1
|
Grainger N. Identifying peristaltic pacemaker cells in the upper urinary tract. J Physiol 2024. [PMID: 38180778 DOI: 10.1113/jp284754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Urine expulsion from the upper urinary tract is a necessary process that eliminates waste, promotes renal filtration and prevents nephron damage. To facilitate the movement of urine boluses throughout the upper urinary tract, smooth muscle cells that line the renal pelvis contract in a coordinated effort to form peristaltic waves. Resident pacemaker cells in the renal pelvis are critical to this process and spontaneously evoke transient depolarizations that initiate each peristaltic wave and establish rhythmic contractions. Renal pacemakers have been termed atypical smooth muscle cells due to their low expression of smooth muscle myosin and poor organization of myofilaments compared to typical (or contractile) smooth muscle cells that perform peristalsis. Recent findings discovered that pacemaker cells also express the tyrosine kinase receptor PDGFRα, enabling their identification and purification amongst other renal pelvis cell types. Improved identification methods have determined that the calcium-activated chloride channel, ANO1, is expressed by pacemaker cells and may contribute to spontaneous depolarization. A greater understanding of pacemaker and peristaltic mechanisms is warranted since aberrant contractile function may underlie diseases such as hydronephrosis, a deleterious condition that can cause significant and irreversible nephron injury.
Collapse
Affiliation(s)
- Nathan Grainger
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
2
|
Yang L, Arbona RJR, Smith CS, Banks KM, Thomas VK, Palmer L, Evans T, Hurtado R. An evolutionarily conserved pacemaker role for HCN ion channels in smooth muscle. J Physiol 2023; 601:1225-1246. [PMID: 36930567 PMCID: PMC10065941 DOI: 10.1113/jp283701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
Although hyperpolarization-activated cation (HCN) ion channels are well established to underlie cardiac pacemaker activity, their role in smooth muscle organs remains controversial. HCN-expressing cells are localized to renal pelvic smooth muscle (RPSM) pacemaker tissues of the murine upper urinary tract and HCN channel conductance is required for peristalsis. To date, however, the Ih pacemaker current conducted by HCN channels has never been detected in these cells, raising questions on the identity of RPSM pacemakers. Indeed, the RPSM pacemaker mechanisms of the unique multicalyceal upper urinary tract exhibited by humans remains unknown. Here, we developed immunopanning purification protocols and demonstrate that 96% of isolated HCN+ cells exhibit Ih . Single-molecule STORM to whole-tissue imaging showed HCN+ cells express single HCN channels on their plasma membrane and integrate into the muscular syncytium. By contrast, PDGFR-α+ cells exhibiting the morphology of ICC gut pacemakers were shown to be vascular mural cells. Translational studies in the homologous human and porcine multicalyceal upper urinary tracts showed that contractions and pacemaker depolarizations originate in proximal calyceal RPSM. Critically, HCN+ cells were shown to integrate into calyceal RPSM pacemaker tissues, and HCN channel block abolished electrical pacemaker activity and peristalsis of the multicalyceal upper urinary tract. Cumulatively, these studies demonstrate that HCN ion channels play a broad, evolutionarily conserved pacemaker role in both cardiac and smooth muscle organs and have implications for channelopathies as putative aetiologies of smooth muscle disorders. KEY POINTS: Pacemakers trigger contractions of involuntary muscles. Hyperpolarization-activated cation (HCN) ion channels underpin cardiac pacemaker activity, but their role in smooth muscle organs remains controversial. Renal pelvic smooth muscle (RPSM) pacemakers trigger contractions that propel waste away from the kidney. HCN+ cells localize to murine RPSM pacemaker tissue and HCN channel conductance is required for peristalsis. The HCN (Ih ) current has never been detected in RPSM cells, raising doubt whether HCN+ cells are bona fide pacemakers. Moreover, the pacemaker mechanisms of the unique multicalyceal RPSM of higher order mammals remains unknown. In total, 97% of purified HCN+ RPSM cells exhibit Ih . HCN+ cells integrate into the RPSM musculature, and pacemaker tissue peristalsis is dependent on HCN channels. Translational studies in human and swine demonstrate HCN channels are conserved in the multicalyceal RPSM and that HCN channels underlie pacemaker activity that drives peristalsis. These studies provide insight into putative channelopathies that can underlie smooth muscle dysfunction.
