1
|
Zhang Z, Lin X, Yang Y, Wang X, Wang Y, Huang X, Hong M, Gao W, He H, You MJ, Yang Y, Kong G. Caspase 3-specific cleavage of ubiquitin-specific peptidase 48 enhances drug-induced apoptosis in AML. Cancer Biol Ther 2025; 26:2459426. [PMID: 39878157 PMCID: PMC11781246 DOI: 10.1080/15384047.2025.2459426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Dysfunction or dysregulation of deubiquitination is closely related to the initiation and development of multiple cancers. Targeted regulation of deubiquitination has been recognized as an important strategy in tumor therapy. However, the mechanism by which drugs regulate deubiquitinase is not clear. Here, we identified ubiquitin-specific peptidase 48 (USP48), a member of the ubiquitin-specific protease family highly expressed in various tumors, as a specific substrate for the activated caspase-3. During drug induced apoptosis of AML cells, activated caspase-3 cleaves USP48 through recognizing the conservative motif DEQD located at 611-614 sites of human USP48. Subsequent analysis showed that the cleavage USP48 N-terminal fragment which contains catalytic active domain is easily degraded by ubiquitination. Meanwhile knockdown experiment showed that inhibiting the expression of USP48 could also promotes apoptosis and enhance the efficacy of chemotherapy drugs. Altogether, these results suggest that targeting USP48 may represent a novel therapeutic strategy in AML.
Collapse
Affiliation(s)
- Zhanglin Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Department of Hematology, Precision Medical Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Departments of Blood Transfusion, Institute of Transfusion, Jiangxi Key Laboratory of Transfusion, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiang Lin
- Departments of Blood Transfusion, Institute of Transfusion, Jiangxi Key Laboratory of Transfusion, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yaling Yang
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Xuemei Wang
- Departments of Blood Transfusion, Institute of Transfusion, Jiangxi Key Laboratory of Transfusion, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi Wang
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Xianbao Huang
- Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Miao Hong
- Departments of Blood Transfusion, Institute of Transfusion, Jiangxi Key Laboratory of Transfusion, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wei Gao
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Hua He
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - M. James You
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Yi Yang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Department of Hematology, Precision Medical Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guangyao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Department of Hematology, Precision Medical Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Albini A, Di Paola L, Mei G, Baci D, Fusco N, Corso G, Noonan D. Inflammation and cancer cell survival: TRAF2 as a key player. Cell Death Dis 2025; 16:292. [PMID: 40229245 PMCID: PMC11997178 DOI: 10.1038/s41419-025-07609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
TNF receptor-associated factor 2 (TRAF2) plays a crucial role in both physiological and pathological processes. It takes part in the regulation of cell survival and death, tissue regeneration, development, endoplasmic reticulum stress response, autophagy, homeostasis of the epithelial barrier and regulation of adaptive and innate immunity. Initially identified for its interaction with TNF receptor 2 (TNFR2), TRAF2 contains a TRAF domain that enables homo- and hetero-oligomerization, allowing it to interact with multiple receptors and signaling molecules. While best known for mediating TNFR1 and TNFR2 signaling, TRAF2 also modulates other receptor pathways, including MAPK, NF-κB, and Wnt/β-catenin cascades. By regulating NF-κB-inducing kinase (NIK), TRAF2 is a key activator of the alternative NF-κB pathway, linking it to inflammatory diseases, immune dysfunction, and tumorigenesis. In the innate immune system, TRAF2 influences macrophage differentiation, activation, and survival and stimulates natural killer cell cytotoxicity. In the adaptive immune system, it represses effector B- and T-cell activity while sustaining regulatory T-cell function, thus promoting immune suppression. The lack of fine-tuning of TRAF2 activity leads to excessive NF-kB activation, driving chronic inflammation and autoimmunity. Although TRAF2 can act as a tumor suppressor, it is predominantly described as a tumor promoter, as its expression has been correlated with increased metastatic potential and poorer prognosis in several types of cancer. Targeting TRAF2 or TRAF2-dependent signaling pathways might represent a promising anti-cancer therapeutic strategy.
Collapse
Grants
- The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- PRIN 2022, grant 2022PJKF88 The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- PRIN 2022 The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- "Umberto Veronesi" Foundation project: "Massive CDH1 genetic screening in the so-called hereditary breast-gastric cancer syndrome". The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
Collapse
Affiliation(s)
- Adriana Albini
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Faculty Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico, Rome, Italy
| | - Giampiero Mei
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Denisa Baci
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| | - Nicola Fusco
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giovanni Corso
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
- Division of Breast Surgery, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| | - Douglas Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
3
|
Moriwaki C, Takahashi S, Thi Vu N, Miyake Y, Kataoka T. 1'-Acetoxychavicol Acetate Selectively Downregulates Tumor Necrosis Factor Receptor-Associated Factor 2 (TRAF2) Expression. Molecules 2025; 30:1243. [PMID: 40142019 PMCID: PMC11945442 DOI: 10.3390/molecules30061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
1'-Acetoxychavicol acetate (ACA) is a natural compound derived from rhizomes of the Zingiberaceae family that suppresses the nuclear factor κB (NF-κB) signaling pathway; however, the underlying mechanisms remain unclear. Therefore, the present study investigated the molecular mechanisms by which ACA inhibits the NF-κB signaling pathway in human lung adenocarcinoma A549 cells. The results obtained showed ACA decreased tumor necrosis factor (TNF)-α-induced intercellular adhesion molecule-1 (ICAM-1) expression in A549 cells. It also inhibited TNF-α-induced ICAM-1 mRNA expression and ICAM-1 promoter-driven and NF-κB-responsive luciferase reporter activities. Furthermore, the TNF-α-induced degradation of the inhibitor of NF-κB α protein in the NF-κB signaling pathway was suppressed by ACA. Although ACA did not affect TNF receptor 1, TNF receptor-associated death domain, or receptor-interacting protein kinase 1 protein expression, it selectively downregulated TNF receptor-associated factor 2 (TRAF2) protein expression. The proteasome inhibitor MG-132, but not inhibitors of caspases or lysosomal degradation, attenuated ACA-induced reductions in TRAF2 expression. ACA also downregulated TRAF2 protein expression in human fibrosarcoma HT-1080 cells. This is the first study to demonstrate that ACA selectively downregulates TRAF2 protein expression.
