1
|
3D osteogenic differentiation of human iPSCs reveals the role of TGFβ signal in the transition from progenitors to osteoblasts and osteoblasts to osteocytes. Sci Rep 2023; 13:1094. [PMID: 36658197 PMCID: PMC9852429 DOI: 10.1038/s41598-023-27556-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Although the formation of bone-like nodules is regarded as the differentiation process from stem cells to osteogenic cells, including osteoblasts and osteocytes, the precise biological events during nodule formation are unknown. Here we performed the osteogenic induction of human induced pluripotent stem cells using a three-dimensional (3D) culture system using type I collagen gel and a rapid induction method with retinoic acid. Confocal and time-lapse imaging revealed the osteogenic differentiation was initiated with vigorous focal proliferation followed by aggregation, from which cells invaded the gel. Invading cells changed their morphology and expressed osteocyte marker genes, suggesting the transition from osteoblasts to osteocytes. Single-cell RNA sequencing analysis revealed that 3D culture-induced cells with features of periosteal skeletal stem cells, some of which expressed TGFβ-regulated osteoblast-related molecules. The role of TGFβ signal was further analyzed in the transition from osteoblasts to osteocytes, which revealed that modulation of the TGFβ signal changed the morphology and motility of cells isolated from the 3D culture, suggesting that the TGFβ signal maintains the osteoblastic phenotype and the transition into osteocytes requires down-regulation of the TGFβ signal.
Collapse
|
2
|
Humeres C, Venugopal H, Frangogiannis NG. The Role of Mechanosensitive Signaling Cascades in Repair and Fibrotic Remodeling of the Infarcted Heart. CARDIAC AND VASCULAR BIOLOGY 2023:61-100. [DOI: 10.1007/978-3-031-23965-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Cheuk YC, Niu X, Mao Y, Li J, Wang J, Xu S, Luo Y, Wang W, Wang X, Zhang Y, Rong R. Integration of transcriptomics and metabolomics reveals pathways involved in MDSC supernatant attenuation of TGF-β1-induced myofibroblastic differentiation of mesenchymal stem cells. Cell Tissue Res 2022; 390:465-489. [PMID: 36098854 DOI: 10.1007/s00441-022-03681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Overexposure to transforming growth factor b1 (TGF-β1) induces myofibroblastic differentiation of mesenchymal stem cells (MSCs), which could be attenuated by myeloid-derived suppressor cell (MDSC) supernatant. However, the promyofibroblastic effects of TGF-β1 and the antimyofibroblastic effects of MDSC supernatant in MSCs have not been fully elucidated. To further clarify the latent mechanism and identify underlying therapeutic targets, we used an integrative strategy combining transcriptomics and metabolomics. Bone marrow MSCs were collected 24 h following TGF-β1 and MDSC supernatant treatment for RNA sequencing and untargeted metabolomic analysis. The integrated data were then analyzed to identify significant gene-metabolite correlations. Differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) were assessed by Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for exploring the mechanisms of myofibroblastic differentiation of MSCs. The integration of transcriptomic and metabolomic data highlighted significantly coordinated changes in glycolysis/gluconeogenesis and purine metabolism following TGF-β1 and MDSC supernatant treatment. By combining transcriptomic and metabolomic analyses, this study showed that glycolysis/gluconeogenesis and purine metabolism were essential for the myofibroblastic differentiation of MSCs and may serve as promising targets for mechanistic research and clinical practice in the treatment of fibrosis by MDSC supernatant.
Collapse
Affiliation(s)
- Yin Celeste Cheuk
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xinhao Niu
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yongxin Mao
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Jiawei Li
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiyan Wang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shihao Xu
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yongsheng Luo
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weixi Wang
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuanchuan Wang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China. .,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yi Zhang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China. .,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ruiming Rong
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China. .,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Passanha FR, Geuens T, LaPointe VLS. Cadherin-11 influences differentiation in human mesenchymal stem cells by regulating the extracellular matrix via the TGFβ1 pathway. Stem Cells 2022; 40:669-677. [PMID: 35416252 PMCID: PMC9332898 DOI: 10.1093/stmcls/sxac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/23/2022] [Indexed: 11/14/2022]
Affiliation(s)
- Fiona R Passanha
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Thomas Geuens
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Vanessa L S LaPointe
- Corresponding author: Vanessa L.S. LaPointe, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands. Tel.: +31 646304225;
| |
Collapse
|
5
|
To S, Chavula T, Pedroza M, Smith J, Agarwal SK. Cadherin-11 Regulates Macrophage Development and Function. Front Immunol 2022; 13:795337. [PMID: 35211116 PMCID: PMC8860974 DOI: 10.3389/fimmu.2022.795337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022] Open
Abstract
Cadherin-11 (CDH11) is a cell-cell adhesion protein that has previously been reported to play an important role in the pathogenesis of pulmonary fibrosis. It is expressed on macrophages in the fibrotic lung. However, the role of CDH11 on macrophage biology has not yet been studied. We show using immunophenotypic analyses that Cdh11-/- mice have fewer recruited monocyte-derived macrophages and Ly6Chi monocytes in the lungs compared to wild-type mice in the intraperitoneal bleomycin-induced pulmonary fibrosis model. Additionally, fewer Ly6Chi monocytes were detected in the bone marrow and peripheral blood of naive Cdh11-/- mice. Given that macrophages are derived from monocytes, we investigated the precursors of the monocyte/macrophage lineage in the bone marrow. We found increased numbers of CMPs and reduced numbers of GMPs and MPs/cMoPs in Cdh11-/- mice compared to wild-type mice, suggesting decreased differentiation towards the myeloid lineage in Cdh11-/- mice. Furthermore, we show using bone marrow cells that loss of CDH11 impaired monocyte to macrophage differentiation. We also demonstrate that CDH11 deficiency repressed the M2 program and impaired the phagocytic function of bone marrow-derived macrophages. Overall, our findings demonstrate a role for CDH11 in macrophage development, M2 polarization, and phagocytic function.