Collapse
Affiliation(s)
- Lei Yang
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| | - Rodolfo J. Ricart Arbona
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carl S. Smith
- Department of Urologic Surgery, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Kelly M. Banks
- Department of Surgery, Weill Medical College of Cornell University, New York, NY, USA
| | - V. Kaye Thomas
- Bio-Imaging Resource Center, The Rockefeller University, New York, NY, USA
| | - Lawrence Palmer
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Medical College of Cornell University, New York, NY, USA
| | - Romulo Hurtado
- Department of Surgery, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
3
|
Grainger N, Shonnard CC, Quiggle SK, Fox EB, Presley H, Daugherty R, Shonnard MC, Drumm BT, Sanders KM. Propagation of Pacemaker Activity and Peristaltic Contractions in the Mouse Renal Pelvis Rely on Ca 2+-activated Cl - Channels and T-Type Ca 2+ Channels. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac041. [PMID: 36325511 PMCID: PMC9614935 DOI: 10.1093/function/zqac041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023]
Abstract
The process of urine removal from the kidney occurs via the renal pelvis (RP). The RP demarcates the beginning of the upper urinary tract and is endowed with smooth muscle cells. Along the RP, organized contraction of smooth muscle cells generates the force required to move urine boluses toward the ureters and bladder. This process is mediated by specialized pacemaker cells that are highly expressed in the proximal RP that generate spontaneous rhythmic electrical activity to drive smooth muscle depolarization. The mechanisms by which peristaltic contractions propagate from the proximal to distal RP are not fully understood. In this study, we utilized a transgenic mouse that expresses the genetically encoded Ca2+ indicator, GCaMP3, under a myosin heavy chain promotor to visualize spreading peristaltic contractions in high spatial detail. Using this approach, we discovered variable effects of L-type Ca2+ channel antagonists on contraction parameters. Inhibition of T-type Ca2+ channels reduced the frequency and propagation distance of contractions. Similarly, antagonizing Ca2+-activated Cl- channels or altering the transmembrane Cl- gradient decreased contractile frequency and significantly inhibited peristaltic propagation. These data suggest that voltage-gated Ca2+ channels are important determinants of contraction initiation and maintain the fidelity of peristalsis as the spreading contraction moves further toward the ureter. Recruitment of Ca2+-activated Cl- channels, likely Anoctamin-1, and T-type Ca2+ channels are required for efficiently conducting the depolarizing current throughout the length of the RP. These mechanisms are necessary for the efficient removal of urine from the kidney.
Collapse
Affiliation(s)
| | - Cameron C Shonnard
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Sage K Quiggle
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Emily B Fox
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Hannah Presley
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Robbie Daugherty
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Matthew C Shonnard
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA,Department of Life and Health Science, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| |
Collapse
|
4
|
Abstract
Urinary tract infection (UTI) is the most common type of urogenital disease. UTI affects the urethra, bladder, ureter, and kidney. A total of 13.3% of women, 2.3% of men, and 3.4% of children in the United States will require treatment for UTI. Traditionally, bladder (cystitis) and kidney (pyelonephritis) infections are considered independently. However, both infections induce host defenses that are either shared or coordinated across the urinary tract. Here, we review the chemical and biophysical mechanisms of bacteriostasis, which limit the duration and severity of the illness. Urinary bacteria attempt to overcome each of these defenses, complicating description of the natural history of UTI.
Collapse
Affiliation(s)
| | - Anne-Catrin Uhlemann
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| | - Jonathan Barasch
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| |
Collapse
|
5
|
Benzoni P, Bertoli G, Giannetti F, Piantoni C, Milanesi R, Pecchiari M, Barbuti A, Baruscotti M, Bucchi A. The funny current: Even funnier than 40 years ago. Uncanonical expression and roles of HCN/f channels all over the body. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:189-204. [PMID: 34400215 DOI: 10.1016/j.pbiomolbio.2021.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
Discovered some 40 years ago, the If current has since been known as the "pacemaker" current due to its role in the initiation and modulation of the heartbeat and of neuronal excitability. But this is not all, the funny current keeps entertaining the researchers; indeed, several data discovering novel and uncanonical roles of f/HCN channel are quickly accumulating. In the present review, we provide an overview of the expression and cellular functions of HCN/f channels in a variety of systems/organs, and particularly in sour taste transduction, hormones secretion, activation of astrocytes and microglia, inhibition of osteoclastogenesis, renal ammonium excretion, and peristalsis in the gastrointestinal and urine systems. We also analyzed the role of HCN channels in sustaining cellular respiration in mitochondria and their participation to mitophagy under specific conditions. The relevance of HCN currents in undifferentiated cells, and specifically in the control of stem cell cycle and in bioelectrical signals driving left/right asymmetry during zygote development, is also considered. Finally, we present novel data concerning the expression of HCN mRNA in human leukocytes. We can thus conclude that the emerging evidence presented in this review clearly points to an increasing interest and importance of the "funny" current that goes beyond its role in cardiac sinoatrial and neuronal excitability regulation.
Collapse
Affiliation(s)
- Patrizia Benzoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Giorgia Bertoli
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Federica Giannetti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Chiara Piantoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy; Present Address: Institute of Neurophysiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Raffaella Milanesi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy; Present Address: Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via Dell'Università 6, 26900, Lodi, Italy
| | - Matteo Pecchiari
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via L. Mangiagalli 32, 20133, Milan, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Mirko Baruscotti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Annalisa Bucchi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
6
|
Hardy CC, Al-Naggar IM, Kuo CL, Kuchel GA, Smith PP. Aging Changes in Bladder Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels Are Associated With Increasing Heterogeneity of Adrenergic/Mucosal Influence on Detrusor Control in the Mouse. J Gerontol A Biol Sci Med Sci 2021; 76:1153-1160. [PMID: 33693872 DOI: 10.1093/gerona/glab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 11/14/2022] Open
Abstract
A geroscience-informed approach to the increasing prevalence of bladder control problems in older adults requires understanding the impact of aging on dynamic mechanisms that ensure resilience in response to stressors challenging asymptomatic voluntary control over urine storage and voiding. Bladder control is predicated on sensory neural information about bladder volume. Modulation of volume-induced bladder wall tensions by autonomic and mucosal factors controls neural sensitivity to bladder volume. We hypothesized that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels integrate these factors and thereby mediate adrenergic detrusor tension control. Furthermore, loss of HCN expression compromises that integration and could result in loss of precision of detrusor control. Using a life-span mouse model, reverse transcription quantitative real-time PCR and pharmacologic studies in pretensioned intact and mucosa-denuded bladder strips were made. The dominant hcn1 expression declines with maturation and aging; however, aging is also associated with increased variance around mean values. In strips from Mature animals, isoproterenol had less effect in denuded muscle strips than in intact strips, and HCN blockade diminished isoproterenol responsiveness. With aging, variances about mean response values significantly increased, paralleling hcn1 expression. Our findings support a role for HCN in providing neuroendocrine/paracrine integration and suggest an association of increased heterogeneity of HCN expression in aging with reductions in response precision to neuroendocrine control. The functional implication is an increased risk of dysfunction of brainstem/bladder regulation of neuronal sensitivity to bladder volume. This supports the clinical model of the aging bladder phenotype as an expression of loss of resilience, and not as emerging bladder pathology with aging.
