1
|
Patra S, Everhart Nunn SL, Levent G, Chelikani PK. Prebiotics pectin and resistant starch-type 4 stimulate peptide YY and cholecystokinin to promote satiety, and improve gut microbiota composition. FASEB J 2025; 39:e70457. [PMID: 40085424 DOI: 10.1096/fj.202403239r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/08/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Dietary prebiotics pectin and resistant starch type-4 (RS-4) promote satiety and alter gut microbiota; however, the underlying neurohormonal mechanisms of satiety remain poorly understood. We determined the effects of pectin, RS-4, and their combination on energy balance and gut microbiota composition, and assessed whether the gut hormones peptide YY (PYY) and cholecystokinin (CCK) play a role in fiber-induced satiety. High-fat diet -induced obese male rats (n = 7-8/group) were fed either control, pectin, RS-4, or a combination of pectin and RS-4 diet. We found that pectin, RS-4, and their combination decreased food intake. Pectin alone, or combined with RS-4, shifted substrate utilization towards fat and reduced gains in weight and adiposity. Pectin alone or combined with RS-4 enhanced the expression and plasma concentrations of PYY and CCK. Importantly, systemic blockade of PYY-Y2 and CCK-1 receptors attenuated the hypophagic effects of pectin, and CCK-1 receptor blockade partly attenuated the hypophagia from RS-4. The prebiotics significantly altered fecal β-diversity metrics, suggestive of improvements in gut microbiota composition. Pectin and RS-4 alone, or in combination, were associated with increased relative abundance of phylum Bacteroidota, decreased Firmicutes, and increased concentrations of amino acids and biogenic amines in feces. Collectively, these findings suggest that dietary pectin and RS-4 improved energy balance and gut microbiota composition, and importantly, demonstrated that the satiety effects of these diets were mediated, in part, via enhanced endogenous PYY and CCK signaling.
Collapse
Affiliation(s)
- Souvik Patra
- School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA
| | - Savana L Everhart Nunn
- Department of Agricultural and Human Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Gizem Levent
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
2
|
Zheng W, Duan H, Cao L, Mao S, Shen J. Acid-base properties of non-protein nitrogen affect nutrients intake, rumen fermentation and antioxidant capacity of fattening Hu sheep. Front Vet Sci 2024; 11:1381871. [PMID: 38596467 PMCID: PMC11002212 DOI: 10.3389/fvets.2024.1381871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
This study conducted a comparison of the effects of non-protein nitrogen with different acid-base properties on feed intake, rumen fermentation, nutrient digestion and antioxidant capacity in fattening Hu sheep. Sixteen fattening male sheep (31.43 ± 2.41 kg) with permanent rumen cannulas were randomly assigned to two dietary treatments: 1% urea and 1.78% ammonium chloride (NH4Cl, AC). A 42 days experimental period was conducted, with 14 days for adaptation and 28 days for treatment. Daily feed intake was recorded and various samples including feed, feces, rumen fluid, and blood were collected at different time points during the final week. The results indicated that the urea group had significantly higher dry matter intake, average daily gain, and gain efficiency in comparison to the AC group (p < 0.01). There was no difference in rumen pH and concentration of ammonia nitrogen between different groups (p > 0.05), but the rumen pH of urea group was higher than that of the AC group at 1 and 3 h after feeding (p < 0.05). The urea group exhibited higher concentrations of total volatile fatty acids (VFA) and individual VFAs compared to the AC group at all-time points (p < 0.01). Compared to the urea group, the intake of all nutrients decreased in the AC group (p < 0.01), but the digestibility of dry matter and organic matter increased significantly (p < 0.01), and the digestibility of CP had an increasing trend (p = 0.06) in the AC group. Additionally, the urea group had lower levels of serum glucagon-like peptide-1, peptide YY, Cl, total protein and globulin than the AC group (p < 0.05). The overall levels of HCO3-, superoxide dismutase, glutathione peroxidase, catalase, albumin/globulin, blood urea nitrogen and total cholesterol in the urea group increased significantly compared to the AC group (p < 0.05). It was concluded that adding urea to the high-concentrate diet resulted in increased rumen pH and improved rumen fermentation and growth performance in fattening sheep compared to NH4Cl addition. Furthermore, urea addition improved sheep's antioxidant capacity and maintained their acid-base balance more effectively as compared to NH4Cl.