Collapse
Affiliation(s)
- Sarah To
- Department of Medicine, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, United States
| | - Thandiwe Chavula
- Department of Medicine, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, United States
| | - Mesias Pedroza
- Department of Medicine, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, United States
| | - Jennifer Smith
- Department of Medicine, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, United States
| | - Sandeep K Agarwal
- Department of Medicine, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Wilson AC, Chiles J, Ashish S, Chanda D, Kumar PL, Mobley JA, Neptune ER, Thannickal VJ, McDonald MLN. Integrated bioinformatics analysis identifies established and novel TGFβ1-regulated genes modulated by anti-fibrotic drugs. Sci Rep 2022; 12:3080. [PMID: 35197532 PMCID: PMC8866468 DOI: 10.1038/s41598-022-07151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is a leading cause of morbidity and mortality worldwide. Although fibrosis may involve different organ systems, transforming growth factor-β (TGFβ) has been established as a master regulator of fibrosis across organs. Pirfenidone and Nintedanib are the only currently-approved drugs to treat fibrosis, specifically idiopathic pulmonary fibrosis, but their mechanisms of action remain poorly understood. To identify novel drug targets and uncover potential mechanisms by which these drugs attenuate fibrosis, we performed an integrative 'omics analysis of transcriptomic and proteomic responses to TGFβ1-stimulated lung fibroblasts. Significant findings were annotated as associated with pirfenidone and nintedanib treatment in silico via Coremine. Integrative 'omics identified a co-expressed transcriptomic and proteomic module significantly correlated with TGFβ1 treatment that was enriched (FDR-p = 0.04) with genes associated with pirfenidone and nintedanib treatment. While a subset of genes in this module have been implicated in fibrogenesis, several novel TGFβ1 signaling targets were identified. Specifically, four genes (BASP1, HSD17B6, CDH11, and TNS1) have been associated with pirfenidone, while five genes (CLINT1, CADM1, MTDH, SYDE1, and MCTS1) have been associated with nintedanib, and MYDGF has been implicated with treatment using both drugs. Using the Clue Drug Repurposing Hub, succinic acid was highlighted as a metabolite regulated by the protein encoded by HSD17B6. This study provides new insights into the anti-fibrotic actions of pirfenidone and nintedanib and identifies novel targets for future mechanistic studies.
Collapse
Affiliation(s)
- Ava C. Wilson
- grid.265892.20000000106344187Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Joe Chiles
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Shah Ashish
- grid.265892.20000000106344187Department of Orthopedic Surgery, University of Alabama at Birmingham, Birmingham, AL USA
| | - Diptiman Chanda
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Preeti L. Kumar
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - James A. Mobley
- grid.265892.20000000106344187Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Enid R. Neptune
- grid.21107.350000 0001 2171 9311Department of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Victor J. Thannickal
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265219.b0000 0001 2217 8588John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA USA
| | - Merry-Lynn N. McDonald
- grid.265892.20000000106344187Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
7
|
Ahmed M, Lai TH, Kim W, Kim DR. A Functional Network Model of the Metastasis Suppressor PEBP1/RKIP and Its Regulators in Breast Cancer Cells. Cancers (Basel) 2021; 13:6098. [PMID: 34885208 PMCID: PMC8657175 DOI: 10.3390/cancers13236098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Drug screening strategies focus on quantifying the phenotypic effects of different compounds on biological systems. High-throughput technologies have the potential to understand further the mechanisms by which these drugs produce the desired outcome. Reverse causal reasoning integrates existing biological knowledge and measurements of gene and protein abundances to infer their function. This approach can be employed to appraise the existing biological knowledge and data to prioritize targets for cancer therapies. We applied text mining and a manual literature search to extract known interactions between several metastasis suppressors and their regulators. We then identified the relevant interactions in the breast cancer cell line MCF7 using a knockdown dataset. We finally adopted a reverse causal reasoning approach to evaluate and prioritize pathways that are most consistent and responsive to drugs that inhibit cell growth. We evaluated this model in terms of agreement with the observations under treatment of several drugs that produced growth inhibition of cancer cell lines. In particular, we suggested that the metastasis suppressor PEBP1/RKIP is on the receiving end of two significant regulatory mechanisms. One involves RELA (transcription factor p65) and SNAI1, which were previously reported to inhibit PEBP1. The other involves the estrogen receptor (ESR1), which induces PEBP1 through the kinase NME1. Our model was derived in the specific context of breast cancer, but the observed responses to drug treatments were consistent in other cell lines. We further validated some of the predicted regulatory links in the breast cancer cell line MCF7 experimentally and highlighted the points of uncertainty in our model. To summarize, our model was consistent with the observed changes in activity with drug perturbations. In particular, two pathways, including PEBP1, were highly responsive and would be likely targets for intervention.
Collapse
Affiliation(s)
| | | | | | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Korea; (M.A.); (T.H.L.); (W.K.)
| |
Collapse
|
8
|
Johnson CL, Riley L, Bersi M, Linton MF, Merryman WD. Impaired macrophage trafficking and increased helper T-cell recruitment with loss of cadherin-11 in atherosclerotic immune response. Am J Physiol Heart Circ Physiol 2021; 321:H756-H769. [PMID: 34506228 PMCID: PMC8794229 DOI: 10.1152/ajpheart.00263.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Inflammation caused by infiltrating macrophages and T cells promotes plaque growth in atherosclerosis. Cadherin-11 (CDH11) is a cell-cell adhesion protein implicated in several fibrotic and inflammatory diseases. Much of the research on CDH11 concerns its role in fibroblasts, although its expression in immune cells has been noted as well. The objective of this study was to assess the effect of CDH11 on the atherosclerotic immune response. In vivo studies of atherosclerosis indicated an increase in Cdh11 in plaque tissue. However, global loss of Cdh11 resulted in increased atherosclerosis and inflammation. It also altered the immune response in circulating leukocytes, decreasing myeloid cell populations and increasing T-cell populations, suggesting possible impaired myeloid migration. Bone marrow transplants from Cdh11-deficient mice resulted in similar immune cell profiles. In vitro examination of Cdh11-/- macrophages revealed reduced migration, despite upregulation of a number of genes related to locomotion. Flow cytometry revealed an increase in CD3+ and CD4+ helper T-cell populations in the blood of both the global Cdh11 loss and the bone marrow transplant animals, possibly resulting from increased expression by Cdh11-/- macrophages of major histocompatibility complex class II molecule genes, which bind to CD4+ T cells for coordinated activation. CDH11 fundamentally alters the immune response in atherosclerosis, resulting in part from impaired macrophage migration and altered macrophage-induced T-cell activation.NEW & NOTEWORTHY Cadherin-11 is well known to contribute to inflammatory and fibrotic disease. Here, we examined its role in atherosclerosis progression, which is predominantly an inflammatory process. We found that while cadherin-11 is associated with plaque progression, global loss of cadherin-11 exacerbated the disease phenotype. Moreover, loss of cadherin-11 in bone marrow-derived immune cells resulted in impaired macrophage migration and an unexplained increase in circulating helper T cells, presumably due to altered macrophage function without cadherin-11.
