1
|
Pahl MC, Grant SFA, Leibel RL, Stratigopoulos G. Technologies, strategies, and cautions when deconvoluting genome-wide association signals: FTO in focus. Obes Rev 2023; 24:e13558. [PMID: 36882962 DOI: 10.1111/obr.13558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023]
Abstract
Genome-wide association studies have revealed a plethora of genetic variants that correlate with polygenic conditions. However, causal molecular mechanisms have proven challenging to fully define. Without such information, the associations are not physiologically useful or clinically actionable. By reviewing studies of the FTO locus in the genetic etiology of obesity, we wish to highlight advances in the field fueled by the evolution of technical and analytic strategies in assessing the molecular bases for genetic associations. Particular attention is drawn to extrapolating experimental findings from animal models and cell types to humans, as well as technical aspects used to identify long-range DNA interactions and their biological relevance with regard to the associated trait. A unifying model is proposed by which independent obesogenic pathways regulated by multiple FTO variants and genes are integrated at the primary cilium, a cellular antenna where signaling molecules that control energy balance convene.
Collapse
Affiliation(s)
- Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Diabetes and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rudolph L Leibel
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA
| | - George Stratigopoulos
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Jung YH, Wang HLV, Ruiz D, Bixler BJ, Linsenbaum H, Xiang JF, Forestier S, Shafik AM, Jin P, Corces VG. Recruitment of CTCF to an Fto enhancer is responsible for transgenerational inheritance of BPA-induced obesity. Proc Natl Acad Sci U S A 2022; 119:e2214988119. [PMID: 36469784 PMCID: PMC9897486 DOI: 10.1073/pnas.2214988119] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanisms by which environmentally-induced epiphenotypes are transmitted transgenerationally in mammals are poorly understood. Here we show that exposure of pregnant mouse females to bisphenol A (BPA) results in obesity in the F2 progeny due to increased food intake. This epiphenotype can be transmitted up to the F6 generation. Analysis of chromatin accessibility in sperm of the F1-F6 generations reveals alterations at sites containing binding motifs for CCCTC-binding factor (CTCF) at two cis-regulatory elements (CREs) of the Fto gene that correlate with transmission of obesity. These CREs show increased interactions in sperm of obese mice with the Irx3 and Irx5 genes, which are involved in the differentiation of appetite-controlling neurons. Deletion of the CTCF site in Fto results in mice that have normal food intake and fail to become obese when ancestrally exposed to BPA. The results suggest that epigenetic alterations of Fto can lead to the same phenotypes as genetic variants.
Collapse
Affiliation(s)
- Yoon Hee Jung
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
| | - Hsiao-Lin V. Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
| | - Daniel Ruiz
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
| | - Brianna J. Bixler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
| | - Hannah Linsenbaum
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
| | - Jian-Feng Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
| | - Samantha Forestier
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
| | - Andrew M. Shafik
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
| | - Victor G. Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
| |
Collapse
|
3
|
Kayser N, Zaiser F, Veenstra AC, Wang H, Göcmen B, Eckert P, Franz H, Köttgen A, Walz G, Yakulov TA. Clock genes rescue nphp mutations in zebrafish. Hum Mol Genet 2022; 31:4143-4158. [PMID: 35861640 PMCID: PMC9759334 DOI: 10.1093/hmg/ddac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/21/2023] Open
Abstract
The zebrafish pronephros model, using morpholino oligonucleotides (MO) to deplete target genes, has been extensively used to characterize human ciliopathy phenotypes. Recently, discrepancies between MO and genetically defined mutants have questioned this approach. We analyzed zebrafish with mutations in the nphp1-4-8 module to determine the validity of MO-based results. While MO-mediated depletion resulted in glomerular cyst and cloaca malformation, these ciliopathy-typical manifestations were observed at a much lower frequency in zebrafish embryos with defined nphp mutations. All nphp1-4-8 mutant zebrafish were viable and displayed decreased manifestations in the next (F2) generation, lacking maternal RNA contribution. While genetic compensation was further supported by the observation that nphp4-deficient mutants became partially refractory to MO-based nphp4 depletion, zebrafish embryos, lacking one nphp gene, became more sensitive to MO-based depletion of additional nphp genes. Transcriptome analysis of nphp8 mutant embryos revealed an upregulation of the circadian clock genes cry1a and cry5. MO-mediated depletion of cry1a and cry5 caused ciliopathy phenotypes in wild-type embryos, while cry1a and cry5 depletion in maternal zygotic nphp8 mutant embryos increased the frequency of glomerular cysts compared to controls. Importantly, cry1a and cry5 rescued the nephropathy-related phenotypes in nphp1, nphp4 or nphp8-depleted zebrafish embryos. Our results reveal that nphp mutant zebrafish resemble the MO-based phenotypes, albeit at a much lower frequency. Rapid adaption through upregulation of circadian clock genes seems to ameliorate the loss of nphp genes, contributing to phenotypic differences.