Collapse
Affiliation(s)
- Chihiro Moriwaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shingo Takahashi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Nhat Thi Vu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yasunobu Miyake
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
4
|
Dubiel D, Naumann M, Dubiel W. CSN-CRL Complexes: New Regulators of Adipogenesis. Biomolecules 2025; 15:372. [PMID: 40149914 PMCID: PMC11940434 DOI: 10.3390/biom15030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Recent discoveries revealed mechanistic insights into the control of adipogenesis by the Constitutive Photomorphogenesis 9 Signalosome (CSN) and its variants, CSNCSN7A and CSNCSN7B, which differ in the paralog subunits, CSN7A and CSN7B. CSNCSN7A and CSNCSN7B variants form permanent complexes with cullin-RING-ubiquitin ligases 3 and 4A (CRL3 and CRL4A), respectively. These complexes can be found in most eukaryotic cells and represent a critical reservoir for cellular functions. In an early stage of adipogenesis, mitotic clonal expansion (MCE), CSN-CRL1, and CSNCSN7B-CRL4A are blocked to ubiquitinate the cell cycle inhibitor p27KIP, leading to cell cycle arrest. In addition, in MCE CSN-CRL complexes rearrange the cytoskeleton for adipogenic differentiation and CRL3KEAP1 ubiquitylates the inhibitor of adipogenesis C/EBP homologous protein (CHOP) for degradation by the 26S proteasome, an adipogenesis-specific proteolysis. During terminal adipocyte differentiation, the CSNCSN7A-CRL3 complex is recruited to a lipid droplet (LD) membrane by RAB18. Currently, the configuration of the substrate receptors of CSNCSN7A-CRL3 on LDs is unclear. CSNCSN7A-CRL3 is activated by neddylation on the LD membrane, an essential adipogenic step. Damage to CSN/CUL3/CUL4A genes is associated with diverse diseases, including obesity. Due to the tremendous impact of CSN-CRLs on adipogenesis, we need strategies for adequate treatment in the event of malfunctions.
Collapse
Affiliation(s)
- Dawadschargal Dubiel
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany;
| | | | - Wolfgang Dubiel
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany;
| |
Collapse
|
5
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
6
|
Zhang G, Yu J, Wan Y. USP48 deubiquitination stabilizes SLC1A5 to inhibit retinal pigment epithelium cell inflammation, oxidative stress and ferroptosis in the progression of diabetic retinopathy. J Bioenerg Biomembr 2024; 56:311-321. [PMID: 38427128 DOI: 10.1007/s10863-024-10008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Diabetic retinopathy is one of the complications of diabetes mellitus. The aim of this study was to explore the effects of ubiquitin-specific protease 48 (USP48) and its underlying mechanisms in the development of diabetic retinopathy. METHODS CCK-8 assay, EdU assay, and flow cytometry were used to measure the proliferative ability and the apoptotic rate of ARPE-19 cells, respectively. ELISA kits were utilized to assess the levels of inflammatory cytokines. The levels of Fe2+, ROS and MDA were detected using the corresponding biochemical kits. The protein expression of USP48 and SLC1A5 was examined through western blot. The mRNA level of SLC1A5 was determined using RT-qPCR. The interaction relationship between USP48 and SLC1A5 was evaluated using Co-IP assay. RESULTS High glucose (HG) treatment significantly inhibited cell proliferation and elevated cell apoptosis, inflammation, ferroptosis and oxidative stress in ARPE-19 cells. HG treatment-caused cell damage was hindered by USP48 or SLC1A5 overexpression in ARPE-19 cells. Fer-1 treatment improved HG-caused cell damage in ARPE-19 cells, which was blocked by USP48 knockdown. Moreover, USP48 knockdown decreased SLC1A5 expression. SLC1A5 downregulation reversed the improvement effects of USP48 upregulation on cell damage in HG-treated ARPE-19 cells. CONCLUSION USP48 overexpression deubiquitinated SLC1A5 to elevate cell proliferation and suppress cell apoptosis, inflammation, ferroptosis and oxidative stress in HG-triggered ARPE-19 cells, thereby inhibiting the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Guoping Zhang
- Department of Endocrinology, Nanyang First People's Hospital, Nanyang, 473010, China
| | - Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang, 473010, China
- Nanyang Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang, 473010, China
| | - Youping Wan
- The Second Department of Cardiology, Nanyang First People's Hospital, No. 1099, Renmin South Road, Nanyang, 473010, China.
| |
Collapse
|
7
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
8
|
Ma Q, Ruan H, Dai H, Yao WD. USP48/USP31 Is a Nuclear Deubiquitinase that Potently Regulates Synapse Remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558317. [PMID: 37781625 PMCID: PMC10541093 DOI: 10.1101/2023.09.19.558317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Deubiquitinases present locally at synapses regulate synaptic development, function, and plasticity. It remains largely unknown, however, whether deubiquitinases localized outside of the synapse control synapse remodeling. Here we identify ubiquitin specific protease 48 (USP48; formerly USP31) as a nuclear deubiquitinase mediating robust synapse removal. USP48 is expressed primarily during the first postnatal week in the rodent brain and is virtually restricted to nuclei, mediated by a conserved, 13-amino acid nuclear localization signal. When exogenously expressed, USP48, in a deubiquitinase and nuclear localization-dependent manner, induces striking filopodia elaboration, marked spine loss, and significantly reduced synaptic protein clustering in vitro, and erases ~70% of functional synapses in vivo. USP48 interacts with the transcription factor NF-κB, deubiquitinates NF-κB subunit p65 and promotes its stability and activation, and up-regulates NF-κB target genes known to inhibit synaptogenesis. Depleting NF-κB prevents USP48-dependent spine pruning. These findings identify a novel nucleus-enriched deubiquitinase that plays critical roles in synapse remodeling.