Collapse
Grants
- F32 HL154596 NHLBI NIH HHS
- R00 HL146951 NHLBI NIH HHS
- HL148137 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL127173 NHLBI NIH HHS
- HL127173 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL135790 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK059637 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- K99 HL146951 NHLBI NIH HHS
- HL146951 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL116263 NHLBI NIH HHS
- R35 HL135790 NHLBI NIH HHS
- R01 HL148137 NHLBI NIH HHS
- R01 HL146134 NHLBI NIH HHS
- HL146134 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U24 DK059637 NIDDK NIH HHS
- HL154596 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL116263 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- American Heart Association (AHA)
Collapse
Affiliation(s)
- Camryn L Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Lance Riley
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Matthew Bersi
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - MacRae F Linton
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
9
|
Büttner P, Feistner L, Lurz P, Thiele H, Hutcheson JD, Schlotter F. Dissecting Calcific Aortic Valve Disease-The Role, Etiology, and Drivers of Valvular Fibrosis. Front Cardiovasc Med 2021; 8:660797. [PMID: 34041283 PMCID: PMC8143377 DOI: 10.3389/fcvm.2021.660797] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a highly prevalent and progressive disorder that ultimately causes gradual narrowing of the left ventricular outflow orifice with ensuing devastating hemodynamic effects on the heart. Calcific mineral accumulation is the hallmark pathology defining this process; however, fibrotic extracellular matrix (ECM) remodeling that leads to extensive deposition of fibrous connective tissue and distortion of the valvular microarchitecture similarly has major biomechanical and functional consequences for heart valve function. Significant advances have been made to unravel the complex mechanisms that govern these active, cell-mediated processes, yet the interplay between fibrosis and calcification and the individual contribution to progressive extracellular matrix stiffening require further clarification. Specifically, we discuss (1) the valvular biomechanics and layered ECM composition, (2) patterns in the cellular contribution, temporal onset, and risk factors for valvular fibrosis, (3) imaging valvular fibrosis, (4) biomechanical implications of valvular fibrosis, and (5) molecular mechanisms promoting fibrotic tissue remodeling and the possibility of reverse remodeling. This review explores our current understanding of the cellular and molecular drivers of fibrogenesis and the pathophysiological role of fibrosis in CAVD.
Collapse
Affiliation(s)
- Petra Büttner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Lukas Feistner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Philipp Lurz
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Florian Schlotter
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
Johnson CL, Merryman WD. Side-specific valvular endothelial-interstitial cell mechano-communication via cadherin-11. J Biomech 2021; 119:110253. [PMID: 33636459 DOI: 10.1016/j.jbiomech.2021.110253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/18/2020] [Accepted: 01/03/2021] [Indexed: 12/26/2022]
Abstract
Calcific aortic valve disease (CAVD) is a condition causing stiffening of the aortic valve, impeding cardiac function and resulting in significant morbidity worldwide. CAVD is thought to be driven by the persistent activation of the predominant cell type in the valve, aortic valve interstitial cells (AVICs), into myofibroblasts, resulting in subsequent calcification and stenosis of the valve. Although much of the research into CAVD focuses on AVICs, the aortic valve endothelial cells (AVECs) have been shown to regulate AVICs and maintain tissue homeostasis. Exposed to distinct flow patterns during the cardiac cycle, the AVECs lining either side of the valve demonstrate crucial differences which could contribute to the preferential formation of calcific nodules on the aorta-facing (fibrosa) side of the valve. Cadherin-11 (CDH11) is a cell-cell adhesion protein which has been previously associated with AVIC myofibroblast activation, nodule formation, and CAVD in mice. In this study, we investigated the role of CDH11 in AVECs and examined side-specific differences. The aorta-facing or fibrosa endothelial cells (fibAVECs) express higher levels of CDH11 than the ventricle-facing or ventricularis endothelial cells (venAVECs). This increase in expression corresponds with increased contraction of a free-floating collagen gel compared to venAVECs. Additionally, co-culture of fibAVECs with AVICs demonstrated decreased contraction compared to an AVIC + AVIC control, but increased contraction compared to the venAVECs co-culture. This aligns with the known preferential formation of calcific nodules on the fibrosa. These results together indicate a potential role for CDH11 expression by AVECs in regulating AVIC contraction and subsequent calcification.
Collapse
Affiliation(s)
- Camryn L Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
11
|
Qian Y, Li L, Sun Z, Liu J, Yuan W, Wang Z. A multi-omics view of the complex mechanism of vascular calcification. Biomed Pharmacother 2021; 135:111192. [PMID: 33401220 DOI: 10.1016/j.biopha.2020.111192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification is a high incidence and high risk disease with increasing morbidity and high mortality, which is considered the consequence of smooth muscle cell transdifferentiation initiating the mechanism of accumulation of hydroxyl calcium phosphate. Vascular calcification is also thought to be strongly associated with poor outcomes in diabetes and chronic kidney disease. Numerous studies have been accomplished; however, the specific mechanism of the disease remains unclear. Development of the genome project enhanced the understanding of life science and has entered the post-genomic era resulting in a variety of omics techniques used in studies and a large amount of available data; thus, a new perspective on data analysis has been revealed. Omics has a broader perspective and is thus advantageous over a single pathway analysis in the study of complex vascular calcification mechanisms. This paper reviews in detail various omics studies including genomics, proteomics, transcriptomics, metabolomics and multiple group studies on vascular calcification. Advances and deficiencies in the use of omics to study vascular calcification are presented in a comprehensive view. We also review the methodology of the omics studies and omics data analysis and processing. In addition, the methodology and data processing presented here can be applied to other areas. An omics landscape perspective across the boundaries between genomics, transcriptomics, proteomics and metabolomics is used to examine the mechanisms of vascular calcification. The perspective combined with various technologies also provides a direction for the subsequent exploration of clinical significance.
Collapse
Affiliation(s)
- Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Jia Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China.
| |
Collapse
|
12
|
Riley LA, Merryman WD. Cadherin-11 and cardiac fibrosis: A common target for a common pathology. Cell Signal 2020; 78:109876. [PMID: 33285242 DOI: 10.1016/j.cellsig.2020.109876] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis represents an enormous health concern as it is prevalent in nearly every form of cardiovascular disease, the leading cause of death worldwide. Fibrosis is characterized by the activation of fibroblasts into myofibroblasts, a contractile cell type that secretes significant amounts of extracellular matrix components; however, the onset of this condition is also due to persistent inflammation and the cellular responses to a changing mechanical environment. In this review, we provide an overview of the pro-fibrotic, pro-inflammatory, and biomechanical mechanisms that lead to cardiac fibrosis in cardiovascular diseases. We then discuss cadherin-11, an intercellular adhesion protein present on both myofibroblasts and inflammatory cells, as a potential link for all three of the fibrotic mechanisms. Since experimentally blocking cadherin-11 dimerization prevents fibrotic diseases including cardiac fibrosis, understanding how this protein can be targeted for therapeutic use could lead to better treatments for patients with heart disease.
