1
|
Vera G, López-Gómez L, Girón R, Martín-Fontelles MI, Nurgali K, Abalo R, Uranga JA. Effect of the Cannabinoid Agonist WIN 55,212-2 on Neuropathic and Visceral Pain Induced by a Non-Diarrheagenic Dose of the Antitumoral Drug 5-Fluorouracil in the Rat. Int J Mol Sci 2023; 24:14430. [PMID: 37833878 PMCID: PMC10572311 DOI: 10.3390/ijms241914430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
5-fluorouracil (5-FU) is an antineoplastic drug used to treat colorectal cancer, but it causes, among other adverse effects, diarrhea and mucositis, as well as enteric neuropathy, as shown in experimental animals. It might also cause neuropathic pain and alterations in visceral sensitivity, but this has not been studied in either patients or experimental animals. Cannabinoids have antimotility and analgesic effects and may alleviate 5-FU-induced adverse effects. Our aim was to evaluate the effects of the cannabinoid agonist WIN 55,212-2 on neuropathic and visceral pain induced by a non-diarrheagenic dose of 5-FU. Male Wistar rats received a dose of 5-FU (150 mg/kg, ip) and gastrointestinal motility, colonic sensitivity, gut wall structure and tactile sensitivity were evaluated. WIN 55,212-2 (WIN) was administered to evaluate its effect on somatic (50-100 µg ipl; 1 mg/kg, ip) and visceral (1 mg/kg, ip) sensitivity. The cannabinoid tetrad was used to assess the central effects of WIN (1 mg/kg, ip). 5-FU decreased food intake and body weight gain, produced mucositis and thermal hyperalgesia, but these effects were reduced afterwards, and were not accompanied by diarrhea. Tactile mechanical allodynia was also evident and persisted for 15 days. Interestingly, it was alleviated by WIN. 5-FU tended to increase colonic sensitivity whereas WIN reduced the abdominal contractions induced by increasing intracolonic pressure in both control and 5-FU-treated animals. Importantly, the alleviating effects of WIN against those induced by 5-FU were not accompanied by any effect in the cannabinoid tetrad. The activation of the peripheral cannabinoid system may be useful to alleviate neuropathic and visceral pain associated with antitumoral treatment.
Collapse
Affiliation(s)
- Gema Vera
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (G.V.); (L.L.-G.); (R.G.); (M.I.M.-F.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
| | - Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (G.V.); (L.L.-G.); (R.G.); (M.I.M.-F.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Rocío Girón
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (G.V.); (L.L.-G.); (R.G.); (M.I.M.-F.); (J.A.U.)
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- High-Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - María Isabel Martín-Fontelles
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (G.V.); (L.L.-G.); (R.G.); (M.I.M.-F.); (J.A.U.)
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- High-Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Kulmira Nurgali
- Institute for Health and Sport, College of Health and Biomedicine, Victoria University, Melbourne, VIC 3011, Australia;
- Department of Medicine Western Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (G.V.); (L.L.-G.); (R.G.); (M.I.M.-F.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| | - José Antonio Uranga
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (G.V.); (L.L.-G.); (R.G.); (M.I.M.-F.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| |
Collapse
|
2
|
Chen W, Zhao Y, Dai Y, Nie K. Gastrointestinal inflammation plays a critical role in chemotherapy-induced nausea and vomiting. Eur J Pharmacol 2022; 936:175379. [PMID: 36356927 DOI: 10.1016/j.ejphar.2022.175379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
3
|
Li G, Liu L, Yin Y, Wang M, Wang L, Dou J, Wu H, Yang Y, He B. Network pharmacology and experimental verification-based strategy to explore the underlying mechanism of Liu Jun An Wei formula in the treatment of gastrointestinal reactions caused by chemotherapy for colorectal cancer. Front Pharmacol 2022; 13:999115. [PMID: 36204230 PMCID: PMC9530632 DOI: 10.3389/fphar.2022.999115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Liu Jun An Wei formula (LJAW), derived from “Liu Jun Zi Decoction”, is a classical prescription of Tradition Chinese Medicine and has been used for the treatment of gastrointestinal reactions caused by chemotherapy for colorectal cancer (CRC) for many years. Its molecular mechanism remains to be further explored.Objective: To clarify the mechanism of LJAW in attenuating gastrointestinal reactions caused by chemotherapy for CRC.Methods: The 5-fluorouracil (5-FU) induced mouse and intestine organoid models were established to observe the effect of LJAW. The ingredients of LJAW were analyzed and identified by UPLC-Q-TOF-MS technology. Targets of LJAW and chemotherapy-induced gastrointestinal reactions were collected from several databases. “Ingredient-target” network and protein-protein interaction network were constructed based on network pharmacology. Then, gene ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Subsequently, molecular docking method was used to verify the interaction between the core ingredients and key targets. The results were validated by both in vivo experiments and organoid experiments. Western Blot was used to analyze the influence of LJAW on key targets including PI3K, AKT1, MAPK1, MAPK14 proteins and their phosphorylated proteins. RT-qPCR and Western Blot were used to detect the mRNA and protein levels of apoptosis-related gene PUMA.Results: Compared with the 5-FU group, the LJAW group had better morphology in mouse small intestine and intestine organoids. In total, 18 core ingredients and 19 key targets were obtained from 97 ingredients and 169 common targets. KEGG analysis showed that the common targets were involved in PI3K/Akt, MAPK, apoptosis and other signal pathways, which are closely related to gastrointestinal injury. Experiments confirmed that LJAW lowered the expressions of phosphorylated proteins including p-PI3K, p-AKT1, p-MAPK1, and p-MAPK14 and reduced the mRNA and protein levels of PUMA.Conclusion: LJAW shows protective effect on 5-FU induced small intestine and intestinal organoids injury. LJAW attenuates gastrointestinal reactions caused by chemotherapy for CRC probably by regulating apoptosis-related genes through PI3K/AKT and MAPK signaling pathways.