Collapse
Affiliation(s)
- Cara C Hardy
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA.,Department of Neuroscience, University of Connecticut School of Medicine, Farmington, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, USA
| | - Iman M Al-Naggar
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA
| | - Chia-Ling Kuo
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA.,Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, USA
| | - George A Kuchel
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA.,Department of Neuroscience, University of Connecticut School of Medicine, Farmington, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, USA
| | - Phillip P Smith
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA.,Department of Neuroscience, University of Connecticut School of Medicine, Farmington, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, USA.,Department of Surgery, University of Connecticut School of Medicine, Farmington, USA
| |
Collapse
|
7
|
Santoro B, Shah MM. Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels as Drug Targets for Neurological Disorders. Annu Rev Pharmacol Toxicol 2020; 60:109-131. [PMID: 31914897 DOI: 10.1146/annurev-pharmtox-010919-023356] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are voltage-gated ion channels that critically modulate neuronal activity. Four HCN subunits (HCN1-4) have been cloned, each having a unique expression profile and distinctive effects on neuronal excitability within the brain. Consistent with this, the expression and function of these subunits are altered in diverse ways in neurological disorders. Here, we review current knowledge on the structure and distribution of the individual HCN channel isoforms, their effects on neuronal activity under physiological conditions, and how their expression and function are altered in neurological disorders, particularly epilepsy, neuropathic pain, and affective disorders. We discuss the suitability of HCN channels as therapeutic targets and how drugs might be strategically designed to specifically act on particular isoforms. We conclude that medicines that target individual HCN isoforms and/or their auxiliary subunit, TRIP8b, may provide valuable means of treating distinct neurological conditions.
Collapse
Affiliation(s)
- Bina Santoro
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Mala M Shah
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, United Kingdom;
| |
Collapse
|
8
|
Kashyap M, Singh N, Yoshimura N, Chermansky C, Tyagi P. Constitutively active HCN channels constrain detrusor excitability and modulate evoked contractions of human bladder. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2020; 8:163-176. [PMID: 33235894 PMCID: PMC7677517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Expression of Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is reported in bladder, but the functional role remains unsettled. Here, we immunolocalized the HCN1 and HCN4 subtype in human bladder and investigated their functional significance. METHODS Bladder procured from ten organ donors was dissected into mucosa (containing urothelium and submucosa) and detrusor for double immunofluorescence of HCN1 and 4 subtypes with gap junction and neural proteins together with isometric tension recordings. Mucosa intact and denuded detrusor strips were stretched to a basal tension of 10 mN for eliciting either tetrodotoxin (TTX) resistant spontaneous, carbachol evoked contractions and TTX sensitive electrical field stimulated (EFS), pre and post-addition of HCN blocker, ZD7288 or the activator, Lamotrigine or the cholinesterase inhibitor, Neostigmine. RESULTS Double immunofluorescence revealed immunolocalization of HCN1 and HCN4 subtype with calcitonin gene related peptide (CGRP), choline acetyl transferase and gap junction proteins in mucosa and detrusor. Removal of mucosa significantly raised the resting tension and the force of spontaneous contractions upon cumulative addition of ZD7288 in micromolar range relative to Lamotrigine treated strips (P<0.05). ZD7288 [10 nM] did not affect the contractile response evoked by EFS or carbachol, but the addition of ZD7288 [10 nM] in presence of Neostigmine [1 µM] significantly enhanced the atropine and TTX sensitive EFS evoked contractions of mucosa denuded strips. CONCLUSIONS Overall, HCN channels immunolocalized in mucosa, smooth muscle, gap junctions and nerve fibers exert a tonic constraint on detrusor excitability, enable spatio-temporal integration of evoked contractions and constrain the release of neurotransmitters, respectively. In contrast to the pacemaker role in other organs, findings argue for a non-pacemaking role of HCN channels in human bladder.