Collapse
Affiliation(s)
- Lance A Riley
- Department of Biomedical Engineering, Vanderbilt University, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, USA.
| |
Collapse
|
13
|
Ma H, Macdougall LJ, GonzalezRodriguez A, Schroeder ME, Batan D, Weiss RM, Anseth KS. Calcium Signaling Regulates Valvular Interstitial Cell Alignment and Myofibroblast Activation in Fast-Relaxing Boronate Hydrogels. Macromol Biosci 2020; 20:e2000268. [PMID: 32924320 PMCID: PMC7773027 DOI: 10.1002/mabi.202000268] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/28/2022]
Abstract
The role viscoelasticity in fibrotic disease progression is an emerging area of interest. Here, a fast-relaxing hydrogel system is exploited to investigate potential crosstalk between calcium signaling and mechanotransduction. Poly(ethylene glycol) (PEG) hydrogels containing boronate and triazole crosslinkers are synthesized, with varying ratios of boronate to triazole crosslinks to systematically vary the extent of stress relaxation. Valvular interstitial cells (VICs) encapsulated in hydrogels with the highest levels of stress relaxation (90%) exhibit a spread morphology by day 1 and are highly aligned (80 ± 2%) by day 5. Key myofibroblast markers, including α-smooth muscle actin (αSMA) and collagen 1a1 (COL1A1), are significantly elevated. VIC myofibroblast activation decreases by 42 ± 18% through inhibition of mechanotransduction, independently of VIC morphology and alignment. Calcium signaling through a transient receptor potential vanilloid 4 (TRPV4) is found to regulate VIC spreading, alignment, and activation in a time dependent manner. Inhibition of calcium signaling at early time points results in disturbed cell alignment, decreased mechanotransduction, and diminished activation, while inhibition at later time points only causes partially reduced myofibroblast activation. These results suggest a potential crosstalk mechanism, where calcium signaling acts upstream of mechanosensing and can regulate VIC myofibroblast activation independently of mechanotransduction.
Collapse
Affiliation(s)
- Hao Ma
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Andrea GonzalezRodriguez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Megan E Schroeder
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Dilara Batan
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Robert M Weiss
- Division of Cardiovascular Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
14
|
Genetic landscape of common venous malformations in the head and neck. J Vasc Surg Venous Lymphat Disord 2020; 9:1007-1016.e7. [PMID: 33248299 DOI: 10.1016/j.jvsv.2020.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/15/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Common venous malformations (VMs) are a frequent sporadic subtype of vascular malformations. Given the TEK and PIK3CA mutations identified, this study aims to investigate the genetic landscape of VMs in the head and neck. METHODS Patients from published sequencing studies related to common VMs were reviewed. Detailed data regarding clinical characteristics, sequencing strategies, and mutation frequency were synthesized. Lesion distribution of common VMs in the head and neck were further retrospectively analyzed by the pathologic database of the Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital. For the frequently affected sites in the head and neck, patients were selected for targeted sequencing with a designed vascular malformation-related gene panel or whole exome sequencing. Detected variants were analyzed by classical bioinformatic algorithms (SIFT23, PolyPhen-2 HDIV, LRT, MutationTaster, Mutation Assessor, and GERP++). To confirm the expression pattern of particular candidate gene, specimens were examined histochemically. Gene ontology enrichment analysis and a protein-protein interaction network were also constructed. RESULTS Three hundred patients from eight sequencing studies related to common VMs were reviewed. The total prevalence rates of TEK and PIK3CA mutations were 41.3% and 26.7%, respectively. The most frequent TEK/PIK3CA mutations were TEK-L914F/PIK3CA-H1047R. TEK/PIK3CA mutations existed in 70.3% and 2.7% of VMs in the head and neck. In retrospective data from 649 patients carrying cervicofacial VMs at Shanghai Ninth Hospital, the most frequent sites were the maxillofacial region (lips, cheek, parotid-masseteric region, submandibular region) and the oral and oropharyngeal region (buccal mucosa, tongue). Targeted sequencing for 14 frequent lesions detected TEK variants in three patients (21.4%), but no PIK3CA mutations. On whole exome sequencing of two patients without TEK/PIK3CA mutations, CDH11 was the only shared deleteriously mutated gene. Bioinformatic analyses of CDH11 implied that genes involved in cellular adhesion and junctions formed a significant portion. CONCLUSIONS Common VMs of the head and neck have a unique genetic landscape. Novel CDH11 and TEK variants imply that pathogenesis is mediated by the regulatory relationship between endothelial cells and extracellular components.
Collapse
|
15
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
16
|
Soliman H, Rossi FMV. Cardiac fibroblast diversity in health and disease. Matrix Biol 2020; 91-92:75-91. [PMID: 32446910 DOI: 10.1016/j.matbio.2020.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
The cardiac stroma plays essential roles in health and following cardiac damage. The major player of the stroma with respect to extracellular matrix deposition, maintenance and remodeling is the poorly defined fibroblast. It has long been recognized that there is considerable variability to the fibroblast phenotype. With the advent of new, high throughput analytical methods our understanding and appreciation of this heterogeneity has grown dramatically. This review aims to explore the diversity of cardiac fibroblasts and highlights new insights into the diverse nature of these cells and their progenitors as revealed by single cell sequencing and fate mapping studies. We propose that at least in part the observed heterogeneity is related to the existence of a differentiation cascade within stromal cells. Beyond in-organ heterogeneity, we also discuss how the stromal response to damage differs between non-regenerating organs such as the heart and regenerating organs such as skeletal muscle. In exploring possible causes for these differences, we outline that although fibrogenic cells from different organs overlap in many properties, they still possess organ-specific transcriptional signatures and differentiation biases that make them functionally distinct.
Collapse
Affiliation(s)
- Hesham Soliman
- Biomedical Research Centre, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada; Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
17
|
Vivar R, Humeres C, Anfossi R, Bolivar S, Catalán M, Hill J, Lavandero S, Diaz-Araya G. Role of FoxO3a as a negative regulator of the cardiac myofibroblast conversion induced by TGF-β1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118695. [PMID: 32169420 DOI: 10.1016/j.bbamcr.2020.118695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 02/08/2023]
Abstract
Cardiac fibroblasts (CFs) are necessary to maintain extracellular matrix (ECM) homeostasis in the heart. Normally, CFs are quiescent and secrete small amounts of ECM components, whereas, in pathological conditions, they differentiate into more active cells called cardiac myofibroblasts (CMF). CMF conversion is characteristic of cardiac fibrotic diseases, such as heart failure and diabetic cardiomyopathy. TGF-β1 is a key protein involved in CMF conversion. SMADs are nuclear factor proteins activated by TGF-β1 that need other proteins, such as forkhead box type O (FoxO) family members, to promote CMF conversion. FoxO1, a member of this family protein, is necessary for TGF-β1-induced CMF conversion, whereas the role of FoxO3a, another FoxO family member, is unknown. FoxO3a plays an important role in many fibrotic processes in the kidney and lung. However, the participation of FoxO3a in the conversion of CFs into CMF is not clear. In this paper, we demonstrate that TGF-β1 decreases the activation and expression of FoxO3a in CFs. FoxO3a regulation by TGF-β1 requires activated SMAD3, ERK1/2 and Akt. Furthermore, we show that FoxO1 is crucial in the FoxO3a regulation induced by TGF-β1, as shown by overexpressed FoxO1 enhancing and silenced FoxO1 suppressing the effects of TGF-β1 on FoxO3a. Finally, the regulation of TGF-β1-induced CMF conversion was enhanced by FoxO3a silencing and suppressed by inhibited FoxO3a degradation. Considering these collective findings, we suggest that FoxO3a acts as a negative regulator of the CMF conversion that is induced by TGF-β1.