Collapse
Affiliation(s)
- Wenjin Zheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongwei Duan
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liwen Cao
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Junshi Shen
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Zhang M, Zhu L, Wu G, Zhang H, Wang X, Qi X. The impacts and mechanisms of dietary proteins on glucose homeostasis and food intake: a pivotal role of gut hormones. Crit Rev Food Sci Nutr 2023; 64:12744-12758. [PMID: 37800337 DOI: 10.1080/10408398.2023.2256400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Glucose and energy metabolism disorders are the main reasons induced type 2 diabetes (T2D) and obesity. Besides providing energy, dietary nutrients could regulate glucose homeostasis and food intake via intestinal nutrient sensing induced gut hormone secretion. However, reviews regarding intestinal protein sensing are very limited, and no accurate information is available on their underlying mechanisms. Through intestinal protein sensing, dietary proteins regulate glucose homeostasis and food intake by secreting gut hormones, such as glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), peptide YY (PYY) and glucose-dependent insulinotropic polypeptide (GIP). After activating the sensory receptors, such as calcium-sensing receptor (CaSR), peptide transporter-1 (PepT1), and taste 1 receptors (T1Rs), protein digests induced Ca2+ influx and thus triggered gut hormone release. Additionally, research models used to study intestinal protein sensing have been emphasized, especially several innovative models with excellent physiological relevance, such as co-culture cell models, intestinal organoids, and gut-on-a-chips. Lastly, protein-based dietary strategies that stimulate gut hormone secretion and inhibit gut hormone degradation are proposed for regulating glucose homeostasis and food intake.
Collapse
Affiliation(s)
- Mingkai Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiguang Qi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
The ‘Whey’ to good health: Whey protein and its beneficial effect on metabolism, gut microbiota and mental health. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Whey-Adapted versus Natural Cow's Milk Formulation: Distinctive Feeding Responses and Post-Ingestive c-Fos Expression in Laboratory Mice. Foods 2022; 11:foods11020141. [PMID: 35053873 PMCID: PMC8774298 DOI: 10.3390/foods11020141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
The natural 20:80 whey:casein ratio in cow’s milk (CM) for adults and infants is adjusted to reflect the 60:40 ratio of human milk, but the feeding and metabolic consequences of this adjustment have been understudied. In adult human subjects, the 60:40 CM differently affects glucose metabolism and hormone release than the 20:80 CM. In laboratory animals, whey-adapted goat’s milk is consumed in larger quantities. It is unknown whether whey enhancement of CM would have similar consequences on appetite and whether it would affect feeding-relevant brain regulatory mechanisms. In this set of studies utilizing laboratory mice, we found that the 60:40 CM was consumed more avidly than the 20:80 control formulation by animals motivated to eat by energy deprivation and by palatability (in the absence of hunger) and that this hyperphagia stemmed from prolongation of the meal. Furthermore, in two-bottle choice paradigms, whey-adapted CM was preferred against the natural 20:80 milk. The intake of the whey-adapted CM induced neuronal activation (assessed through analysis of c-Fos expression in neurons) in brain sites promoting satiation, but importantly, this activation was less pronounced than after ingestion of the natural 20:80 whey:casein CM. Activation of hypothalamic neurons synthesizing anorexigenic neuropeptide oxytocin (OT) was also less robust after the 60:40 CM intake than after the 20:80 CM. Pharmacological blockade of the OT receptor in mice led to an increase in the consumption only of the 20:80 CM, thus, of the milk that induced greater activation of OT neurons. We conclude that the whey-adapted CM is overconsumed compared to the natural 20:80 CM and that this overconsumption is associated with weakened responsiveness of central networks involved in satiety signalling, including OT.