Collapse
Affiliation(s)
| | - Nishant Singh
- Department of Urology, University of PittsburghPittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of PittsburghPittsburgh, PA, USA
| | | | - Pradeep Tyagi
- Department of Urology, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
9
|
Grainger N, Freeman RS, Shonnard CC, Drumm BT, Koh SD, Ward SM, Sanders KM. Identification and classification of interstitial cells in the mouse renal pelvis. J Physiol 2020; 598:3283-3307. [PMID: 32415739 DOI: 10.1113/jp278888] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Platelet-derived growth factor receptor-α (PDGFRα) is a novel biomarker along with smooth myosin heavy chain for the pacemaker cells (previously termed 'atypical' smooth muscle cells) in the murine and cynomolgus monkey pelvis-kidney junction. PDGFRα+ cells present in adventitial and urothelial layers of murine renal pelvis do not express smooth muscle myosin heavy chain (smMHC) but are in close apposition to nerve fibres. Most c-Kit+ cells in the renal pelvis are mast cells. Mast cells (CD117+ /CD45+ ) are more abundant in the proximal renal pelvis and pelvis-kidney junction regions whereas c-Kit+ interstitial cells (CD117+ /CD45- ) are found predominantly in the distal renal pelvis and ureteropelvic junction. PDGFRα+ cells are distinct from c-Kit+ interstitial cells. A subset of PDGFRα+ cells express the Ca2+ -activated Cl- channel, anoctamin-1, across the entire renal pelvis. Spontaneous Ca2+ transients were observed in c-Kit+ interstitial cells, smMHC+ PDGFRα cells and smMHC- PDGFRα cells using mice expressing genetically encoded Ca2+ sensors. ABSTRACT Rhythmic contractions of the renal pelvis transport urine from the kidneys into the ureter. Specialized pacemaker cells, termed atypical smooth muscle cells (ASMCs), are thought to drive the peristaltic contractions of typical smooth muscle cells (TSMCs) in the renal pelvis. Interstitial cells (ICs) in close proximity to ASMCs and TSMCs have been described, but the role of these cells is poorly understood. The presence and distributions of platelet-derived growth factor receptor-α+ (PDGFRα+ ) ICs in the pelvis-kidney junction (PKJ) and distal renal pelvis were evaluated. We found PDGFRα+ ICs in the adventitial layers of the pelvis, the muscle layer of the PKJ and the adventitia of the distal pelvis. PDGFRα+ ICs were distinct from c-Kit+ ICs in the renal pelvis. c-Kit+ ICs are a minor population of ICs in murine renal pelvis. The majority of c-Kit+ cells were mast cells. PDGFRα+ cells in the PKJ co-expressed smooth muscle myosin heavy chain (smMHC) and several other smooth muscle gene transcripts, indicating these cells are ASMCs, and PDGFRα is a novel biomarker for ASMCs. PDGFRα+ cells also express Ano1, which encodes a Ca2+ -activated Cl- conductance that serves as a primary pacemaker conductance in ICs of the GI tract. Spontaneous Ca2+ transients were observed in c-Kit+ ICs, smMHC+ PDGFRα cells and smMHC- PDGFRα cells using genetically encoded Ca2+ sensors. A reporter strain of mice with enhanced green fluorescent protein driven by the endogenous promotor for Pdgfra was shown to be a powerful new tool for isolating and characterizing the phenotype and functions of these cells in the renal pelvis.
Collapse
Affiliation(s)
- Nathan Grainger
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ryan S Freeman
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Cameron C Shonnard
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Bernard T Drumm
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sang Don Koh
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
10
|
Lopes FM, Roberts NA, Zeef LAH, Gardiner NJ, Woolf AS. Overactivity or blockade of transforming growth factor-β each generate a specific ureter malformation. J Pathol 2019; 249:472-484. [PMID: 31400222 PMCID: PMC6900140 DOI: 10.1002/path.5335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGFβ) has been reported to be dysregulated in malformed ureters. There exists, however, little information on whether altered TGFβ levels actually perturb ureter development. We therefore hypothesised that TGFβ has functional effects on ureter morphogenesis. Tgfb1, Tgfb2 and Tgfb3 transcripts coding for TGFβ ligands, as well as Tgfbr1 and Tgfbr2 coding for TGFβ receptors, were detected by quantitative polymerase chain reaction in embryonic mouse ureters collected over a wide range of stages. As assessed by in situ hybridisation and immunohistochemistry, the two receptors were detected in embryonic urothelia. Next, TGFβ1 was added to serum-free cultures of embryonic day 15 mouse ureters. These organs contain immature smooth muscle and urothelial layers and their in vivo potential to grow and acquire peristaltic function can be replicated in serum-free organ culture. Such organs therefore constitute a suitable developmental stage with which to define roles of factors that affect ureter growth and functional differentiation. Exogenous TGFβ1 inhibited growth of the ureter tube and generated cocoon-like dysmorphogenesis. RNA sequencing suggested that altered levels of transcripts encoding certain fibroblast growth factors (FGFs) followed exposure to TGFβ. In serum-free organ culture exogenous FGF10 but not FGF18 abrogated certain dysmorphic effects mediated by exogenous TGFβ1. To assess whether an endogenous TGFβ axis functions in developing ureters, embryonic day 15 explants were exposed to TGFβ receptor chemical blockade; growth of the ureter was enhanced, and aberrant bud-like structures arose from the urothelial tube. The muscle layer was attenuated around these buds, and peristalsis was compromised. To determine whether TGFβ effects were limited to one stage, explants of mouse embryonic day 13 ureters, more primitive organs, were exposed to exogenous TGFβ1, again generating cocoon-like structures, and to TGFβ receptor blockade, again generating ectopic buds. As for the mouse studies, immunostaining of normal embryonic human ureters detected TGFβRI and TGFβRII in urothelia. Collectively, these observations reveal unsuspected regulatory roles for endogenous TGFβ in embryonic ureters, fine-tuning morphogenesis and functional differentiation. Our results also support the hypothesis that the TGFβ up-regulation reported in ureter malformations impacts on pathobiology. Further experiments are needed to unravel the intracellular signalling mechanisms involved in these dysmorphic responses. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Leo AH Zeef