Collapse
Affiliation(s)
- Qi Ma
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Hongyu Ruan
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Huihui Dai
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Wei-Dong Yao
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
9
|
Harit K, Bhattacharjee R, Matuschewski K, Becker J, Kalinke U, Schlüter D, Nishanth G. The deubiquitinating enzyme OTUD7b protects dendritic cells from TNF-induced apoptosis by stabilizing the E3 ligase TRAF2. Cell Death Dis 2023; 14:480. [PMID: 37516734 PMCID: PMC10387084 DOI: 10.1038/s41419-023-06014-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
The cytokine tumor necrosis factor (TNF) critically regulates the intertwined cell death and pro-inflammatory signaling pathways of dendritic cells (DCs) via ubiquitin modification of central effector molecules, but the intrinsic molecular switches deciding on either pathway are incompletely defined. Here, we uncover that the ovarian tumor deubiquitinating enzyme 7b (OTUD7b) prevents TNF-induced apoptosis of DCs in infection, resulting in efficient priming of pathogen-specific CD8+ T cells. Mechanistically, OTUD7b stabilizes the E3 ligase TNF-receptor-associated factor 2 (TRAF2) in human and murine DCs by counteracting its K48-ubiquitination and proteasomal degradation. TRAF2 in turn facilitates K63-linked polyubiquitination of RIPK1, which mediates activation of NF-κB and MAP kinases, IL-12 production, and expression of anti-apoptotic cFLIP and Bcl-xL. We show that mice with DC-specific OTUD7b-deficiency displayed DC apoptosis and a failure to induce CD8+ T cell-mediated brain pathology, experimental cerebral malaria, in a murine malaria infection model. Together, our data identify the deubiquitinating enzyme OTUD7b as a central molecular switch deciding on survival of human and murine DCs and provides a rationale to manipulate DC responses by targeting their ubiquitin network downstream of the TNF receptor pathway.
Collapse
Affiliation(s)
- Kunjan Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Rituparna Bhattacharjee
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115, Berlin, Germany
| | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
10
|
Li XM, Zhao ZY, Yu X, Xia QD, Zhou P, Wang SG, Wu HL, Hu J. Exploiting E3 ubiquitin ligases to reeducate the tumor microenvironment for cancer therapy. Exp Hematol Oncol 2023; 12:34. [PMID: 36998063 DOI: 10.1186/s40164-023-00394-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
AbstractTumor development relies on a complex and aberrant tissue environment in which cancer cells receive the necessary nutrients for growth, survive through immune escape, and acquire mesenchymal properties that mediate invasion and metastasis. Stromal cells and soluble mediators in the tumor microenvironment (TME) exhibit characteristic anti-inflammatory and protumorigenic activities. Ubiquitination, which is an essential and reversible posttranscriptional modification, plays a vital role in modulating the stability, activity and localization of modified proteins through an enzymatic cascade. This review was motivated by accumulating evidence that a series of E3 ligases and deubiquitinases (DUBs) finely target multiple signaling pathways, transcription factors and key enzymes to govern the functions of almost all components of the TME. In this review, we systematically summarize the key substrate proteins involved in the formation of the TME and the E3 ligases and DUBs that recognize these proteins. In addition, several promising techniques for targeted protein degradation by hijacking the intracellular E3 ubiquitin-ligase machinery are introduced.
Collapse
|
11
|
Sánchez-Bellver L, Férriz-Gordillo A, Carrillo-Pz M, Rabanal L, Garcia-Gonzalo FR, Marfany G. The Deubiquitinating Enzyme USP48 Interacts with the Retinal Degeneration-Associated Proteins UNC119a and ARL3. Int J Mol Sci 2022; 23:ijms232012527. [PMID: 36293380 PMCID: PMC9603860 DOI: 10.3390/ijms232012527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins related to the ubiquitin-proteasome system play an important role during the differentiation and ciliogenesis of photoreceptor cells. Mutations in several genes involved in ubiquitination and proteostasis have been identified as causative of inherited retinal dystrophies (IRDs) and ciliopathies. USP48 is a deubiquitinating enzyme whose role in the retina is still unexplored although previous studies indicate its relevance for neurosensory organs. In this work, we describe that a pool of endogenous USP48 localises to the basal body in retinal cells and provide data that supports the function of USP48 in the photoreceptor cilium. We also demonstrate that USP48 interacts with the IRD-associated proteins ARL3 and UNC119a, and stabilise their protein levels using different mechanisms. Our results suggest that USP48 may act in the regulation/stabilisation of key ciliary proteins for photoreceptor function, in the modulation of intracellular protein transport, and in ciliary trafficking to the photoreceptor outer segment.
