, Canada
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University , Harbin, Heilongjiang 150030, P.R. China
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba , Winnipeg, MB R3T 2N2, Canada.,Department of Medical Microbiology/Infectious Diseases, University of Manitoba , Winnipeg, MB R3T 1R9, Canada
| |
Collapse
|
35
|
Jammal J, Zaknoon F, Kaneti G, Hershkovits AS, Mor A. Sensitization of Gram-Negative Bacilli to Host Antibacterial Proteins. J Infect Dis 2017; 215:1599-1607. [DOI: 10.1093/infdis/jix119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/02/2017] [Indexed: 12/17/2022] Open
|
36
|
Alkyl-substituted phenylamino derivatives of 7-nitrobenz-2-oxa-1,3-diazole as uncouplers of oxidative phosphorylation and antibacterial agents: involvement of membrane proteins in the uncoupling action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:377-387. [DOI: 10.1016/j.bbamem.2016.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022]
|
37
|
Mohamed MF, Abdelkhalek A, Seleem MN. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep 2016; 6:29707. [PMID: 27405275 PMCID: PMC4942614 DOI: 10.1038/srep29707] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections present a serious challenge because of the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, antimicrobial peptides are novel alternatives to traditional antibiotics for tackling the issue of bacterial multidrug resistance. Herein, we investigated the antibacterial activity of two short novel peptides (WR12, a 12 residue peptide composed exclusively of arginine and tryptophan, and D-IK8, an eight residue β-sheet peptide) against multidrug resistant staphylococci. In vitro, both peptides exhibited good antibacterial activity against MRSA, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis. WR12 and D-IK8 were able to eradicate persisters, MRSA in stationary growth phase, and showed significant clearance of intracellular MRSA in comparison to both vancomycin and linezolid. In vivo, topical WR12 and D-IK8 significantly reduced both the bacterial load and the levels of the pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in MRSA-infected skin lesions. Moreover, both peptides disrupted established in vitro biofilms of S. aureus and S. epidermidis significantly more so than traditional antimicrobials tested. Taken together, these results support the potential of WR12 and D-IK8 to be used as a topical antimicrobial agent for the treatment of staphylococcal skin infections.
Collapse
Affiliation(s)
- Mohamed F. Mohamed
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Ahmed Abdelkhalek
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
38
|
Molecular mechanisms of membrane targeting antibiotics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:980-7. [DOI: 10.1016/j.bbamem.2015.10.018] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/07/2015] [Accepted: 10/23/2015] [Indexed: 01/17/2023]
|
39
|
Kalily E, Hollander A, Korin B, Cymerman I, Yaron S. Mechanisms of resistance to linalool inSalmonellaSenftenberg and their role in survival on basil. Environ Microbiol 2016; 18:3673-3688. [DOI: 10.1111/1462-2920.13268] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/14/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuel Kalily
- Faculty of Biotechnology and Food Engineering; and The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology; Haifa Israel
| | - Amit Hollander
- Faculty of Biotechnology and Food Engineering; and The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology; Haifa Israel
| | - Ben Korin
- Faculty of Biotechnology and Food Engineering; and The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology; Haifa Israel
| | - Itamar Cymerman
- Faculty of Biotechnology and Food Engineering; and The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology; Haifa Israel
| | - Sima Yaron
- Faculty of Biotechnology and Food Engineering; and The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology; Haifa Israel
| |
Collapse
|
40
|
Kaneti G, Meir O, Mor A. Controlling bacterial infections by inhibiting proton-dependent processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:995-1003. [PMID: 26522076 DOI: 10.1016/j.bbamem.2015.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
Bacterial resistance to antibiotics is recognized as one of the greatest threats in modern healthcare, taking a staggering toll worldwide. New approaches for controlling bacterial infections must be designed, eventually combining multiple strategies for complimentary therapies. This review explores an old/new paradigm for multi-targeted antibacterial therapy, focused at disturbing bacterial cytoplasmic membrane functions at sub minimal inhibitory concentrations, namely through superficial physical alterations of the bilayer, thereby perturbing transmembrane signals transduction. Such a paradigm may have the advantage of fighting the infection while avoiding many of the known resistance mechanisms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Galoz Kaneti