- The Bioinformatics Core FacilityUniversity of ManchesterManchesterUK
| | - Natalie J Gardiner
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
- Royal Manchester Children's HospitalManchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
11
|
Janakiraman U, Yu J, Moutal A, Chinnasamy D, Boinon L, Batchelor SN, Anandhan A, Khanna R, Nelson MA. TAF1-gene editing alters the morphology and function of the cerebellum and cerebral cortex. Neurobiol Dis 2019; 132:104539. [PMID: 31344492 PMCID: PMC7197880 DOI: 10.1016/j.nbd.2019.104539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022] Open
Abstract
TAF1/MRSX33 intellectual disability syndrome is an X-linked disorder caused by loss-of-function mutations in the TAF1 gene. How these mutations cause dysmorphology, hypotonia, intellectual and motor defects is unknown. Mouse models which have embryonically targeted TAF1 have failed, possibly due to TAF1 being essential for viability, preferentially expressed in early brain development, and intolerant of mutation. Novel animal models are valuable tools for understanding neuronal pathology. Here, we report the development and characterization of a novel animal model for TAF1 ID syndrome in which the TAF1 gene is deleted in embryonic rats using clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9) technology and somatic brain transgenesis mediated by lentiviral transduction. Rat pups, post-natal day 3, were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 vectors. Rats were subjected to a battery of behavioral tests followed by histopathological analyses of brains at post-natal day 14 and day 35. TAF1-edited rats exhibited behavioral deficits at both the neonatal and juvenile stages of development. Deletion of TAF1 lead to a hypoplasia and loss of the Purkinje cells. We also observed a decreased in GFAP positive astrocytes and an increase in Iba1 positive microglia within the granular layer of the cerebellum in TAF1-edited animals. Immunostaining revealed a reduction in the expression of the CaV3.1 T-type calcium channel. Abnormal motor symptoms in TAF1-edited rats were associated with irregular cerebellar output caused by changes in the intrinsic activity of the Purkinje cells due to loss of pre-synaptic CaV3.1. This animal model provides a powerful new tool for studies of neuronal dysfunction in conditions associated with TAF1 abnormalities and should prove useful for developing therapeutic strategies to treat TAF1 ID syndrome.
Collapse
Affiliation(s)
- Udaiyappan Janakiraman
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Jie Yu
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Dhanalakshmi Chinnasamy
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Lisa Boinon
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Shelby N Batchelor
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Annaduri Anandhan
- Department of Pharmacology and Toxicology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States of America; The BIO5 Institute, University of Arizona, United States of America
| | - Mark A Nelson
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA.
| |
Collapse
|
12
|
Abstract
The ability to explant and then maintain embryonic tissues in organ culture makes it feasible to study the growth and differentiation of whole organs, or parts or combinations of them, in three dimensions. Moreover, the possible effects of biochemical manipulations or mutations can be explored by visualizing a growing organ. The mammalian renal tract comprises the kidney, ureter, and urinary bladder, and the focus of this chapter is organ culture of the embryonic mouse ureter in serum-free defined medium. Over the culture period, rudiments grow in length, smooth muscle differentiates, and the ureters then undergo peristalsis in a proximal to distal direction.
Collapse
Affiliation(s)
- Filipa M Lopes
- Faculty of Biology Medicine and Health, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Adrian S Woolf
- Faculty of Biology Medicine and Health, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
13
|
Lang RJ, Hashitani H. Pacemaker Mechanisms Driving Pyeloureteric Peristalsis: Modulatory Role of Interstitial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:77-101. [PMID: 31183823 DOI: 10.1007/978-981-13-5895-1_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The peristaltic pressure waves in the renal pelvis that propel urine expressed by the kidney into the ureter towards the bladder have long been considered to be 'myogenic', being little affected by blockers of nerve conduction or autonomic neurotransmission, but sustained by the intrinsic release of prostaglandins and sensory neurotransmitters. In uni-papilla mammals, the funnel-shaped renal pelvis consists of a lumen-forming urothelium and a stromal layer enveloped by a plexus of 'typical' smooth muscle cells (TSMCs), in multi-papillae kidneys a number of minor and major calyces fuse into a large renal pelvis. Electron microscopic, electrophysiological and Ca2+ imaging studies have established that the pacemaker cells driving pyeloureteric peristalsis are likely to be morphologically distinct 'atypical' smooth muscle cells (ASMCs) that fire Ca2+ transients and spontaneous transient depolarizations (STDs) which trigger propagating nifedipine-sensitive action potentials and Ca2+ waves in the TSMC layer. In uni-calyceal kidneys, ASMCs predominately locate on the serosal surface of the proximal renal pelvis while in multi-papillae kidneys they locate within the sub-urothelial space. 'Fibroblast-like' interstitial cells (ICs) located in the sub-urothelial space or adventitia are a mixed population of cells, having regional and species-dependent expression of various Cl-, K+, Ca2+ and cationic channels. ICs display asynchronous Ca2+ transients that periodically synchronize into bursts that accelerate ASMC Ca2+ transient firing. This review presents current knowledge of the architecture of the proximal renal pelvis, the role Ca2+ plays in renal pelvis peristalsis and the mechanisms by which ICs may sustain/accelerate ASMC pacemaking.