Collapse
Affiliation(s)
- Raúl Vivar
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Claudio Humeres
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Renatto Anfossi
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Samir Bolivar
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mabel Catalán
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Joseph Hill
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Guillermo Diaz-Araya
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
18
|
Fernández-Colino A, Iop L, Ventura Ferreira MS, Mela P. Fibrosis in tissue engineering and regenerative medicine: treat or trigger? Adv Drug Deliv Rev 2019; 146:17-36. [PMID: 31295523 DOI: 10.1016/j.addr.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is a life-threatening pathological condition resulting from a dysfunctional tissue repair process. There is no efficient treatment and organ transplantation is in many cases the only therapeutic option. Here we review tissue engineering and regenerative medicine (TERM) approaches to address fibrosis in the cardiovascular system, the kidney, the lung and the liver. These strategies have great potential to achieve repair or replacement of diseased organs by cell- and material-based therapies. However, paradoxically, they might also trigger fibrosis. Cases of TERM interventions with adverse outcome are also included in this review. Furthermore, we emphasize the fact that, although organ engineering is still in its infancy, the advances in the field are leading to biomedically relevant in vitro models with tremendous potential for disease recapitulation and development of therapies. These human tissue models might have increased predictive power for human drug responses thereby reducing the need for animal testing.
Collapse
|
19
|
Abstract
Calcific aortic valve disease (CAVD) is the most common heart valve disorder in human populations. Nevertheless, there are presently no effective means for its prevention and treatment. It is therefore critical to comprehensively define key mechanisms of the disease. A major focus of cardiovascular research has been characterization of how regulation of gene expression maintains healthy physiologic status of the component tissues of the system and how derangements of gene regulation may become pathological. Recently, substantial evidence has emerged that noncoding RNAs, which are an enormous and versatile class of regulatory elements, such as microRNAs and long noncoding RNAs, have roles in onset and prognosis of CAVD. Authors of the present report have therefore here provided a summary of the current understanding of contributions made by noncoding RNAs major features of CAVD. It is anticipated that this article will serve as a valuable guide to research strategy in this field and may additionally provide both researchers and clinicians with an expanded range of CAVD-associated biomarkers.
Collapse
|
20
|
Lodyga M, Cambridge E, Karvonen HM, Pakshir P, Wu B, Boo S, Kiebalo M, Kaarteenaho R, Glogauer M, Kapoor M, Ask K, Hinz B. Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-β. Sci Signal 2019; 12:12/564/eaao3469. [PMID: 30647145 DOI: 10.1126/scisignal.aao3469] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages contribute to the activation of fibroblastic cells into myofibroblasts, which secrete collagen and contract the collagen matrix to acutely repair injured tissue. Persistent myofibroblast activation leads to the accumulation of fibrotic scar tissue that impairs organ function. We investigated the key processes that turn acute beneficial repair into destructive progressive fibrosis. We showed that homotypic cadherin-11 interactions promoted the specific binding of macrophages to and persistent activation of profibrotic myofibroblasts. Cadherin-11 was highly abundant at contacts between macrophages and myofibroblasts in mouse and human fibrotic lung tissues. In attachment assays, cadherin-11 junctions mediated specific recognition and strong adhesion between macrophages and myofibroblasts. One functional outcome of cadherin-11-mediated adhesion was locally restricted activation of latent transforming growth factor-β (TGF-β) between macrophage-myofibroblast pairs that was not observed in cocultures of macrophages and myofibroblasts that were not in contact with one another. Our data suggest that cadherin-11 junctions maintain latent TGF-β-producing macrophages and TGF-β-activating myofibroblasts in close proximity to one another. Inhibition of homotypic cadherin-11 interactions could be used to cause macrophage-myofibroblast separation, thereby destabilizing the profibrotic niche.
Collapse
Affiliation(s)
- Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Elizabeth Cambridge
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Henna M Karvonen
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.,Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029, Oulu, Finland
| | - Pardis Pakshir
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Brian Wu
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5T 2S8, Canada.,Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Melanie Kiebalo
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Riitta Kaarteenaho
- Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029, Oulu, Finland
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Mohit Kapoor
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5T 2S8, Canada.,Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kjetil Ask
- Department of Medicine, McMaster University, Firestone Institute for Respiratory Health, Hamilton, Ontario L8N 4A6, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada. .,Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029, Oulu, Finland.,Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| |
Collapse
|
21
|
Bowler MA, Bersi MR, Ryzhova LM, Jerrell RJ, Parekh A, Merryman WD. Cadherin-11 as a regulator of valve myofibroblast mechanobiology. Am J Physiol Heart Circ Physiol 2018; 315:H1614-H1626. [PMID: 30359089 DOI: 10.1152/ajpheart.00277.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cadherin-11 (CDH11) is upregulated in a variety of fibrotic diseases, including arthritis and calcific aortic valve disease. Our recent work has identified CDH11 as a potential therapeutic target and shown that treatment with a CDH11 functional blocking antibody can prevent hallmarks of calcific aortic valve disease in mice. The present study investigated the role of CDH11 in regulating the mechanobiological behavior of valvular interstitial cells believed to cause calcification. Aortic valve interstitial cells were harvested from Cdh11+/+, Cdh11+/-, and Cdh11-/- immortomice. Cells were subjected to inflammatory cytokines transforming growth factor (TGF)-β1 and IL-6 to characterize the molecular mechanisms by which CDH11 regulates their mechanobiological changes. Histology was performed on aortic valves from Cdh11+/+, Cdh11+/-, and Cdh11-/- mice to identify key responses to CDH11 deletion in vivo. We showed that CDH11 influences cell behavior through its regulation of contractility and its ability to bind substrates via focal adhesions. We also show that transforming growth factor-β1 overrides the normal relationship between CDH11 and smooth muscle α-actin to exacerbate the myofibroblast disease phenotype. This phenotypic switch is potentiated through the IL-6 signaling axis and could act as a paracrine mechanism of myofibroblast activation in neighboring aortic valve interstitial cells in a positive feedback loop. These data suggest CDH11 is an important mediator of the myofibroblast phenotype and identify several mechanisms by which it modulates cell behavior. NEW & NOTEWORTHY Cadherin-11 influences valvular interstitial cell contractility by regulating focal adhesions and inflammatory cytokine secretion. Transforming growth factor-β1 overrides the normal balance between cadherin-11 and smooth muscle α-actin expression to promote a myofibroblast phenotype. Cadherin-11 is necessary for IL-6 and chitinase-3-like protein 1 secretion, and IL-6 promotes contractility. Targeting cadherin-11 could therapeutically influence valvular interstitial cell phenotypes in a multifaceted manner.