Collapse
Affiliation(s)
- Laura Sánchez-Bellver
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andrea Férriz-Gordillo
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Marc Carrillo-Pz
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Laura Rabanal
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Francesc R. Garcia-Gonzalo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), 28029 Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina-Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
- DBGen Ocular Genomics, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
12
|
USP48 and A20 synergistically promote cell survival in Helicobacter pylori infection. Cell Mol Life Sci 2022; 79:461. [PMID: 35913642 PMCID: PMC9343311 DOI: 10.1007/s00018-022-04489-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022]
Abstract
The human pathogen Helicobacter pylori represents a risk factor for the development of gastric diseases including cancer. The H. pylori-induced transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is involved in the pro-inflammatory response and cell survival in the gastric mucosa, and represents a trailblazer of gastric pathophysiology. Termination of nuclear NF-κB heterodimer RelA/p50 activity is regulated by the ubiquitin-RING-ligase complex elongin-cullin-suppressor of cytokine signalling 1 (ECSSOCS1), which leads to K48-ubiquitinylation and degradation of RelA. We found that deubiquitinylase (DUB) ubiquitin specific protease 48 (USP48), which interacts with the COP9 signalosome (CSN) subunit CSN1, stabilises RelA by deubiquitinylation and thereby promotes the transcriptional activity of RelA to prolong de novo synthesis of DUB A20 in H. pylori infection. An important role of A20 is the suppression of caspase-8 activity and apoptotic cell death. USP48 thus enhances the activity of A20 to reduce apoptotic cell death in cells infected with H. pylori. Our results, therefore, define a synergistic mechanism by which USP48 and A20 regulate RelA and apoptotic cell death in H. pylori infection.
Collapse
|
13
|
Mendik P, Kerestély M, Kamp S, Deritei D, Kunšič N, Vassy Z, Csermely P, Veres DV. Translocating proteins compartment-specifically alter the fate of epithelial-mesenchymal transition in a compartmentalized Boolean network model. NPJ Syst Biol Appl 2022; 8:19. [PMID: 35680961 PMCID: PMC9184490 DOI: 10.1038/s41540-022-00228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of translocating proteins is crucial in defining cellular behaviour. Epithelial-mesenchymal transition (EMT) is important in cellular processes, such as cancer progression. Several orchestrators of EMT, such as key transcription factors, are known to translocate. We show that translocating proteins become enriched in EMT-signalling. To simulate the compartment-specific functions of translocating proteins we created a compartmentalized Boolean network model. This model successfully reproduced known biological traits of EMT and as a novel feature it also captured organelle-specific functions of proteins. Our results predicted that glycogen synthase kinase-3 beta (GSK3B) compartment-specifically alters the fate of EMT, amongst others the activation of nuclear GSK3B halts transforming growth factor beta-1 (TGFB) induced EMT. Moreover, our results recapitulated that the nuclear activation of glioma associated oncogene transcription factors (GLI) is needed to achieve a complete EMT. Compartmentalized network models will be useful to uncover novel control mechanisms of biological processes. Our algorithmic procedures can be automatically rerun on the https://translocaboole.linkgroup.hu website, which provides a framework for similar future studies.
Collapse
Affiliation(s)
- Péter Mendik
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Márk Kerestély
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | | | - Dávid Deritei
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Nina Kunšič
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Zsolt Vassy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Péter Csermely
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Daniel V Veres
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary. .,Turbine Ltd, Budapest, Hungary.
| |
Collapse
|
14
|
Zhang P, Li L, Wang B, Ran X, Yang S, Luo Y, Li Y, Wang Z, Liu Y, Zhu B. miR-489-3p promotes malignant progression of non-small cell lung cancer through the inactivation of Wnt/β-catenin signaling pathway via regulating USP48. Respir Res 2022; 23:93. [PMID: 35413838 PMCID: PMC9006470 DOI: 10.1186/s12931-022-01988-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/21/2021] [Indexed: 12/25/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer globally, with average age of cancer patients becoming younger gradually. It is of significance to gain a comprehensive understanding of molecular mechanism underlying NSCLC. Methods Quantitative polymerase chain reaction (qPCR) and western blot were applied to measure RNA and protein levels separately. Functional assays and western blot were performed to determine the effects of miR-489-3p and USP48 on cell growth, migration and epithelial-mesenchymal transition (EMT) in NSCLC. TOP/FOP flash luciferase reporter assay was carried out to detect the activity of Wnt pathway. Besides, qPCR, RNA pulldown and luciferase reporter assays were conducted to probe into the target gene of miR-489-3p. Immunoprecipitation-western blot (IP-western blot) analysis was implemented to assess the effect of USP48 on the ubiquitination of β-catenin. Results miR-489-3p hampers NSCLC cell proliferation, migration and EMT in vitro and NSCLC tumorigenesis and metastasis in vivo. Additionally, miR-489-3p inactivates Wnt/β-catenin signaling pathway and regulates USP48 to inhibit the ubiquitination of β-catenin. Moreover, USP48 propels the development of NSCLC cells. Conclusions The current study demonstrated that miR-489-3p promotes the malignant progression of NSCLC cells via targeting USP48, which might offer a new perspective into NSCLC treatment. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01988-w.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Li Li
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Bing Wang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Xu Ran
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Shengrong Yang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Yujie Luo
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Yunhe Li
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Zhenghong Wang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Yi Liu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Bing Zhu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.76, Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
15
|
Wu W, Wang J, Xiao C, Su Z, Su H, Zhong W, Mao J, Liu X, Zhu YZ. SMYD2-mediated TRAF2 methylation promotes the NF-κB signaling pathways in inflammatory diseases. Clin Transl Med 2021; 11:e591. [PMID: 34841684 PMCID: PMC8567046 DOI: 10.1002/ctm2.591] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The methylation of lysine residues has been involved in the multiple biological and diseases processes. Recently, some particular non-histone proteins have been elucidated to be methylated by SMYD2, a SET and MYND domain protein with lysine methyltransferase activity. METHODS SMYD2 was evaluated in synovial tissue and cells derived from rheumatoid arthritis patients. We confirmed TRAF2 could be methylated by SMYD2 using Mass spectrometry, pull-down, immunoprecipitation, methyltransferase assay, ubiquitination assay, luciferase reporter assays, and western blot analyses. Using loss- and gain-of function studies, we explored the biological functions of SMYD2 in vitro and in vivo. Using acute and chronic inflammation with different mice models to determine the impact of SMYD2. RESULTS Here, we first time confirmed that the cytoplasmic protein TRAF2 as the kernel node for NF-κB signaling pathway could be methylated by SMYD2. SMYD2-mediated TRAF2 methylation contributed to the durative sensitization of NF-κB signaling transduction through restraining its own proteolysis and enhancing the activity. In addition, we found knocking down of SMYD2 has different degrees of mitigation in acute and chronic inflammation mice models. Furthermore, as the lysine-specific demethylase, LSD1 could resist methylation on TRAF2 induced by SMYD2. CONCLUSIONS Our data uncovered an unprecedented cytoplasmic protein network that employed methylation of TRAF2 for the maintenance of NF-κB activation during inflammatory diseases.