Collapse
Affiliation(s)
- Richard J Lang
- School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.
| | - Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
14
|
He F, Yang Z, Dong X, Fang Z, Liu Q, Hu X, Yi S, Li L. The role of HCN channels in peristaltic dysfunction in human ureteral tuberculosis. Int Urol Nephrol 2018; 50:639-645. [PMID: 29460132 PMCID: PMC5878205 DOI: 10.1007/s11255-018-1816-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/02/2018] [Indexed: 11/24/2022]
Abstract
Objective To explore the role of HCN channels in ureteral peristaltic dysfunction by comparing the changes in HCN channel levels between normal and tuberculous ureters. Methods A total of 32 specimens of human upper ureters were collected by nephrectomy from patients with renal tumor (control group, n = 16) or from patients with renal tuberculosis (experimental group, n = 16); the two groups did not receive radiotherapy, chemotherapy, immunotherapy, or any other special treatment before the surgical procedure. An experimental study on smooth muscle strips of human upper ureters showed variation in contraction amplitude and frequency after adding ZD7288, a specific blocker of HCN channels. The expression of HCN channels in the ureter was confirmed by Western blot (WB) and by confocal analysis of double immunostaining for c-kit and HCN channel proteins. Results Before the addition of ZD7288, the experimental and control groups showed significant differences in the frequency and amplitude of the spontaneous contraction of isolated ureteral smooth muscle strips. After ZD7288 was added, the frequency and amplitude of the contractions of the ureteral smooth muscle strips were significantly lower in both groups. The differences observed before and after ZD7288 treatment in each group were significant (P < 0.001), and the difference in contraction amplitude observed between the two groups before ZD7288 was also significantly different (P < 0.001). By using WB technology, we showed that the expression of HCN channels was present in normal human ureters, with the expression of HCN4 and HCN1 being the highest; the expression of HCN4 and HCN1 in the control and experimental groups were both statistically significant (P < 0.001). HCN4 and HCN1 were expressed in the mucosal and smooth muscle layers of human control ureters and tuberculous ureters, as revealed by a confocal analysis of double immunostaining for c-kit and HCNs proteins; there were significant differences between the two groups (P < 0.001). Conclusion Four HCN channels are expressed in the ureter, mainly HCN4 and HCN1, suggesting that HCN channels are involved in the peristaltic contraction of ureteral ICCs, which may be an important reason for peristaltic dysfunction in ureteric tuberculosis.
Collapse
Affiliation(s)
- Fan He
- Department of Urology, Xinqiao Hospital, the Third Military Medical University, No. 183 Xinqiao Main Street, Shapinba Dist., Chongqing, 400037, People's Republic of China
| | - Zhenxing Yang
- Department of Urology, Xinqiao Hospital, the Third Military Medical University, No. 183 Xinqiao Main Street, Shapinba Dist., Chongqing, 400037, People's Republic of China
| | - Xingyou Dong
- Department of Urology, Xinqiao Hospital, the Third Military Medical University, No. 183 Xinqiao Main Street, Shapinba Dist., Chongqing, 400037, People's Republic of China
| | - Zhenqiang Fang
- Department of Urology, Xinqiao Hospital, the Third Military Medical University, No. 183 Xinqiao Main Street, Shapinba Dist., Chongqing, 400037, People's Republic of China
| | - Qian Liu
- Department of Urology, Xinqiao Hospital, the Third Military Medical University, No. 183 Xinqiao Main Street, Shapinba Dist., Chongqing, 400037, People's Republic of China
| | - Xiaoyan Hu
- Department of Urology, Xinqiao Hospital, the Third Military Medical University, No. 183 Xinqiao Main Street, Shapinba Dist., Chongqing, 400037, People's Republic of China
| | - Shanhong Yi
- Department of Urology, Xinqiao Hospital, the Third Military Medical University, No. 183 Xinqiao Main Street, Shapinba Dist., Chongqing, 400037, People's Republic of China
| | - Longkun Li
- Department of Urology, Xinqiao Hospital, the Third Military Medical University, No. 183 Xinqiao Main Street, Shapinba Dist., Chongqing, 400037, People's Republic of China.
| |
Collapse
|
15
|
Iskander SM, Feeney MM, Yee K, Rosenblum ND. Protein Kinase 2 β Is Expressed in Neural Crest-Derived Urinary Pacemaker Cells and Required for Pyeloureteric Contraction. J Am Soc Nephrol 2018; 29:1198-1209. [PMID: 29436516 DOI: 10.1681/asn.2017090951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/10/2018] [Indexed: 01/31/2023] Open
Abstract
Nonobstructive hydronephrosis, defined as dilatation of the renal pelvis with or without dilatation of the ureter, is the most common antenatal abnormality detected by fetal ultrasound. Yet, the etiology of nonobstructive hydronephrosis is poorly defined. We previously demonstrated that defective development of urinary tract pacemaker cells (utPMCs) expressing hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) and the stem cell marker cKIT causes abnormal ureteric peristalsis and nonobstructive hydronephrosis. However, further investigation of utPMC development and function is limited by lack of knowledge regarding the embryonic derivation, development, and molecular apparatus of these cells. Here, we used lineage tracing in mice to identify cells that give rise to utPMCs. Neural crest cells (NCCs) indelibly labeled with tdTomato expressed HCN3 and cKIT. Furthermore, purified HCN3+ and cKIT+ utPMCs were enriched in Sox10 and Tfap-2α, markers of NCCs. Sequencing of purified RNA from HCN3+ cells revealed enrichment of a small subset of RNAs, including RNA encoding protein kinase 2β (PTK2β), a Ca2+-dependent tyrosine kinase that regulates ion channel activity in neurons. Immunofluorescence analysis in situ revealed PTK2β expression in NCCs as early as embryonic day 12.5 and in HCN3+ and cKIT+ utPMCs as early as embryonic day 15.5, with sustained expression in HCN3+ utPMCs until postnatal week 8. Pharmacologic inhibition of PTK2β in murine pyeloureteral tissue explants inhibited contraction frequency. Together, these results demonstrate that utPMCs are derived from NCCs, identify new markers of utPMCs, and demonstrate a functional contribution of PTK2β to utPMC function.