Collapse
|
6
|
Igarashi A, Ogasawara S, Takagi R, Okada K, Ito YM, Hara H, Hira T. Acute Oral Calcium Suppresses Food Intake Through Enhanced Peptide-YY Secretion Mediated by the Calcium-Sensing Receptor in Rats. J Nutr 2021; 151:1320-1328. [PMID: 33693689 DOI: 10.1093/jn/nxab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dietary calcium has been proposed to reduce appetite in human studies. Postprandial satiety is mainly controlled by gut hormones. However, the effect of calcium on appetite and the role of gut hormones remain unclear. OBJECTIVES We examined whether oral administration of calcium reduces food intake in rats and investigated the underlying mechanism. METHODS Male Sprague Dawley rats (8-12 wk old) were used after an overnight fastifffng. In a series of 2 trials with 1-wk interval between challenges, food intake was measured 0.5-24 h after oral gavage of a vehicle (saline containing 1.5% carboxymethyl cellulose) as the control treatment, or the vehicle containing various calcium compounds [calcium chloride (CaCl2), calcium carbonate, calcium lactate, in a random order] at 150 mg calcium/kg dose. A conditional taste aversion test was conducted. In separate experiments, plasma calcium and gut hormone concentrations were measured 15 or 30 min after oral administration of the calcium compounds. In anesthetized rats, portal peptide-YY (PYY) concentrations were measured after intraluminal administration of a liquid meal with or without additional calcium. RESULTS Oral CaCl2 reduced food intake acutely (30 min, ∼20%, P < 0.05) compared with control rats, without taste aversion. Plasma PYY concentration was higher (100%, P < 0.05) in CaCl2-preloaded rats than in control rats, 15 min after administration. In anesthetized rats, luminal meal + CaCl2 induced a 4-fold higher increase in plasma PYY than the control treatment did. Oral administration of a calcium-sensing receptor (CaSR) agonist suppressed food intake (∼30%, P < 0.05), but CaCl2 and CaSR agonist did not suppress food intake under treatment with a PYY receptor antagonist. Furthermore, the CaSR antagonist attenuated the effect of CaCl2 on food intake. CONCLUSIONS CaCl2 suppresses food intake partly by increasing CaSR-mediated PYY secretion in rats. Our findings could at least partially explain the satiating effect of calcium.
Collapse
Affiliation(s)
- Akiho Igarashi
- School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shono Ogasawara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ryo Takagi
- Biostatistics Division, Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Kazufumi Okada
- Biostatistics Division, Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Yoichi M Ito
- Biostatistics Division, Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroshi Hara
- Faculty of Human Life Science, Fuji Women's University, Ishikari, Japan
| | - Tohru Hira
- School of Agriculture, Hokkaido University, Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Adjustment of Whey:Casein Ratio from 20:80 to 60:40 in Milk Formulation Affects Food Intake and Brainstem and Hypothalamic Neuronal Activation and Gene Expression in Laboratory Mice. Foods 2021; 10:foods10030658. [PMID: 33808819 PMCID: PMC8003661 DOI: 10.3390/foods10030658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Adjustment of protein content in milk formulations modifies protein and energy levels, ensures amino acid intake and affects satiety. The shift from the natural whey:casein ratio of ~20:80 in animal milk is oftentimes done to reflect the 60:40 ratio of human milk. Studies show that 20:80 versus 60:40 whey:casein milks differently affect glucose metabolism and hormone release; these data parallel animal model findings. It is unknown whether the adjustment from the 20:80 to 60:40 ratio affects appetite and brain processes related to food intake. In this set of studies, we focused on the impact of the 20:80 vs. 60:40 whey:casein content in milk on food intake and feeding-related brain processes in the adult organism. By utilising laboratory mice, we found that the 20:80 whey:casein milk formulation was consumed less avidly and was less preferred than the 60:40 formulation in short-term choice and no-choice feeding paradigms. The relative PCR analyses in the hypothalamus and brain stem revealed that the 20:80 whey:casein milk intake upregulated genes involved in early termination of feeding and in an interplay between reward and satiety, such as melanocortin 3 receptor (MC3R), oxytocin (OXT), proopiomelanocortin (POMC) and glucagon-like peptide-1 receptor (GLP1R). The 20:80 versus 60:40 whey:casein formulation intake differently affected brain neuronal activation (assessed through c-Fos, an immediate-early gene product) in the nucleus of the solitary tract, area postrema, ventromedial hypothalamic nucleus and supraoptic nucleus. We conclude that the shift from the 20:80 to 60:40 whey:casein ratio in milk affects short-term feeding and relevant brain processes.