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ohad Meir
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Amram Mor
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
41
|
Oliveira DM, Melo FG, Balogun SO, Flach A, de Souza ECA, de Souza GP, Rocha IDNA, da Costa LAMA, Soares IM, da Silva LI, Ascêncio SD, de Oliveira Martins DT. Antibacterial mode of action of the hydroethanolic extract of Leonotis nepetifolia (L.) R. Br. involves bacterial membrane perturbations. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:356-363. [PMID: 26102550 DOI: 10.1016/j.jep.2015.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/04/2015] [Accepted: 06/14/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leonotis nepetifolia (L) R. Br., Lamiaceae, a pantropical shrub, popularly known in Brazil as "cordão-de-frade", "rubim", is reportedly used in Brazilian ethnomedicine as well as in different countries in the treatments of ailments such as infections, inflammations, wounds, stomach disorders, among others. AIM OF THE STUDY To evaluate its potential cytotoxicity and antibacterial mode of action of the hydroethanolic extract of L. nepetifolia (HELn) leaves, including phytochemical analysis. MATERIALS AND METHODS The cytotoxicity of HELn was investigated by Alamar blue assay, using CHO-K1 cells. Antibacterial activity of HELn was tested by broth microdilution methods against a panel of bacteria of clinical interest. The mode of action of L. nepetifolia was studied by targeting bacterial membranes. Phytochemical analysis was performed by determining total secondary metabolites with spectrophotometric assays and HPLC. RESULTS HELn is not cytotoxic in the in vitro evaluation (IC50>200 μg/mL). It demonstrated a good spectrum of antibacterial activity with major activity against Shigella flexneri, Enterococcus faecalis, Staphylococcus aureus and Bacillus subtilis with MIC=6.25 µg/mL, Helicobacter pylori with MIC of 25 µg/mL and Streptococcus pyogenes with MIC of 50 µg/mL. Its mode of action is associated, at least partly, with changes in the permeability of bacterial membranes, as evidenced by the increased entry of hydrophobic antibiotics in Shigella flexneri and intense efflux of K(+) and nucleotide leakage in E. faecalis and Shigella flexneri. In addition, the presence of phenols, flavonoids and carotenoids, described in the literature to possess antibacterial effects, were detected in the composition of HELn, with high phenol content (11.55%), especially the flavonoids (6.47%). CONCLUSION The results indicate that HELn has low cytotoxicity and potent antibacterial activity. It is bacteriostatic in nature, possibly acting at the level of bacterial membranes, especially on the cytoplasmic membrane and outer membrane, thus supporting its popular use in infectious processes. In addition, the presence of phenols, flavonoids, carotenoids, fatty acids and steroids, described in the literature as possessing antimicrobial activity, were detected in the composition of HELn.
Collapse
Affiliation(s)
- Darley Maria Oliveira
- Area of Pharmacology, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), 78060-900 Cuiabá, MT, Brazil
| | - Fernanda Germano Melo
- Research Laboratory of Natural Products, Federal University of Tocantins, Faculty of Medicine, 7020-210 Palmas, TO Brazil
| | - Sikiru Olaitan Balogun
- Area of Pharmacology, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), 78060-900 Cuiabá, MT, Brazil
| | - Adriana Flach
- Department of Chemistry, Federal University of Roraima, 69304-000 Boa Vista, RR, Brazil
| | | | - Gilmar Prado de Souza
- Department of Chemistry, Federal University of Roraima, 69304-000 Boa Vista, RR, Brazil
| | | | - Luiz Antonio Mendonça Alves da Costa
- Area of Pharmacology, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), 78060-900 Cuiabá, MT, Brazil
| | - Ilsamar Mendes Soares
- Research Laboratory of Natural Products, Federal University of Tocantins, Faculty of Medicine, 7020-210 Palmas, TO Brazil
| | - Larissa Irene da Silva
- Area of Pharmacology, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), 78060-900 Cuiabá, MT, Brazil
| | - Sérgio Donizeti Ascêncio
- Research Laboratory of Natural Products, Federal University of Tocantins, Faculty of Medicine, 7020-210 Palmas, TO Brazil
| | - Domingos Tabajara de Oliveira Martins
- Area of Pharmacology, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), 78060-900 Cuiabá, MT, Brazil.