Collapse
Affiliation(s)
- Samir M Iskander
- Program in Developmental and Stem Cell Biology and.,Departments of Laboratory Medicine and Pathobiology and
| | - Meghan M Feeney
- Program in Developmental and Stem Cell Biology and.,Departments of Laboratory Medicine and Pathobiology and
| | - Kirby Yee
- Program in Developmental and Stem Cell Biology and
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology and .,Departments of Laboratory Medicine and Pathobiology and.,Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada; and.,Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
17
|
Hashitani H, Nguyen MJ, Noda H, Mitsui R, Higashi R, Ohta K, Nakamura KI, Lang RJ. Interstitial cell modulation of pyeloureteric peristalsis in the mouse renal pelvis examined using FIBSEM tomography and calcium indicators. Pflugers Arch 2017; 469:797-813. [PMID: 28054154 DOI: 10.1007/s00424-016-1930-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 12/28/2022]
Abstract
Typical and atypical smooth muscle cells (TSMCs and ASMCs, respectively) and interstitial cells (ICs) within the pacemaker region of the mouse renal pelvis were examined using focused ion beam scanning electron (FIB SEM) tomography, immunohistochemistry and Ca2+ imaging. Individual cells within 500-900 electron micrograph stacks were volume rendered and associations with their neighbours established. 'Ribbon-shaped', Ano1 Cl- channel immuno-reactive ICs were present in the adventitia and the sub-urothelial space adjacent to the TSMC layer. ICs in the proximal renal pelvis were immuno-reactive to antibodies for CaV3.1 and hyperpolarization-activated cation nucleotide-gated isoform 3 (HCN3) channel sub-units, while basal-epithelial cells (BECs) were intensely immuno-reactive to Kv7.5 channel antibodies. Adventitial to the TSMC layer, ASMCs formed close appositions with TSMCs and ICs. The T-type Ca2+channel blocker, Ni2+ (10-200 μM), reduced the frequency while the L-type Ca2+ channel blocker (1 μM nifedipine) reduced the amplitude of propagating Ca2+ waves and contractions in the TSMC layer. Upon complete suppression of Ca2+ entry through TSMC Ca2+ channels, ASMCs displayed high-frequency (6 min-1) Ca2+ transients, and ICs distributed into two populations of cells firing at 1 and 3 min-1, respectively. IC Ca2+ transients periodically (every 3-5 min-1) summed into bursts which doubled the frequency of ASMC Ca2+ transient firing. Synchronized IC bursting and the acceleration of ASMC firing were inhibited upon blockade of HCN channels with ZD7288 or cell-to-cell coupling with carbenoxolone. While ASMCs appear to be the primary pacemaker driving pyeloureteric peristalsis, it was concluded that sub-urothelial HCN3(+), CaV3.1(+) ICs can accelerate ASMC Ca2+ signalling.
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Michael J Nguyen
- Department of Pharmacology, School of Biomedical Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Haruka Noda
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Retsu Mitsui
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Ryuhei Higashi
- Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Keisuke Ohta
- Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | | | - Richard J Lang
- Department of Pharmacology, School of Biomedical Sciences, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
18
|
Nguyen M, Higashi R, Ohta K, Nakamura KI, Hashitani H, Lang R. Autonomic and sensory nerve modulation of peristalsis in the upper urinary tract. Auton Neurosci 2016; 200:1-10. [DOI: 10.1016/j.autneu.2015.07.425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 07/20/2015] [Accepted: 07/28/2015] [Indexed: 11/24/2022]
|
19
|
Dong X, Song Q, Zhu J, Zhao J, Liu Q, Zhang T, Long Z, Li J, Wu C, Wang Q, Hu X, Damaser M, Li L. Interaction of Caveolin-3 and HCN is involved in the pathogenesis of diabetic cystopathy. Sci Rep 2016; 6:24844. [PMID: 27122250 PMCID: PMC4848475 DOI: 10.1038/srep24844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/05/2016] [Indexed: 12/26/2022] Open
Abstract
A growing body of research suggests that impaired bladder Cajal-like interstitial cells (ICCs) are a important component in the pathogenesis of diabetes-induced bladder dysfunction, although the molecular mechanisms have not been illustrated completely. The purpose of this study was to examine whether the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in ICCs-DM were responsible for the detrusor weak contractility of Diabetic cystopathy (DCP) and to study the possible mechanism of regulating the expression and function of HCN channels. HCN channels expression were decreased at the mRNA and protein levels. Forskolin (FSK), which can elevate intracellular cAMP levels, increased the density of the hyperpolarization-activated current and intracellular calcium concentration in both normal control (NC) rats and DCP rats, but the sensitivity of FSK on HCN channels was clearly down-regulated in DCP rats. The loss of caveolae and caveolin was in accordance with the decrease in HCN channels. Caveolin-3 co-localizes with and affects the expression and function of HCN. Taken together, these results indicate that the loss of caveolae and HCN channels in ICCs-DM is important in the pathogenesis of DCP. Increasing the number of caveolae to enhance the function of HCN channels may represent a viable target for the pharmacological treatment of DCP.