Collapse
|
8
|
Bottani M, Cattaneo S, Pica V, Stuknytė M, Gomarasca M, Lombardi G, Banfi G, Noni ID, Ferraretto A. Gastrointestinal In Vitro Digests of Infant Biscuits Formulated with Bovine Milk Proteins Positively Affect In Vitro Differentiation of Human Osteoblast-Like Cells. Foods 2020; 9:foods9101510. [PMID: 33096628 PMCID: PMC7589107 DOI: 10.3390/foods9101510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Infant biscuits (IBs) are part of complementary feeding from weaning up to the age of five years. They normally contain bovine milk proteins, which can influence bone development. This potential effect was investigated using experimental baked IBs, which were prepared from doughs containing different type of dairy proteins: milk protein concentrate (IB1), whey protein isolate (IB2), and skimmed milk powder (IB3). Dairy protein-free (IB0) and gluten-free (IB4) biscuits were also formulated. The in vitro gastrointestinal digests of IBs (IBDs) were tested on a co-culture of Caco-2/HT-29 70/30 cells as an in vitro model of human small intestine. None of the IBDs influenced cell viability and monolayer integrity, while IBD0 and IBD4 increased Peptide-YY production. The basolateral contents of Transwell plates seeded with Caco-2/HT-29 70/30 co-culture, mimicking metabolized IBDs (MIBDs), were tested on Saos-2 cells, an in vitro model of human osteoblast-like cells. After incubation, MIBD0, lacking dairy proteins, decreased the cell viability, while MIBD2, containing whey protein isolate, increased both the viability and the number of cells. MIBD2 and MIBD4, the latter containing both casein and whey proteins, increased alkaline phosphatase activity, a bone differentiation marker. These results highlight that IBs containing dairy proteins positively affect bone development.
Collapse
Affiliation(s)
- Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Via Galeazzi 4, 20161 Milan, Italy; (M.B.); (M.G.); (G.L.); (G.B.)
| | - Stefano Cattaneo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.C.); (V.P.)
| | - Valentina Pica
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.C.); (V.P.)
| | - Milda Stuknytė
- Unitech COSPECT—University Technological Platforms Office, University of Milan, Via Golgi 19, 20133 Milan, Italy;
| | - Marta Gomarasca
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Via Galeazzi 4, 20161 Milan, Italy; (M.B.); (M.G.); (G.L.); (G.B.)
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Via Galeazzi 4, 20161 Milan, Italy; (M.B.); (M.G.); (G.L.); (G.B.)
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Via Galeazzi 4, 20161 Milan, Italy; (M.B.); (M.G.); (G.L.); (G.B.)
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.C.); (V.P.)