Collapse
Affiliation(s)
- Weijun Wu
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Jinghuan Wang
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
| | - Chenxi Xiao
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
| | - Zhenghua Su
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
| | - Haibi Su
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
| | - Wen Zhong
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
| | - Jianchun Mao
- Department of RhumatologyShanghai Longhua HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Xinhua Liu
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
| | - Yi Zhun Zhu
- School of PharmacyHuman Phenome InstituteFudan UniversityShanghai201203China
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| |
Collapse
|
16
|
Qian G, Zhu L, Li G, Liu Y, Zhang Z, Pan J, Lv H. An Integrated View of Deubiquitinating Enzymes Involved in Type I Interferon Signaling, Host Defense and Antiviral Activities. Front Immunol 2021; 12:742542. [PMID: 34707613 PMCID: PMC8542838 DOI: 10.3389/fimmu.2021.742542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Viral infectious diseases pose a great challenge to human health around the world. Type I interferons (IFN-Is) function as the first line of host defense and thus play critical roles during virus infection by mediating the transcriptional induction of hundreds of genes. Nevertheless, overactive cytokine immune responses also cause autoimmune diseases, and thus, tight regulation of the innate immune response is needed to achieve viral clearance without causing excessive immune responses. Emerging studies have recently uncovered that the ubiquitin system, particularly deubiquitinating enzymes (DUBs), plays a critical role in regulating innate immune responses. In this review, we highlight recent advances on the diverse mechanisms of human DUBs implicated in IFN-I signaling. These DUBs function dynamically to calibrate host defenses against various virus infections by targeting hub proteins in the IFN-I signaling transduction pathway. We also present a future perspective on the roles of DUB-substrate interaction networks in innate antiviral activities, discuss the promises and challenges of DUB-based drug development, and identify the open questions that remain to be clarified. Our review provides a comprehensive description of DUBs, particularly their differential mechanisms that have evolved in the host to regulate IFN-I-signaling-mediated antiviral responses.
Collapse
Affiliation(s)
- Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Liyan Zhu
- Department of Experimental Center, Medical College of Soochow University, Suzhou, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
USP48 Governs Cell Cycle Progression by Regulating the Protein Level of Aurora B. Int J Mol Sci 2021; 22:ijms22168508. [PMID: 34445214 PMCID: PMC8395203 DOI: 10.3390/ijms22168508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022] Open
Abstract
Deubiquitinating enzymes play key roles in the precise modulation of Aurora B—an essential cell cycle regulator. The expression of Aurora B increases before the onset of mitosis and decreases during mitotic exit; an imbalance in these levels has a severe impact on the fate of the cell cycle. Dysregulation of Aurora B can lead to aberrant chromosomal segregation and accumulation of errors during mitosis, eventually resulting in cytokinesis failure. Thus, it is essential to identify the precise regulatory mechanisms that modulate Aurora B levels during the cell division cycle. Using a deubiquitinase knockout strategy, we identified USP48 as an important candidate that can regulate Aurora B protein levels during the normal cell cycle. Here, we report that USP48 interacts with and stabilizes the Aurora B protein. Furthermore, we showed that the deubiquitinating activity of USP48 helps to maintain the steady-state levels of Aurora B protein by regulating its half-life. Finally, USP48 knockout resulted in delayed progression of cell cycle due to accumulation of mitotic defects and ultimately cytokinesis failure, suggesting the role of USP48 in cell cycle regulation.
Collapse
|
18
|
Kyca T, Pavlíková L, Boháčová V, Mišák A, Poturnayová A, Breier A, Sulová Z, Šereš M. Insight into Bortezomib Focusing on Its Efficacy against P-gp-Positive MDR Leukemia Cells. Int J Mol Sci 2021; 22:ijms22115504. [PMID: 34071136 PMCID: PMC8197160 DOI: 10.3390/ijms22115504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
In this paper, we compared the effects of bortezomib on L1210 (S) cells with its effects on P-glycoprotein (P-gp)-positive variant S cells, which expressed P-gp either after selection with vincristine (R cells) or after transfection with a human gene encoding P-gp (T cells). Bortezomib induced the death-related effects in the S, R, and T cells at concentrations not exceeding 10 nM. Bortezomib-induced cell cycle arrest in the G2/M phase was more pronounced in the S cells than in the R or T cells and was related to the expression levels of cyclins, cyclin-dependent kinases, and their inhibitors. We also observed an increase in the level of polyubiquitinated proteins (via K48-linkage) and a decrease in the gene expression of some deubiquitinases after treatment with bortezomib. Resistant cells expressed higher levels of genes encoding 26S proteasome components and the chaperone HSP90, which is involved in 26S proteasome assembly. After 4 h of preincubation, bortezomib induced a more pronounced depression of proteasome activity in S cells than in R or T cells. However, none of these changes alone or in combination sufficiently suppressed the sensitivity of R or T cells to bortezomib, which remained at a level similar to that of S cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Bortezomib/pharmacology
- Cell Cycle/drug effects
- Cell Division
- Cell Line, Tumor
- Deubiquitinating Enzymes
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Fluoresceins/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, cdc/drug effects
- Humans
- Inhibitory Concentration 50
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/metabolism
- Leukemia, Lymphoid/pathology
- Mice
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protease Inhibitors/pharmacology
- Proteasome Endopeptidase Complex/drug effects
- Proteasome Endopeptidase Complex/metabolism
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Recombinant Proteins/metabolism
- Transcription, Genetic/drug effects
- Ubiquitinated Proteins/metabolism
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Tomáš Kyca
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
| | - Lucia Pavlíková
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Viera Boháčová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
| | - Anton Mišák
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia;
| | - Alexandra Poturnayová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava 1, Slovakia
- Correspondence: (A.B.); (Z.S.); (M.Š.); Tel.: +421-2-593-25-514 or +421-918-674-514 (A.B.); +421-2-3229-5510 (Z.S.)