| |
Collapse
|
42
|
Uppu DSSM, Manjunath GB, Yarlagadda V, Kaviyil JE, Ravikumar R, Paramanandham K, Shome BR, Haldar J. Membrane-active macromolecules resensitize NDM-1 gram-negative clinical isolates to tetracycline antibiotics. PLoS One 2015; 10:e0119422. [PMID: 25789871 PMCID: PMC4366164 DOI: 10.1371/journal.pone.0119422] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/13/2015] [Indexed: 11/18/2022] Open
Abstract
Gram-negative 'superbugs' such as New Delhi metallo-beta-lactamase-1 (blaNDM-1) producing pathogens have become world's major public health threats. Development of molecular strategies that can rehabilitate the 'old antibiotics' and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs) that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs.
Collapse
Affiliation(s)
- Divakara S. S. M. Uppu
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Goutham B. Manjunath
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Venkateswarlu Yarlagadda
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Jyothi E. Kaviyil
- Department of Neuromicrobiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bangalore, 560029, India
| | - Raju Ravikumar
- Department of Neuromicrobiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bangalore, 560029, India
| | - Krishnamoorthy Paramanandham
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Hebbal, Bengaluru, 560024, Karnataka, India
| | - Bibek R. Shome
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Hebbal, Bengaluru, 560024, Karnataka, India
| | - Jayanta Haldar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
43
|
Jammal J, Zaknoon F, Kaneti G, Goldberg K, Mor A. Sensitization of Gram-negative bacteria to rifampin and OAK combinations. Sci Rep 2015; 5:9216. [PMID: 25782773 PMCID: PMC4363860 DOI: 10.1038/srep09216] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/23/2015] [Indexed: 12/30/2022] Open
Abstract
While individually inefficient against Gram-negative bacteria, in-vitro combinations of rifampin and OAK were mutually synergistic since sub-minimal inhibitory concentrations of one compound have potentiated the other by 2–4 orders of magnitude. Synergy persisted in-vivo as single-dose systemic treatment of Klebsiella infected mice resulted in 10–20% versus 60% survival, respectively accomplished by individual and combined compounds. This outcome was achieved without drug formulation, rather, pharmacokinetic considerations have inspired the therapeutic regimen.
Collapse
Affiliation(s)
- Joanna Jammal
- Department of Biotechnology &Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Fadia Zaknoon
- Department of Biotechnology &Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Galoz Kaneti
- Department of Biotechnology &Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Keren Goldberg
- Department of Biotechnology &Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Amram Mor
- Department of Biotechnology &Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
44
|
Elie CR, David G, Schmitzer AR. Strong Antibacterial Properties of Anion Transporters: A Result of Depolarization and Weakening of the Bacterial Membrane. J Med Chem 2015; 58:2358-66. [DOI: 10.1021/jm501979f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Claude R. Elie
- Département de Chimie, Université de Montréal, CP 6128 Succursale Centre Ville, H3C 3J7, Montreal, Quebec, Canada
| | - Guillaume David
- Département de Chimie, Université de Montréal, CP 6128 Succursale Centre Ville, H3C 3J7, Montreal, Quebec, Canada
| | - Andreea R. Schmitzer
- Département de Chimie, Université de Montréal, CP 6128 Succursale Centre Ville, H3C 3J7, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Forde E, Devocelle M. Pro-moieties of antimicrobial peptide prodrugs. Molecules 2015; 20:1210-27. [PMID: 25591121 PMCID: PMC6272668 DOI: 10.3390/molecules20011210] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/08/2015] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a promising class of antimicrobial agents that have been garnering increasing attention as resistance renders many conventional antibiotics ineffective. Extensive research has resulted in a large library of highly-active AMPs. However, several issues serve as an impediment to their clinical development, not least the issue of host toxicity. An approach that may allow otherwise cytotoxic AMPs to be used is to deliver them as a prodrug, targeting antimicrobial activity and limiting toxic effects on the host. The varied library of AMPs is complemented by a selection of different possible pro-moieties, each with their own characteristics. This review deals with the different pro-moieties that have been used with AMPs and discusses the merits of each.