- Correspondence: ; Tel.: +39-02-503-16680
| | - Anita Ferraretto
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy;
| |
Collapse
|
9
|
Somogyi E, Sigalet D, Adrian TE, Nyakas C, Hoornenborg CW, van Beek AP, Koopmans HS, van Dijk G. Ileal Transposition in Rats Reduces Energy Intake, Body Weight, and Body Fat Most Efficaciously When Ingesting a High-Protein Diet. Obes Surg 2020; 30:2729-2742. [PMID: 32342267 PMCID: PMC7260147 DOI: 10.1007/s11695-020-04565-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose Ileal transposition (IT) allows exploration of hindgut effects of bariatric procedures in inducing weight loss and reducing adiposity. Here we investigated the role of dietary macronutrient content on IT effects in rats. Methods Male Lewis rats consuming one of three isocaloric liquid diets enriched with fat (HF), carbohydrates (HC), or protein (HP) underwent IT or sham surgery. Body weight, energy intake, energy efficiency, body composition, and (meal-induced) changes in plasma GIP, GLP-1, PYY, neurotensin, and insulin levels were measured. Results Following IT, HC intake remained highest leading to smallest weight loss among dietary groups. IT in HF rats caused high initial weight loss and profound hypophagia, but the rats caught up later, and finally had the highest body fat content among IT rats. HP diet most efficaciously supported IT-induced reduction in body weight and adiposity, but (as opposed to other diet groups) lean mass was also reduced. Energy efficiency decreased immediately after IT irrespective of diet, but normalized later. Energy intake alone explained variation in post-operative weight change by 80%. GLP-1, neurotensin, and PYY were upregulated by IT, particularly during (0–60 min) and following 17-h post-ingestive intake, with marginal diet effects. Thirty-day post-operative cumulative energy intake was negatively correlated to 17-h post-ingestive PYY levels, explaining 47% of its variation. Conclusion Reduction in energy intake underlies IT-induced weight loss, with highest efficacy of the HP diet. PYY, GLP-1, and neurotensin levels are upregulated by IT, of which PYY may be most specifically related to reduced intake and weight loss after IT.
Collapse
Affiliation(s)
- Edit Somogyi
- School of PhD Studies, University of Physical Education, Budapest, Hungary.,Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.,Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Sigalet
- Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Thomas E Adrian
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Csaba Nyakas
- School of PhD Studies, University of Physical Education, Budapest, Hungary.,Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.,Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Christiaan W Hoornenborg
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.,Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - André P van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Henry S Koopmans
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Gertjan van Dijk
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Singh A, Zapata RC, Pezeshki A, Knight CG, Tuor UI, Chelikani PK. Whey Protein and Its Components Lactalbumin and Lactoferrin Affect Energy Balance and Protect against Stroke Onset and Renal Damage in Salt-Loaded, High-Fat Fed Male Spontaneously Hypertensive Stroke-Prone Rats. J Nutr 2020; 150:763-774. [PMID: 31879775 DOI: 10.1093/jn/nxz312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/20/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Whey protein (WH)-enriched diets are reported to aid in weight loss and to improve cardiovascular health. However, the bioactive components in whey responsible for causing such effects remain unidentified. OBJECTIVE We determined the effects of whey and its components [α-lactalbumin (LA) and lactoferrin (LF)] on energy balance, glucose tolerance, gut hormones, renal damage, and stroke onset in rats. METHODS Male spontaneously hypertensive stroke-prone (SHRSP) rats (age 8 wk) were fed isocaloric high-fat (40% kcal) and high-salt (4% wt/wt) diets (n = 8-10/group) and randomized for 8 wk to diets enriched as follows: control (CO): 15% kcal from egg albumin, 45% kcal from carbohydrate; WH: 20%kcal WH isolate + 15% kcal egg albumin; LA: 20% kcal LA + 15% kcal egg albumin; or LF: 20% kcal lactoferrin + 15% kcal egg