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Correspondence: (A.B.); (Z.S.); (M.Š.); Tel.: +421-2-593-25-514 or +421-918-674-514 (A.B.); +421-2-3229-5510 (Z.S.)
| | - Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
- Correspondence: (A.B.); (Z.S.); (M.Š.); Tel.: +421-2-593-25-514 or +421-918-674-514 (A.B.); +421-2-3229-5510 (Z.S.)
| |
Collapse
|
19
|
Targeting the Ubiquitin Signaling Cascade in Tumor Microenvironment for Cancer Therapy. Int J Mol Sci 2021; 22:ijms22020791. [PMID: 33466790 PMCID: PMC7830467 DOI: 10.3390/ijms22020791] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor microenvironments are composed of a myriad of elements, both cellular (immune cells, cancer-associated fibroblasts, mesenchymal stem cells, etc.) and non-cellular (extracellular matrix, cytokines, growth factors, etc.), which collectively provide a permissive environment enabling tumor progression. In this review, we focused on the regulation of tumor microenvironment through ubiquitination. Ubiquitination is a reversible protein post-translational modification that regulates various key biological processes, whereby ubiquitin is attached to substrates through a catalytic cascade coordinated by multiple enzymes, including E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes and E3 ubiquitin ligases. In contrast, ubiquitin can be removed by deubiquitinases in the process of deubiquitination. Here, we discuss the roles of E3 ligases and deubiquitinases as modulators of both cellular and non-cellular components in tumor microenvironment, providing potential therapeutic targets for cancer therapy. Finally, we introduced several emerging technologies that can be utilized to develop effective therapeutic agents for targeting tumor microenvironment.
Collapse
|
20
|
Li L, Wei J, Suber TL, Ye Q, Miao J, Li S, Taleb SJ, Tran KC, Tamaskar AS, Zhao J, Zhao Y. IL-37-induced activation of glycogen synthase kinase 3β promotes IL-1R8/Sigirr phosphorylation, internalization, and degradation in lung epithelial cells. J Cell Physiol 2021; 236:5676-5685. [PMID: 33400290 DOI: 10.1002/jcp.30253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Interleukin (IL)-37 diminishes a variety of inflammatory responses through ligation to its receptor IL-1R8/Sigirr. Sigirr is a Toll like receptor/IL-1R family member. We have shown that Sigirr is not stable in response to IL-37 treatment. IL-37-induced Sigirr degradation is mediated by the ubiquitin-proteasome system, and the process is reversed by a deubiquitinase, USP13. However, the molecular mechanisms by which USP13 regulates Sigirr stability have not been revealed. In this study, we investigate the roles of glycogen synthesis kinase 3β (GSK3β) in Sigirr phosphorylation and stability. IL-37 stimulation induced Sigirr phosphorylation and degradation, as well as activation of GSK3β. Inhibition of GSK3β attenuated IL-37-induced Sigirr phosphorylation, while exogenous expressed GSK3β promoted Sigirr phosphorylation at threonine (T)372 residue. Sigirr association with GSK3β was detected. Amino acid residues 51-101 in GSK3β were identified as the Sigirr binding domain. These data indicate that GSK3β mediates IL-37-induced threonine phosphorylation of Sigirr. Further, we investigated the role of GSK3β-mediated phosphorylation of Sigirr in Sigirr degradation. Inhibition of GSK3β attenuated IL-37-induced Sigirr degradation, while T372 mutant of Sigirr was resistant to IL-37-mediated degradation. Furthermore, inhibition of Sigirr phosphorylation prevented Sigirr internalization and association with USP13, suggesting GSK3β promotes Sigirr degradation through disrupting Sigirr association with USP13.
Collapse
Affiliation(s)
- Lian Li
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jianxin Wei
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tomeka L Suber
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jiaxing Miao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Shuang Li
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Kevin C Tran
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Arya S Tamaskar
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
21
|
Zhou W, Lin D, Zhong Z, Ye Q. Roles of TRAFs in Ischemia-Reperfusion Injury. Front Cell Dev Biol 2020; 8:586487. [PMID: 33224951 PMCID: PMC7674171 DOI: 10.3389/fcell.2020.586487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are a family of signaling molecules that function downstream of multiple receptor signaling pathways, and they play a pivotal role in the regulation of intracellular biological progresses. These TRAF-dependent signaling pathways and physiological functions have been involved in the occurrence and progression of ischemia-reperfusion injury (IRI), which is a common pathophysiological process that occurs in a wide variety of clinical events, including ischemic shock, organ transplantation, and thrombolytic therapy, resulting in a poor prognosis and high mortality. IRI occurs in multiple organs, including liver, kidney, heart, lung, brain, intestine, and retina. In recent years, mounting compelling evidence has confirmed that the genetic alterations of TRAFs can cause subversive phenotype changes during IRI of those organs. In this review, based on current knowledge, we summarized and analyzed the regulatory effect of TRAFs on the IRI of various organs, providing clear direction and a firm theoretical basis for the development of treatment strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in IRI-related diseases.