Collapse
Affiliation(s)
- Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qixiang Song
- Department of Biomedical Engineering, the Cleveland Clinic, Cleveland, OH, United States of America
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Teng Zhang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhou Long
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jia Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Chao Wu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qingqing Wang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyan Hu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Margot Damaser
- Department of Biomedical Engineering, the Cleveland Clinic, Cleveland, OH, United States of America
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
20
|
Hurtado R, Smith CS. Hyperpolarization-activated cation and T-type calcium ion channel expression in porcine and human renal pacemaker tissues. J Anat 2016; 228:812-25. [PMID: 26805464 DOI: 10.1111/joa.12444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 02/06/2023] Open
Abstract
Renal pacemaker activity triggers peristaltic upper urinary tract contractions that propel waste from the kidney to the bladder, a process prone to congenital defects that are the leading cause of pediatric kidney failure. Recently, studies have discovered that hyperpolarization-activated cation (HCN) and T-type calcium (TTC) channel conductances underlie murine renal pacemaker activity, setting the origin and frequency and coordinating upper urinary tract peristalsis. Here, we determined whether this ion channel expression is conserved in the porcine and human urinary tracts, which share a distinct multicalyceal anatomy with multiple pacemaker sites. Double chromagenic immunohistochemistry revealed that HCN isoform 3 is highly expressed at the porcine minor calyces, the renal pacemaker tissues, whereas the kidney and urinary tract smooth muscle lacked this HCN expression. Immunofluorescent staining demonstrated that HCN(+) cells are integrated within the porcine calyx smooth muscle, and that they co-express TTC channel isoform Cav3.2. In humans, the anatomic structure of the minor calyx pacemaker was assayed via hematoxylin and eosin analyses, and enabled the visualization of the calyx smooth muscle surrounding adjacent papillae. Strikingly, immunofluorescence revealed that HCN3(+) /Cav3.2(+) cells are also localized to the human minor calyx smooth muscle. Collectively, these data have elucidated a conserved molecular signature of HCN and TTC channel expression in porcine and human calyx pacemaker tissues. These findings provide evidence for the mechanisms that can drive renal pacemaker activity in the multi-calyceal urinary tract, and potential causes of obstructive uropathies.
Collapse
Affiliation(s)
- Romulo Hurtado
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY, USA.,The Core for Smooth Muscle Analysis, Weill Medical College of Cornell University, New York, NY, USA
| | - Carl S Smith
- Department of Urologic Surgery, University of Minnesota School of Medicine, Minneapolis, MN, USA
| |
Collapse
|
21
|
Fanni D, Sanna A, Gerosa C, Puddu M, Faa G, Fanos V. Each niche has an actor: multiple stem cell niches in the preterm kidney. Ital J Pediatr 2015; 41:78. [PMID: 26472160 PMCID: PMC4608192 DOI: 10.1186/s13052-015-0187-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/06/2015] [Indexed: 03/13/2023] Open
Abstract
The preterm kidney cannot be simply considered as a kidney small in size: as compared to the adult kidney, the developing organ of the preterm infant is characterized by marked differences regarding the architecture and cell components. At macroscopy, fine linear demarcations indenting the renal surface characterize the fetal and preterm kidney. At microscopy, multiple major architectural changes differentiate the developing kidney from the adult one: a large capsule with a high cellularity; the branching ureteric bud, extending from the hilum towards the renal capsule; striking morphological differences among superficial (just born) and deep (more mature) glomeruli; persistence of remnants of the metanephric mesenchyme in the hylum; incomplete differentiation of developing proximal and distal tubules. At cellular level, kidneys of preterm infants are characterized by huge amounts of stem/precursor cells showing different degrees of differentiation, admixed with mature cell types. The most striking difference between the preterm and adult kidney is represented by the abundance of stem/progenitor cells in the former. Multiple stem cell niches may be identified in the preterm kidney, including the capsule, the sub-capsular nephrogenic zone, the cap mesenchyme embracing the ureteric bud tips, the cortical and medullary interstitium, and the hilar zone in proximity of the ureteric origin. The sub-capsular area represents the major stem cell niche in the prenatal kidney. It has been defined “blue strip”, due to the scarcity of cytoplasm of the undifferentiated stem/progenitors, which appear as small cells arranged in a solid pattern. All these data taken together, the morphological approach to the analysis of the preterm kidney appears completely different from that typically utilized in kidney biopsies from adult subjects. Such a different structure should be taken into account when evaluating renal function in a preterm infant in clinical practice. Moreover, a better knowledge of molecular biology of the blue strip stem/progenitor cells could be at the basis of a new “endogenous” regenerative medicine, finalized to maintain and protect the nephrogenic potential of preterm infants till the 36th week of post-conceptional age, allowing them to escape oligonephronia and chronic kidney disease later in life.
Collapse
Affiliation(s)
- D Fanni
- Department of Pathology, University of Cagliari, via Ospedale 56, 09100, Cagliari, Italy.
| | - A Sanna
- Department of Pathology, University of Cagliari, via Ospedale 56, 09100, Cagliari, Italy.
| | - C Gerosa
- Department of Pathology, University of Cagliari, via Ospedale 56, 09100, Cagliari, Italy.
| | - M Puddu
- Department of Surgery, Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, Policlinico Monserrato, Azienda Ospedaliera Universitaria di Cagliari, University of Cagliari, 09042, Monserrato, Italy.
| | - G Faa
- Department of Pathology, University of Cagliari, via Ospedale 56, 09100, Cagliari, Italy.
| | - V Fanos
- Department of Surgery, Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, Policlinico Monserrato, Azienda Ospedaliera Universitaria di Cagliari, University of Cagliari, 09042, Monserrato, Italy.
| |
Collapse
|
22
|
Ureter growth and differentiation. Semin Cell Dev Biol 2014; 36:21-30. [DOI: 10.1016/j.semcdb.2014.07.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 12/25/2022]
|