albumin. Measurements included energy balance (food intake, energy expenditure, and body composition), stroke-related behaviors, brain imaging, glucose tolerance, metabolic hormones, and tissue markers of renal damage. Data were analyzed by linear mixed models with repeated measures or 1-way ANOVA. RESULTS Diets enriched with WH, LA, or LF increased survival, with 25% of rats fed these diets exhibiting stroke-associated morbidity, whereas 90% of CO rats were morbid by 8 wk (P < 0.05). The nephritis scores of rats fed WH-, LA-, or LF-enriched diets were 80%, 92%, and 122% lower than those of COs (P = 0.001). The mRNA abundances of renin and osteopontin were 100-600% lower in rats fed WH-, LA-, or LF-enriched diets than in COs (P < 0.05). Urine albumin concentrations and albumin-to-creatinine ratios were 200% lower in rats fed LF-enriched diets than in COs (P < 0.05). Compared with COs, rats fed LF-enriched diets for 2-3 wk had food intake decreased by 29%, body weight decreased by 13-19%, lean mass decreased by 12-19%, and fat mass decreased by 20% (P < 0.001). Relative to COs, rats fed WH and LA had food intake decreased by 10% (P < 0.1), but COs had 12-45% lower weight than rats fed LA- and WH-enriched diets by 3 wk (P < 0.01). Compared with COs, rats fed WH-enriched diets increased energy expenditure by 7%, whereas, rats fed LA-enriched diets had energy expenditure acutely decreased by 7% during the first 4 d, and rats fed LF-enriched diets had energy expenditure decreased by 7-17% throughout the first week ( P < 0.001). Rats fed LA- and LF-enriched diets had blood glucose decreased by 14-19% (P < 0.05) and WH by 9% (P = 0.1), relative to COs. Compared with COs, rats fed LF had GIP decreased by 90% and PYY by 87% (P < 0.05). CONCLUSION Together, these findings indicate that whey and its components α-lactalbumin and lactoferrin improved energy balance and glycemic control, and protected against the onset of neurological deficits associated with stroke and renal damage in male SHRSP rats.
Collapse
Affiliation(s)
- Arashdeep Singh
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Rizaldy C Zapata
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Adel Pezeshki
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Cameron G Knight
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Ursula I Tuor
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
- Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta Canada
| |
Collapse
|
11
|
|
12
|
Zhang Z, Liang X, Lv Y, Yi H, Chen Y, Bai L, Zhou H, Liu T, Li R, Zhang L. Evaluation of probiotics for improving and regulation metabolism relevant to type 2 diabetes in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
13
|
Daliri EBM, Ofosu FK, Chelliah R, Park MH, Kim JH, Oh DH. Development of a Soy Protein Hydrolysate with an Antihypertensive Effect. Int J Mol Sci 2019; 20:ijms20061496. [PMID: 30934634 PMCID: PMC6470933 DOI: 10.3390/ijms20061496] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 01/14/2023] Open
Abstract
In this study, we combined enzymatic hydrolysis and lactic acid fermentation to generate an antihypertensive product. Soybean protein isolates were first hydrolyzed by Prozyme and subsequently fermented with Lactobacillus rhamnosus EBD1. After fermentation, the in vitro angiotensin-converting enzyme (ACE) inhibitory activity of the product (P-SPI) increased from 60.8 ± 2.0% to 88.24 ± 3.2%, while captopril (a positive control) had an inhibitory activity of 94.20 ± 5.4%. Mass spectrometry revealed the presence of three potent and abundant ACE inhibitory peptides, PPNNNPASPSFSSSS, GPKALPII, and IIRCTGC in P-SPI. Hydrolyzing P-SPI with gastrointestinal proteases did not significantly affect its ACE inhibitory ability. Also, oral administration of P-SPI (200 mg/kg body weight) to spontaneous hypertensive rats (SHRs) for 6 weeks significantly lowered systolic blood pressure (-19 ± 4 mm Hg, p < 0.05) and controlled body weight gain relative to control SHRs that were fed with physiological saline. Overall, P-SPI could be used as an antihypertensive functional food.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| | - Mi Houn Park
- Erom Company Limited, R&D Center, 111, Toegye Nonggong-ro, Chuncheon-si, Gangwon-do 24427, Korea.
| | - Jong-Hak Kim
- Erom Company Limited, R&D Center, 111, Toegye Nonggong-ro, Chuncheon-si, Gangwon-do 24427, Korea.