Collapse
Affiliation(s)
- Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Danni Lin
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
22
|
Morgan EL, Chen Z, Van Waes C. Regulation of NFκB Signalling by Ubiquitination: A Potential Therapeutic Target in Head and Neck Squamous Cell Carcinoma? Cancers (Basel) 2020; 12:E2877. [PMID: 33036368 PMCID: PMC7601648 DOI: 10.3390/cancers12102877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with over 600,000 cases per year. The primary causes for HNSCC include smoking and alcohol consumption, with an increasing number of cases attributed to infection with Human Papillomavirus (HPV). The treatment options for HNSCC currently include surgery, radiotherapy, and/or platinum-based chemotherapeutics. Cetuximab (targeting EGFR) and Pembrolizumab (targeting PD-1) have been approved for advanced stage, recurrent, and/or metastatic HNSCC. Despite these advances, whilst HPV+ HNSCC has a 3-year overall survival (OS) rate of around 80%, the 3-year OS for HPV- HNSCC is still around 55%. Aberrant signal activation of transcription factor NFκB plays an important role in the pathogenesis and therapeutic resistance of HNSCC. As an important mediator of inflammatory signalling and the immune response to pathogens, the NFκB pathway is tightly regulated to prevent chronic inflammation, a key driver of tumorigenesis. Here, we discuss how NFκB signalling is regulated by the ubiquitin pathway and how this pathway is deregulated in HNSCC. Finally, we discuss the current strategies available to target the ubiquitin pathway and how this may offer a potential therapeutic benefit in HNSCC.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA;
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA;
| | | |
Collapse
|
23
|
Hu Y, Ma Z, Chen Z, Chen B. USP47 promotes apoptosis in rat myocardial cells after ischemia/reperfusion injury via NF‐κB activation. Biotechnol Appl Biochem 2020; 68:841-848. [PMID: 32761659 DOI: 10.1002/bab.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Hu
- Department of Cardiovascular Medicine Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences Shanghai People's Republic of China
| | - Zhihui Ma
- Department of Cardiovascular Medicine Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences Shanghai People's Republic of China
| | - Zhong Chen
- Department of Cardiovascular Medicine Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences Shanghai People's Republic of China
| | - Bin Chen
- Department of Cardiovascular Medicine Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences Shanghai People's Republic of China
| |
Collapse
|
24
|
The COP9 Signalosome: A Multi-DUB Complex. Biomolecules 2020; 10:biom10071082. [PMID: 32708147 PMCID: PMC7407660 DOI: 10.3390/biom10071082] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
The COP9 signalosome (CSN) is a signaling platform controlling the cellular ubiquitylation status. It determines the activity and remodeling of ~700 cullin-RING ubiquitin ligases (CRLs), which control more than 20% of all ubiquitylation events in cells and thereby influence virtually any cellular pathway. In addition, it is associated with deubiquitylating enzymes (DUBs) protecting CRLs from autoubiquitylation and rescuing ubiquitylated proteins from degradation. The coordination of ubiquitylation and deubiquitylation by the CSN is presumably important for fine-tuning the precise formation of defined ubiquitin chains. Considering its intrinsic DUB activity specific for deneddylation of CRLs and belonging to the JAMM family as well as its associated DUBs, the CSN represents a multi-DUB complex. Two CSN-associated DUBs, the ubiquitin-specific protease 15 (USP15) and USP48 are regulators in the NF-κB signaling pathway. USP15 protects CRL1β-TrCP responsible for IκBα ubiquitylation, whereas USP48 stabilizes the nuclear pool of the NF-κB transcription factor RelA upon TNF stimulation by counteracting CRL2SOCS1. Moreover, the CSN controls the neddylation status of cells by its intrinsic DUB activity and by destabilizing the associated deneddylation enzyme 1 (DEN1). Thus, the CSN is a master regulator at the intersection between ubiquitylation and neddylation.
Collapse
|
25
|
Li T, Zou C. The Role of Deubiquitinating Enzymes in Acute Lung Injury and Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:E4842. [PMID: 32650621 PMCID: PMC7402294 DOI: 10.3390/ijms21144842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are characterized by an inflammatory response, alveolar edema, and hypoxemia. ARDS occurs most often in the settings of pneumonia, sepsis, aspiration of gastric contents, or severe trauma. The prevalence of ARDS is approximately 10% in patients of intensive care. There is no effective remedy with mortality high at 30-40%. Most functional proteins are dynamic and stringently governed by ubiquitin proteasomal degradation. Protein ubiquitination is reversible, the covalently attached monoubiquitin or polyubiquitin moieties within the targeted protein can be removed by a group of enzymes called deubiquitinating enzymes (DUBs). Deubiquitination plays an important role in the pathobiology of ALI/ARDS as it regulates proteins critical in engagement of the alveolo-capillary barrier and in the inflammatory response. In this review, we provide an overview of how DUBs emerge in pathogen-induced pulmonary inflammation and related aspects in ALI/ARDS. Better understanding of deubiquitination-relatedsignaling may lead to novel therapeutic approaches by targeting specific elements of the deubiquitination pathways.
Collapse
Affiliation(s)
| | - Chunbin Zou
- Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| |
Collapse
|
26
|
DUBs Activating the Hedgehog Signaling Pathway: A Promising Therapeutic Target in Cancer. Cancers (Basel) 2020; 12:cancers12061518. [PMID: 32531973 PMCID: PMC7352588 DOI: 10.3390/cancers12061518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 12/29/2022] Open
Abstract
The Hedgehog (HH) pathway governs cell proliferation and patterning during embryonic development and is involved in regeneration, homeostasis and stem cell maintenance in adult tissues. The activity of this signaling is finely modulated at multiple levels and its dysregulation contributes to the onset of several human cancers. Ubiquitylation is a coordinated post-translational modification that controls a wide range of cellular functions and signaling transduction pathways. It is mediated by a sequential enzymatic network, in which ubiquitin ligases (E3) and deubiquitylase (DUBs) proteins are the main actors. The dynamic balance of the activity of these enzymes dictates the abundance and the fate of cellular proteins, thus affecting both physiological and pathological processes. Several E3 ligases regulating the stability and activity of the key components of the HH pathway have been identified. Further, DUBs have emerged as novel players in HH signaling transduction, resulting as attractive and promising drug targets. Here, we review the HH-associated DUBs, discussing the consequences of deubiquitylation on the maintenance of the HH pathway activity and its implication in tumorigenesis. We also report the recent progress in the development of selective inhibitors for the DUBs here reviewed, with potential applications for the treatment of HH-related tumors.