Collapse
Affiliation(s)
- Meghan A Bowler
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Matthew R Bersi
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Larisa M Ryzhova
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Rachel J Jerrell
- Department of Otolaryngology, Vanderbilt University , Nashville, Tennessee
| | - Aron Parekh
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee.,Department of Otolaryngology, Vanderbilt University , Nashville, Tennessee.,Vanderbilt-Ingram Cancer Center , Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
22
|
He Y, Xu H, Xiang Z, Yu H, Xu L, Guo Y, Tian Y, Shu R, Yang X, Xue C, Zhao M, He Y, Han X, Bai D. YAP regulates periodontal ligament cell differentiation into myofibroblast interacted with RhoA/ROCK pathway. J Cell Physiol 2018; 234:5086-5096. [PMID: 30341888 DOI: 10.1002/jcp.27312] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 02/05/2023]
Abstract
During orthodontic tooth movement (OTM), periodontal ligament cells (PDLCs) receive the mechanical stimuli and transform it into myofibroblasts (Mfbs). Indeed, previous studies have demonstrated that mechanical stimuli can promote the expression of Mfb marker α-smooth muscle actin (α-SMA) in PDLCs. Transforming growth factor β1 (TGF-β1), as the target gene of yes-associated protein (YAP), has been proven to be involved in this process. Here, we sought to assess the role of YAP in Mfbs differentiation from PDLCs. The time-course expression of YAP and α-SMA was manifested in OTM model in vivo as well as under tensional stimuli in vitro. Inhibition of RhoA/Rho-associated kinase (ROCK) pathway using Y27632 significantly reduced tension-induced Mfb differentiation and YAP expression. Moreover, overexpression of YAP with lentiviral transfection in PDLCs rescued the repression effect of Mfb differentiation induced by Y27632. These data together suggest a crucial role of YAP in regulating tension-induced Mfb differentiation from PDLC interacted with RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Yao He
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Xu
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zichao Xiang
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongyou Yu
- Department of Orthodontics, College of Medicine, Dalian University, Dalian, China
| | - Li Xu
- Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou, China
| | - Yongwen Guo
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Tian
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Shu
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianrui Yang
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoran Xue
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengyuan Zhao
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yiruo He
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianglong Han
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding Bai
- Orthodontic Centre, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Awazu M, Nagata M, Hida M. BMP7 dose-dependently stimulates proliferation and cadherin-11 expression via ERK and p38 in a murine metanephric mesenchymal cell line. Physiol Rep 2018; 5:5/16/e13378. [PMID: 28867673 PMCID: PMC5582263 DOI: 10.14814/phy2.13378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/12/2022] Open
Abstract
BMP7 is expressed in ureteric buds and cap mesenchyme of the fetal kidney, mediating branching morphogenesis and survival and priming of metanephric mesenchyme. Although dose‐dependent effects of BMP7 in collecting duct cells have been reported, studies in metanephric mesenchymal cells are lacking. We examined the effects of BMP7 on MAP kinase activation, proliferation, and expression of cadherins in a metanephric mesenchymal cell line MS7 by thymidine incorporation, immunoblot analysis, and quantitative real‐time PCR. The levels of phosphorylated ERK (P‐ERK) and phosphorylated p38 (P‐p38) were not altered at 10 min, 1 h, and 6 h with low‐dose BMP7 (0.25 nmol/L), but were increased at 24 h. At 24 h, P‐ERK was increased with low‐dose BMP7, but not by intermediate‐ (1 nmol/L) or high‐dose (10 nmol/L) BMP7, whereas p38 was activated by intermediate‐dose BMP7. Cell proliferation of MS7 was significantly increased by low‐ and intermediate‐dose BMP7 and decreased by high‐dose BMP7. A p38 inhibitor SB203580 5 μmol/L or a MEK inhibitor PD98059 5 μmol/L abolished BMP7‐stimulated proliferation. Expression of cadherin‐11, an adhesion molecule known to promote cell migration and compaction, was upregulated by intermediate‐dose BMP7. BMP7‐induced cadherin‐11 expression was inhibited by cotreatment with SB203580 and PD98059. Finally, in metanephroi cultured with siRNA for cadherin‐11, the number and thickness of cap mesenchyme were reduced. In conclusion, BMP7 exerts differential effects depending on the concentration; it may expand mesenchymal cells in the stroma where BMP7 concentration is low and may upregulate cadherin‐11 promoting condensation around the tip of ureteric buds.
Collapse
Affiliation(s)
- Midori Awazu
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Michio Nagata
- Kidney and Vascular Pathology, University of Tsukuba, Ibaraki, Japan
| | - Mariko Hida
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Cheng JC, Yi Y, Chang HM, Leung PC. TGF-β1 up-regulates cadherin-11 expression through Snail: A potential mechanism for human trophoblast cell differentiation. Cell Signal 2018; 43:55-61. [DOI: 10.1016/j.cellsig.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/17/2017] [Indexed: 11/16/2022]
|
25
|
Greco CT, Akins RE, Epps TH, Sullivan MO. Attenuation of Maladaptive Responses in Aortic Adventitial Fibroblasts through Stimuli-Triggered siRNA Release from Lipid-Polymer Nanocomplexes. ADVANCED BIOSYSTEMS 2017; 1:1700099. [PMID: 29392169 PMCID: PMC5788321 DOI: 10.1002/adbi.201700099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipid-siRNA assemblies are modified with photo-responsive polymers to enable spatiotemporally-controlled silencing of interleukin 1 beta (IL1β) and cadherin 11 (CDH11), two genes that are essential drivers of maladaptive responses in human aortic adventitial fibroblasts (AoAFs). These hybrid nanocomplexes address the critical challenge of locally mitigating fibrotic actions that lead to the high rates of vascular graft failures. In particular, the lipid-polymer formulations provide potent silencing of IL1β and CDH11 that is precisely modulated by a photo-release stimulus. Moreover, a dynamic modeling framework is used to design a multi-dose siRNA regimen that sustains knockdown of both genes over clinically-relevant timescales. Multi-dose suppression illuminates a cooperative role for IL1β and CDH11 in pathogenic adventitial remodeling and is directly linked to desirable functional outcomes. Specifically, myofibroblast differentiation and cellular proliferation, two of the primary hallmarks of fibrosis, are significantly attenuated by IL1β silencing. Meanwhile, the effects of CDH11 siRNA treatment on differentiation become more pronounced at higher cell densities characteristic of constrictive adventitial remodeling in vivo. Thus, this work offers a unique formulation design for photo-responsive gene suppression in human primary cells and establishes a new dosing method to satisfy the critical need for local attenuation of fibrotic responses in the adventitium surrounding vascular grafts.