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| |
Collapse
|
14
|
Vannan DT, Bomhof MR, Reimer RA. Comparison of Glucose and Satiety Hormone Response to Oral Glucose vs. Two Mixed-Nutrient Meals in Rats. Front Nutr 2018; 5:89. [PMID: 30320120 PMCID: PMC6168634 DOI: 10.3389/fnut.2018.00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022] Open
Abstract
The obesity epidemic is driving interest in identifying strategies that enhance appetite control by altering the secretion of hormones that regulate satiety and food intake. An appropriate nutrient stimulus, such as a meal or oral nutrient solution, is needed to elicit the secretion of satiety hormones in order to evaluate the impact of dietary and other interventions. Our objective was to compare the effects of oral glucose vs. mixed nutrients on plasma concentrations of glucose and appetite-regulating hormones to determine the most appropriate oral nutrient challenge to trigger robust hormone secretion. A 120 min oral glucose tolerance test (OGTT) was compared with two meal tolerance tests (MTT) of differing formulation to evaluate glucose and satiety hormone responses. Following overnight feed deprivation, male Sprague-Dawley rats were given one of three oral gavages with equal carbohydrate content (2 g CHO/kg) in the form of: (1) Dextrose, (2) Ensure®, or (3) Mixed Meal. A fourth group was given saline as a control. Blood was collected via tail snip and analyzed for glucose, insulin, GLP-1, GIP, PYY, amylin, leptin, and ghrelin. Dextrose resulted in the highest blood glucose at T15 (P = 0.014), while the mixed meal was significantly higher than saline from T30-T120 (P < 0.05). Insulin was higher at T15 with dextrose compared to saline (P = 0.031) and Ensure® (P = 0.033). GLP-1 tAUC was significantly higher with dextrose compared to mixed meal (P = 0.04) while GIP tAUC was higher with dextrose and mixed meal compared to saline (P < 0.05). Changes in tAUC for insulin, amylin, leptin, ghrelin, and PYY did not reach significance. Based on these findings, dextrose appears to provide a robust acute glycemic and hormone response and is therefore likely an appropriate oral solution to reproducibly test the impact of various dietary, surgical, or pharmacological interventions on glucose and satiety hormone response.
Collapse
Affiliation(s)
| | - Marc R Bomhof
- Department of Kinesiology and Physical Education, University of Lethbridge, Lethbridge, AB, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Zapata RC, Singh A, Ajdari NM, Chelikani PK. Dietary Tryptophan Restriction Dose-Dependently Modulates Energy Balance, Gut Hormones, and Microbiota in Obesity-Prone Rats. Obesity (Silver Spring) 2018; 26:730-739. [PMID: 29504260 DOI: 10.1002/oby.22136] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To determine the effects of graded dietary restriction of tryptophan on food intake, energy expenditure, body composition, gut hormones, and select fecal bacterial populations in obesity-prone rats. METHODS Obesity-prone rats were randomized to isocaloric diets with varying degrees of tryptophan restriction: control (100% requirements), 70% tryptophan (70TRP), 40% tryptophan (40TRP), or 10% tryptophan (10TRP) for 21 days. The sympathetic system was challenged with a subcutaneous injection of propranolol on days 15 to 17. Measurements included food intake, energy expenditure, body composition, metabolic hormones, and fecal concentrations of select bacteria. RESULTS Moderate tryptophan restriction (70TRP) induced thermogenesis without altering body composition, whereas severe degrees of restriction (40TRP, 10TRP) produced profound hypophagia and decreased energy expenditure and body weight. The thermogenic effects of moderate tryptophan restriction were sympathetically mediated. Severe tryptophan restriction decreased fasting circulating concentrations of glucose, insulin, C-peptide, and leptin, but increased glucagon, pancreatic polypeptide, and glucagon-like peptide-1. Severe tryptophan restriction decreased fecal concentrations of Enterobacteriaceae, Lactobacillus, Bacteroides, and Clostridium coccoides while increasing Roseburia groups. CONCLUSIONS Our findings demonstrate that dietary tryptophan restriction dose-dependently modulates energy balance, with severe restriction causing hypophagia and weight loss and moderate restriction promoting sympathetically driven thermogenesis as well as concurrent changes in gut microbiota and hormones.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Arashdeep Singh
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Nadia M Ajdari
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
- Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|