Collapse
|
27
|
UCHL3 promotes ovarian cancer progression by stabilizing TRAF2 to activate the NF-κB pathway. Oncogene 2019; 39:322-333. [DOI: 10.1038/s41388-019-0987-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
|
28
|
Woo B, Baek KH. Regulatory interplay between deubiquitinating enzymes and cytokines. Cytokine Growth Factor Rev 2019; 48:40-51. [PMID: 31208841 PMCID: PMC7108389 DOI: 10.1016/j.cytogfr.2019.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Abstract
Deubiquitinating enzymes (DUBs) are cysteine protease proteins that reverse the ubiquitination by removing ubiquitins from the target protein. With over 100 DUBs identified and categorized into at least 7 families, many DUBs interact with one or more cytokines, influencing cellular processes, such as antiviral responses, inflammatory responses, apoptosis, etc. While some DUBs influence cytokine pathway or production, some DUBs are cytokine-inducible. In this article, we summarize a list of DUBs, their interaction with cytokines, target proteins and mechanisms of action.
Collapse
Affiliation(s)
- Bean Woo
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do, 13488, Republic of Korea; University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
29
|
Li Y, Deng L, Zhao X, Li B, Ren D, Yu L, Pan H, Gong Q, Song L, Zhou X, Dai T. Tripartite motif-containing 37 (TRIM37) promotes the aggressiveness of non-small-cell lung cancer cells by activating the NF-κB pathway. J Pathol 2018; 246:366-378. [PMID: 30043491 DOI: 10.1002/path.5144] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022]
Abstract
Non-small-cell lung cancer (NSCLC), in which the NF-κB pathway is constitutively activated, is one of the most common malignancies. Herein, we identify an E3 ubiquitin ligase, tripartite motif-containing 37 (TRIM37), participating in the K63 polyubiquitination of TRAF2, which is a significant step in the activation of NF-κB signaling. Both the mRNA and the protein expression levels of TRIM37 were much higher in NSCLC cell lines and tissues than in normal bronchial epithelial cells and matched adjacent non-tumor tissues. TRIM37 expression correlated closely with clinical stage and poor survival in NSCLC. Overexpression of TRIM37 antagonized cisplatin-induced apoptosis, induced angiogenesis and proliferation, and increased the aggressiveness of NSCLC cells in vitro and in vivo, whereas inhibition of TRIM37 led to the opposite effects. Gene set enrichment analysis (GSEA) showed that TRIM37 expression significantly correlated with NF-κB signaling. Furthermore, we found that TRIM37 bound to TRAF2 and promoted K63-linked ubiquitination of TRAF2, sustaining the eventual activation of the NF-κB pathway. Mutation in the ring finger domain of TRIM37, a hallmark of E3 ubiquitin ligases, led to loss of the ability to promote K63 polyubiquitination of TRAF2 and activate NF-κB signaling. Taken together, our findings provide evidence that TRIM37 plays an important role in constitutive NF-κB pathway activation and could serve as a prognostic factor and therapeutic target in NSCLC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yun Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China.,Department of Immunobiology, Jinan University, Guangzhou, PR China
| | - Liwen Deng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Bohan Li
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Dong Ren
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Centre, Sun Yat-sen University, Guangzhou, PR China
| | - Lihong Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Hehai Pan
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Qing Gong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Centre, Sun Yat-sen University, Guangzhou, PR China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Ting Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
30
|
Li L, Wang Y, Zhang X, Song G, Guo Q, Zhang Z, Diao Y, Yin H, Liu H, Jiang G. Deubiquitinase USP48 promotes ATRA-induced granulocytic differentiation of acute promyelocytic leukemia cells. Int J Oncol 2018; 53:895-903. [PMID: 29901102 DOI: 10.3892/ijo.2018.4440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/04/2018] [Indexed: 11/05/2022] Open
Abstract
All-trans retinoic acid (ATRA) has been used for the treatment of acute promyelocytic leukemia (APL). However, its molecular mechanisms of action are unclear. Ubiquitin-specific protease 48 (USP48) is a deubiquitinase enzyme that can post-translationally remove ubiquitin molecules from substrates. In the present study, the role of USP48 in ATRA-induced differentiation of APL cells was studied. The expression of USP48 decreased following ATRA treatment. Functionally, overexpression of USP48 using electroporation-mediated delivery inhibited the proliferation of APL cells and promoted ATRA-mediated differentiation. The inverse observations were made upon siRNA-mediated knockdown of USP48. Furthermore, the expression of USP48 was increased in the nucleus upon ATRA exposure for ≤24 h, suggesting that USP48 was translocated into the nucleus. Interestingly, regulation of p65, a substrate of USP48, did not contribute to the downstream mechanism of ATRA-induced differentiation of APL cells. In addition, upstream mechanistic studies demonstrated that the expression of USP48 was regulated by microRNA-301a-3p. In conclusion, the present study highlights the function of USP48 in the ATRA-induced granulocytic differentiation of APL cells and provides a theoretical basis for identifying novel targets for differentiation therapy of APL.
Collapse
Affiliation(s)
- Lianlian Li
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yong Wang
- Shandong Xinchuang Biotechnology Co., Ltd., Jinan, Shandong 250102, P.R. China
| | - Xiaoyu Zhang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Guanhua Song
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Qiang Guo
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Zhiyong Zhang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yutao Diao
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Haipeng Yin
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Hongyan Liu
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Guosheng Jiang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|