Collapse
Affiliation(s)
- Gaobiao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Liying Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yiran Yin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianwei Dou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufei Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yufei Yang, ; Bin He,
| | - Bin He
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yufei Yang, ; Bin He,
| |
Collapse
|
4
|
Will Cannabigerol Trigger Neuroregeneration after a Spinal Cord Injury? An In Vitro Answer from NSC-34 Scratch-Injured Cells Transcriptome. Pharmaceuticals (Basel) 2022; 15:ph15020117. [PMID: 35215230 PMCID: PMC8875351 DOI: 10.3390/ph15020117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury affects the lives of millions of people around the world, often causing disability and, in unfortunate circumstances, death. Rehabilitation can partly improve outcomes and only a small percentage of patients, typically the least injured, can hope to return to normal living conditions. Cannabis sativa is gaining more and more interest in recent years, even though its beneficial properties have been known for thousands of years. Cannabigerol (CBG), extracted from C. sativa, is defined as the “mother of all cannabinoids” and its properties range from anti-inflammatory to antioxidant and neuroprotection. Using NSC-34 cells to model spinal cord injury in vitro, our work evaluated the properties of CBG treatments in motor neuron regeneration. While pre-treatment can modulate oxidative stress and increase antioxidant enzyme genes, such as Tnx1, decreasing Nos1 post-treatment seems to induce regeneration genes by triggering different pathways, such as Gap43 via p53 acetylation by Ep300 and Ddit3 and Xbp1 via Bdnf signaling, along with cytoskeletal remodeling signaling genes Nrp1 and Map1b. Our results indicate CBG as a phytocompound worth further investigation in the field of neuronal regeneration.
Collapse
|
5
|
Zhao H, Chen S, Hu K, Zhang Z, Yan X, Gao H, Du W, Zheng H. 5-HTP decreases goat mammary epithelial cells apoptosis through MAPK/ERK/Bcl-3 pathway. Gene 2020; 769:145240. [PMID: 33068678 DOI: 10.1016/j.gene.2020.145240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 01/06/2023]
Abstract
Serotonin (5-HT) is a monoamine and it could regulate cell growth by its receptors working on signaling pathways. 5-HTP is the precursor of 5-HT that help 5-HT synthesis. B cell leukemia/lymphoma 3 (Bcl-3) involved in cell death and proliferation through mitogen activated protein kinase (MAPK) pathway. However, there is little information about the effects of MAPK/Bcl-3 on apoptosis of goat mammary gland epithelial cells (GMECs). The aim of this study is to explore the interaction among 5-HTP, MAPK and Bcl-3 in GMEC apoptosis. In this study, 5-HTP treatment decreased cell apoptosis and promoted phosphorylation of ERK1/2 in GMEC. We also found that the activation and inhibition of ERK1/2 could affect GMEC apoptosis. The Annexin V-FITC/PI staining and western blotting results suggested that 5-HTP decreased GMEC apoptosis through ERK1/2 signaling pathway. And the results of RT-qPCR and western blotting demonstrated that both 5-HTP and ERK1/2 positively regulated Bcl-3 expression. Sum up all the results, we could draw the conclusion that 5-HTP decreased GMEC apoptosis through MAPK/ERK/Bcl-3 pathway.
Collapse
Affiliation(s)
- Haiying Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shunxin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaizhao Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhifei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoru Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijie Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiling Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Shen Q, Xiao X, Aierken A, Yue W, Wu X, Liao M, Hua J. The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection. J Cell Mol Med 2020; 24:9472-9477. [PMID: 32594644 PMCID: PMC7361928 DOI: 10.1111/jcmm.15541] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
The serious coronavirus disease‐2019 (COVID‐19) was first reported in December 2019 in Wuhan, China. COVID‐19 is an infectious disease caused by severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2). Angiotensin converting enzyme 2(ACE2) is the cellular receptor for SARS‐CoV‐2. Considering the critical roles of testicular cells for the transmission of genetic information between generations, we analyzed single‐cell RNA‐sequencing (scRNA‐seq) data of adult human testis. The mRNA expression of ACE2 was expressed in both germ cells and somatic cells. Moreover, the positive rate of ACE2 in testes of infertile men was higher than normal, which indicates that SARS‐CoV‐2 may cause reproductive disorders through pathway activated by ACE2 and the men with reproductive disorder may easily to be infected by SARS‐CoV‐2. The expression level of ACE2 was related to the age, and the mid‐aged with higher positive rate than young men testicular cells. Taken together, this research provides a biological background of the potential route for infection of SARS‐CoV‐2 and may enable rapid deciphering male‐related reproductive disorders induced by COVID‐19.