Collapse
Affiliation(s)
- Eanna Forde
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin 9, Ireland.
| | - Marc Devocelle
- Centre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
46
|
High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2160-72. [PMID: 24463069 DOI: 10.1016/j.bbamem.2014.01.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/26/2013] [Accepted: 01/10/2014] [Indexed: 01/07/2023]
Abstract
Host defense antimicrobial peptides are key components of human innate immunity that plays an indispensible role in human health. While there are multiple copies of cathelicidin genes in horses, cattle, pigs, and sheep, only one cathelicidin gene is found in humans. Interestingly, this single cathelicidin gene can be processed into different forms of antimicrobial peptides. LL-37, the most commonly studied form, is not only antimicrobial but also possesses other functional roles such as chemotaxis, apoptosis, wound healing, immune modulation, and cancer metastasis. This article reviews recent advances made in structural and biophysical studies of human LL-37 and its fragments, which serve as a basis to understand their antibacterial, anti-biofilm and antiviral activities. High-quality structures were made possible by using improved 2D NMR methods for peptide fragments and 3D NMR spectroscopy for intact LL-37. The two hydrophobic domains in the long amphipathic helix (residues 2-31) of LL-37 separated by a hydrophilic residue serine 9 explain its cooperative binding to bacterial lipopolysaccharides (LPS). Both aromatic rings (F5, F6, F17, and F27) and interfacial basic amino acids of LL-37 directly interact with anionic phosphatidylglycerols (PG). Although the peptide sequences reported in the literature vary slightly, there is a consensus that the central helix of LL-37 is essential for disrupting superbugs (e.g., MRSA), bacterial biofilms, and viruses such as human immunodeficiency virus 1 (HIV-1) and respiratory syncytial virus (RSV). In the central helix, the central arginine R23 is of particular importance in binding to bacterial membranes or DNA. Mapping the functional roles of the cationic amino acids of the major antimicrobial region of LL-37 provides a basis for designing antimicrobial peptides with desired properties. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
|
47
|
Members of the conserved DedA family are likely membrane transporters and are required for drug resistance in Escherichia coli. Antimicrob Agents Chemother 2013; 58:923-30. [PMID: 24277026 DOI: 10.1128/aac.02238-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial resistance to antibiotics and biocides is an increasing public health problem. Genes encoding integral membrane proteins belonging to the DedA family are present in most bacterial genomes, including Escherichia coli. An E. coli strain lacking partially redundant DedA family genes yqjA and yghB (strain BC202) displays temperature sensitivity and cell division defects. These phenotypes can be corrected by overexpression of mdfA, an Na(+)-K(+)/H(+) antiporter of the major facilitator superfamily. We show that BC202 is hypersensitive to several biocides and cationic compounds that are known substrates of several multidrug resistance transporters, including MdfA, EmrE, and AcrB. The introduction of deletions of genes encoding these drug transporters into BC202 results in additional sensitivity. Expression of wild-type yghB or yqjA can restore drug resistance, but this is eliminated upon mutation of two membrane-embedded acidic amino acids (E39 or D51 in either protein). This dependence upon membrane-embedded acidic amino acids is a hallmark of proton-dependent antiporters. Overexpression of mdfA in BC202 or artificially restoring proton motive force (PMF) restores wild-type resistance to substrates of MdfA as well as other drug resistance transporters such as EmrE and AcrAB. These results suggest that YqjA and YghB may be membrane transporters required for PMF-dependent drug efflux in E. coli.
Collapse
|