Collapse
Affiliation(s)
- Chad T Greco
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Robert E Akins
- Department of Biomedical Research, Nemours - Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Thomas H Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
26
|
In vitro 3D model and miRNA drug delivery to target calcific aortic valve disease. Clin Sci (Lond) 2017; 131:181-195. [PMID: 28057890 DOI: 10.1042/cs20160378] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/27/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Calcific aortic valve disease (CAVD) is the most prevalent valvular heart disease in the Western population, claiming 17000 deaths per year in the United States and affecting 25% of people older than 65 years of age. Contrary to traditional belief, CAVD is not a passive, degenerative disease but rather a dynamic disease, where initial cellular changes in the valve leaflets progress into fibrotic lesions that induce valve thickening and calcification. Advanced thickening and calcification impair valve function and lead to aortic stenosis (AS). Without intervention, progressive ventricular hypertrophy ensues, which ultimately results in heart failure and death. Currently, aortic valve replacement (AVR), surgical or transcatheter, is the only effective therapy to treat CAVD. However, these costly interventions are often delayed until the late stages of the disease. Nonetheless, 275000 are performed per year worldwide, and this is expected to triple by 2050. Given the current landscape, next-generation therapies for CAVD are needed to improve patient outcome and quality of life. Here, we first provide a background on the aortic valve (AV) and the pathobiology of CAVD as well as highlight current directions and future outlook on the development of functional 3D models of CAVD in vitro We then consider an often-overlooked aspect contributing to CAVD: miRNA (mis)regulation. Therapeutics could potentially normalize miRNA levels in the early stages of the disease and may slow its progression or even reverse calcification. We close with a discussion of strategies that would enable the use of miRNA as a therapeutic for CAVD. This focuses on an overview of controlled delivery technologies for nucleic acid therapeutics to the valve or other target tissues.
Collapse
|
27
|
Song R, Fullerton DA, Ao L, Zhao KS, Reece TB, Cleveland JC, Meng X. Altered MicroRNA Expression Is Responsible for the Pro-Osteogenic Phenotype of Interstitial Cells in Calcified Human Aortic Valves. J Am Heart Assoc 2017; 6:e005364. [PMID: 28438736 PMCID: PMC5533027 DOI: 10.1161/jaha.116.005364] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/15/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND The transition of aortic valve interstitial cells (AVICs) to myofibroblastic and osteoblast-like phenotypes plays a critical role in calcific aortic valve disease progression. Several microRNAs (miRs) are implicated in stem cell differentiation into osteoblast. We hypothesized that an epigenetic mechanism regulates valvular pro-osteogenic activity. This study examined miR profile in AVICs of calcified valves and identified miRs responsible for AVIC phenotypic transition. METHODS AND RESULTS AVICs were isolated from normal and diseased valves. The miR microarray analysis revealed 14 upregulated and 12 downregulated miRs in diseased AVICs. Increased miR-486 and decreased miR-204 levels were associated with higher levels of myofibroblastic biomarker α-smooth muscle actin and osteoblastic biomarkers runt-related transcription factor 2 (Runx2) and osterix (Osx). Cotransfection of miR-486 antagomir and miR-204 mimic in diseased AVICs reduced their ability to express Runx2 and Osx. The miR-486 mimic upregulated α-smooth muscle actin expression in normal AVICs through the protein kinase B pathway and moderately elevated Runx2 and Osx levels. Knockdown of α-smooth muscle actin attenuated Runx2 and Osx expression induced by miR-486. The miR-486 mimic and miR-204 antagomir synergistically promoted Runx2 and Osx expression and calcium deposition in normal AVICs and normal aortic valve tissue. CONCLUSIONS In AVICs of calcified valves, increased levels of miR-486 induce myofibroblastic transition to upregulate Runx2 and Osx expression and synergize with miR-204 deficiency to elevate cellular and valvular pro-osteogenic activity. These novel findings indicate that modulation of the epigenetic mechanism underlying valvular pro-osteogenic activity has therapeutic potential for prevention of calcific aortic valve disease progression.
Collapse
Affiliation(s)
- Rui Song
- Department of Surgery, University of Colorado Denver, Aurora, CO
| | | | - Lihua Ao
- Department of Surgery, University of Colorado Denver, Aurora, CO
| | - Ke-Seng Zhao
- Guangdong Key Laboratory of Shock and Microcirculation Research, Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - T Brett Reece
- Department of Surgery, University of Colorado Denver, Aurora, CO
| | | | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver, Aurora, CO
| |
Collapse
|
28
|
Broadbent J, Sampson D, Sabapathy S, Haseler LJ, Wagner KH, Bulmer AC, Peake JM, Neubauer O. Gene networks in skeletal muscle following endurance exercise are coexpressed in blood neutrophils and linked with blood inflammation markers. J Appl Physiol (1985) 2017; 122:752-766. [PMID: 28104750 DOI: 10.1152/japplphysiol.00114.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 11/22/2022] Open
Abstract
It remains incompletely understood whether there is an association between the transcriptome profiles of skeletal muscle and blood leukocytes in response to exercise or other physiological stressors. We have previously analyzed the changes in the muscle and blood neutrophil transcriptome in eight trained men before and 3, 48, and 96 h after 2 h cycling and running. Because we collected muscle and blood in the same individuals and under the same conditions, we were able to directly compare gene expression between the muscle and blood neutrophils. Applying weighted gene coexpression network analysis (WGCNA) as an advanced network-driven method to these original data sets enabled us to compare the muscle and neutrophil transcriptomes in a rigorous and systematic manner. Two gene networks were identified that were preserved between skeletal muscle and blood neutrophils, functionally related to mitochondria and posttranslational processes. Strong preservation measures (Zsummary > 10) for both muscle-neutrophil gene networks were evident within the postexercise recovery period. Muscle and neutrophil gene coexpression was strongly correlated in the mitochondria-related network (r = 0.97; P = 3.17E-2). We also identified multiple correlations between muscular gene subnetworks and exercise-induced changes in blood leukocyte counts, inflammation, and muscle damage markers. These data reveal previously unidentified gene coexpression between skeletal muscle and blood neutrophils following exercise, showing the value of WGCNA to understand exercise physiology. Furthermore, these findings provide preliminary evidence in support of the notion that blood neutrophil gene networks may potentially help us to track physiological and pathophysiological changes in the muscle.NEW & NOTEWORTHY By using weighted gene coexpression network analysis, an advanced bioinformatics method, we have identified previously unknown, functional gene networks that are preserved between skeletal muscle and blood neutrophils during recovery from exercise. These novel preliminary data suggest that muscular gene networks are coexpressed in blood leukocytes following physiological stress. This is a step forward toward the development of blood neutrophil gene subnetworks as part of blood biomarker panels to assess muscle health and disease.