Collapse
Affiliation(s)
- Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Xia Xiao
- College of LifeSciences, Northwest A&F University, Yangling, China
| | - Aili Aierken
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wei Yue
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Xiaojie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Mingzhi Liao
- College of LifeSciences, Northwest A&F University, Yangling, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
He Y, Sun X, Rong W, Yang R, Liang H, Qi Y, Li L, Zen K. CD47 is a negative regulator of intestinal epithelial cell self-renewal following DSS-induced experimental colitis. Sci Rep 2020; 10:10180. [PMID: 32576895 PMCID: PMC7311394 DOI: 10.1038/s41598-020-67152-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
CD47 deficient mice are resistant to dextran sulfate sodium (DSS)-induced experimental colitis. The underlying mechanism, however, remains incompletely understood. In this study, we characterized the role of CD47 in modulating homeostasis of gastrointestinal tract. We found that CD47 expression in both human and mouse intestinal epithelium was upregulated in colitic condition compared to that under normal condition. In line with this, CD47 deficiency protected mice from DSS-induced colitis. Analysis based on both intestinal organoid and cultured cell assays showed that CD47 deficiency accelerated intestinal epithelial cell proliferation and migration. Mechanistically, western blot and functional assays indicated that CD47 deficiency promoting mouse intestinal epithelial cell proliferation and migration follow cell injury is likely through upregulating expression of four Yamanaka transcriptional factors Oct4, Sox2, Klf4 and c-Myc (OSKM in abbreviation). Our studies thus reveal CD47 as a negative regulator in intestinal epithelial cell renewal during colitis through downregulating OSKM transcriptional factors.
Collapse
Affiliation(s)
- Yueqin He
- Nanjing University Advanced Institute of Life Sciences, Nanjing, China
| | - Xinlei Sun
- Nanjing University Advanced Institute of Life Sciences, Nanjing, China
| | - Weiwei Rong
- Nanjing University Advanced Institute of Life Sciences, Nanjing, China
| | - Rong Yang
- Nanjing University Advanced Institute of Life Sciences, Nanjing, China
| | - Hongwei Liang
- Nanjing University Advanced Institute of Life Sciences, Nanjing, China
| | - Ying Qi
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Limin Li
- Nanjing University Advanced Institute of Life Sciences, Nanjing, China.
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Ke Zen
- Nanjing University Advanced Institute of Life Sciences, Nanjing, China.
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
8
|
Kishi K, Kaji N, Endo M, Tsuru Y, Oikawa T, Hori M. Development of a quantitative method for evaluating small intestinal motility using ultrasonography in mice. Exp Anim 2019; 68:381-389. [PMID: 30971623 PMCID: PMC6699966 DOI: 10.1538/expanim.19-0030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Upper gastrointestinal (GI) motility is affected by various drugs and diseases. However, changes in upper GI motility during these conditions are not well understood, as there are few quantitative in vivo methods that assess small intestinal motility in mice. Ultrasonography is a noninvasive method for imaging and evaluating the condition of the abdominal organs. The aim of the present study was to establish a novel method for evaluating small intestinal motility by using ultrasonography in mice. We measured GI motility with and without loperamide, an antidiarrheal medication, by intestinal transit using an orally administered dye, a 13C-octanoic acid breath test, and ultrasonography. Locomotion activity of the duodenal wall was used for quantifying the GI motility observed via ultrasonography. Our results showed that upper GI transit was significantly delayed by loperamide. The 13C-octanoic acid breath test revealed decreased gastric emptying in loperamide-treated mice. Through ultrasonography, large peristaltic movements were observed in the duodenum of the control mice. In contrast, after treatment with loperamide, these peristaltic movements were suppressed, and the duodenal lumen was enlarged, suggesting decreased duodenal motility. In accordance with these results, quantifiable locomotion activity was also significantly decreased. In conclusion, ultrasonography is an effective in vivo method to quantify small intestinal motility in mice.
Collapse
Affiliation(s)
- Kazuhisa Kishi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Noriyuki Kaji
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mari Endo
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| | - Yoshiharu Tsuru
- Primetech Life Science Laboratory, PRIMETECH Corporation, 1-3-25 Koishikawa, Bunkyo-ku, Tokyo 112-0002, Japan
| | - Tetsuro Oikawa
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|