Collapse
Affiliation(s)
- James Broadbent
- Tissue Repair and Translational Physiology Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Dayle Sampson
- Tissue Repair and Translational Physiology Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Surendran Sabapathy
- School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Luke J Haseler
- School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences and Research Platform Active Ageing, University of Vienna, Vienna, Austria; and
| | - Andrew C Bulmer
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jonathan M Peake
- Tissue Repair and Translational Physiology Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Oliver Neubauer
- Tissue Repair and Translational Physiology Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia;
| |
Collapse
|
29
|
Birtolo C, Pham H, Morvaridi S, Chheda C, Go VLW, Ptasznik A, Edderkaoui M, Weisman MH, Noss E, Brenner MB, Larson B, Guindi M, Wang Q, Pandol SJ. Cadherin-11 Is a Cell Surface Marker Up-Regulated in Activated Pancreatic Stellate Cells and Is Involved in Pancreatic Cancer Cell Migration. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:146-155. [PMID: 27855278 DOI: 10.1016/j.ajpath.2016.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/05/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022]
Abstract
Chronic pancreatitis is a prominent risk factor for the development of pancreatic ductal adenocarcinoma. In both conditions, the activation of myofibroblast-like pancreatic stellate cells (PSCs) plays a predominant role in the formation of desmoplastic reaction through the synthesis of connective tissue and extracellular matrix, inducing local pancreatic fibrosis and an inflammatory response. Yet the signaling events involved in chronic pancreatitis and pancreatic cancer progression and metastasis remain poorly defined. Cadherin-11 (Cad-11, also known as OB cadherin or CDH11) is a cell-to-cell adhesion molecule implicated in many biological functions, including tissue morphogenesis and architecture, extracellular matrix-mediated tissue remodeling, cytoskeletal organization, epithelial-to-mesenchymal transition, and cellular migration. In this study, we show that, in human chronic pancreatitis and pancreatic cancer tissues, Cad-11 expression was significantly increased in PSCs and pancreatic cancer cells. In particular, an increased expression of Cad-11 can be detected on the plasma membrane of activated PSCs isolated from chronic pancreatitis tissues and in pancreatic cancer cells metastasized to the liver. Moreover, knockdown of Cad-11 in cancer cells reduced pancreatic cancer cell migration. Taken together, our data underline the potential role of Cad-11 in PSC activation and pancreatic cancer metastasis.
Collapse
Affiliation(s)
- Chiara Birtolo
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Department of Internal Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Hung Pham
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Susan Morvaridi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chintan Chheda
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Vay Liang W Go
- Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California
| | - Andrzej Ptasznik
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michael H Weisman
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Erika Noss
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael B Brenner
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brent Larson
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Maha Guindi
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California; Department of Veterans Affairs, VA Greater Los Angeles Health Care System, Los Angeles, California.
| |
Collapse
|
30
|
Abstract
Fibrotic cardiac disease, a leading cause of death worldwide, manifests as substantial loss of function following maladaptive tissue remodeling. Fibrosis can affect both the heart valves and the myocardium and is characterized by the activation of fibroblasts and accumulation of extracellular matrix. Valvular interstitial cells and cardiac fibroblasts, the cell types responsible for maintenance of cardiac extracellular matrix, are sensitive to changing mechanical environments, and their ability to sense and respond to mechanical forces determines both normal development and the progression of disease. Recent studies have uncovered specific adhesion proteins and mechano-sensitive signaling pathways that contribute to the progression of fibrosis. Integrins form adhesions with the extracellular matrix, and respond to changes in substrate stiffness and extracellular matrix composition. Cadherins mechanically link neighboring cells and are likely to contribute to fibrotic disease propagation. Finally, transition to the active myofibroblast phenotype leads to maladaptive tissue remodeling and enhanced mechanotransductive signaling, forming a positive feedback loop that contributes to heart failure. This Commentary summarizes recent findings on the role of mechanotransduction through integrins and cadherins to perpetuate mechanically induced differentiation and fibrosis in the context of cardiac disease.
Collapse
Affiliation(s)
- Alison K Schroer
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
31
|
Yang L, Hu J, Hao HZ, Yin Z, Liu G, Zou XJ. Sodium tanshinone IIA sulfonate attenuates the transforming growth factor-β1-induced differentiation of atrial fibroblasts into myofibroblasts in vitro. Int J Mol Med 2015; 35:1026-32. [PMID: 25647570 DOI: 10.3892/ijmm.2015.2087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 01/15/2015] [Indexed: 11/05/2022] Open
Abstract
The differentiation of atrial fibroblasts into myofibroblasts is a critical event in atrial fibrosis. One of the most important factors in atrial fibroblast differentiation is transforming growth factor-β1 (TGF-β1). Accumulating evidence indicates that sodium tanshinone IIA sulfonate (STS) possesses antifibrotic properties. In this study, we therefore investigated whether STS attenuates the TGF-β1‑induced differentiation of atrial fibroblasts. TGF-β1 enhanced collagen production, collagen synthesis and the expression of collagen type I and III, as shown by hydroxyproline assay, collagen synthesis assay and western blot analysis, respectively. In addition, as shown by immunohistochemistry and western blot analysis, TGF-β1 enhanced the expression of α-smooth muscle actin (α-SMA), which is the hallmark of myofibroblast differentiation. These responses were attenuated by treatment with STS. In addition, STS suppressed the TGF-β1‑induced expression of phosphorylated (p)Smad/pSmad3 expression and nuclear translocation. Furthermore, STS suppressed extracellular signal-regulated kinase (ERK) phosphorylation. In conclusion, the current study demonstrates that STS exerts antifibrotic effects by modulating atrial fibroblast differentiation through ERK phosphorylation and the Smad pathway.
Collapse
Affiliation(s)
- Le Yang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jin Hu
- Department of Otolaryngology, Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hong-Zhen Hao
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhao Yin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Gang Liu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiao-Jing Zou
- Department of Anesthesiology and Critical Care Medicine, Laboratory of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
32
|
Abstract
During every heartbeat, cardiac valves open and close coordinately to control the unidirectional flow of blood. In this dynamically challenging environment, resident valve cells actively maintain homeostasis, but the signalling between cells and their microenvironment is complex. When homeostasis is disrupted and the valve opening obstructed, haemodynamic profiles can be altered and lead to impaired cardiac function. Currently, late stages of cardiac valve diseases are treated surgically, because no drug therapies exist to reverse or halt disease progression. Consequently, investigators have sought to understand the molecular and cellular mechanisms of valvular diseases using in vitro cell culture systems and biomaterial scaffolds that can mimic the extracellular microenvironment. In this Review, we describe how signals in the extracellular matrix regulate valve cell function. We propose that the cellular context is a critical factor when studying the molecular basis of valvular diseases in vitro, and one should consider how the surrounding matrix might influence cell signalling and functional outcomes in the valve. Investigators need to build a systems-level understanding of the complex signalling network involved in valve regulation, to facilitate drug target identification and promote in situ or ex vivo heart valve regeneration.
Collapse
|