Collapse
Affiliation(s)
| | | | | | | | - Burulca Göcmen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg 79106, Germany
| | - Priska Eckert
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, Hugstetter Str. 55, Freiburg 79106, Germany
| | - Henriette Franz
- Department of Biomedicine, University of Basel, Pestalozzistr. 20, Basel CH-4056, Switzerland
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg 79106, Germany
| | - Gerd Walz
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, Hugstetter Str. 55, Freiburg 79106, Germany,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Albertstrasse 19, Freiburg 79104, Germany
| | - Toma A Yakulov
- To whom correspondence should be addressed. Tel: +49 76127063036;
| |
Collapse
|
4
|
Knoll J, Altintas B, Gahl WA, Parisi M, Gunay-Aygun M. Growth in Joubert syndrome: Growth curves and physical measurements with correlation to genotype and hepatorenal disease in 170 individuals. Am J Med Genet A 2021; 188:847-857. [PMID: 34951506 DOI: 10.1002/ajmg.a.62593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Joubert syndrome (JS) is a genetically heterogenous disorder of nonmotile cilia with a characteristic "molar tooth sign" on axial brain imaging. Clinical features can include developmental delay, kidney failure, liver disease, and retinal dystrophy. Prospective growth and measurement data on 170 individuals with JS were collected, including parental measurements, birth measurements, and serial measures when available. Analysis of growth parameters in the context of hepatorenal disease, genotype, and other features was performed on 100 individuals assessed at the National Institutes of Health Clinical Center. Individuals with JS had shorter stature despite normal growth velocity and were shorter than predicted for mid-parental height. Individuals were lighter in weight, resulting in a normal body mass index (BMI). Head circumference was larger, averaging 1.9 Z-scores above height. At birth, head circumference was proportional to length. Individuals with variants in CPLANE1 had a larger head circumference compared to other genotypes; individuals with evidence of liver disease had lower weight and BMI; and individuals with polydactyly had shorter height. Here we present growth curves and physical measurements for Joubert syndrome based on the largest collection of individuals with this disorder to aid in clinical management and diagnosis.
Collapse
Affiliation(s)
- Jasmine Knoll
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Burak Altintas
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Melissa Parisi
- Intellectual and Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Meral Gunay-Aygun
- Department of Pediatrics and McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA.,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Drivas TG, Lucas A, Zhang X, Ritchie MD. Mendelian pathway analysis of laboratory traits reveals distinct roles for ciliary subcompartments in common disease pathogenesis. Am J Hum Genet 2021; 108:482-501. [PMID: 33636100 PMCID: PMC8008498 DOI: 10.1016/j.ajhg.2021.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
Rare monogenic disorders of the primary cilium, termed ciliopathies, are characterized by extreme presentations of otherwise common diseases, such as diabetes, hepatic fibrosis, and kidney failure. However, despite a recent revolution in our understanding of the cilium's role in rare disease pathogenesis, the organelle's contribution to common disease remains largely unknown. Hypothesizing that common genetic variants within Mendelian ciliopathy genes might contribute to common complex diseases pathogenesis, we performed association studies of 16,874 common genetic variants across 122 ciliary genes with 12 quantitative laboratory traits characteristic of ciliopathy syndromes in 452,593 individuals in the UK Biobank. We incorporated tissue-specific gene expression analysis, expression quantitative trait loci, and Mendelian disease phenotype information into our analysis and replicated our findings in meta-analysis. 101 statistically significant associations were identified across 42 of the 122 examined ciliary genes (including eight novel replicating associations). These ciliary genes were widely expressed in tissues relevant to the phenotypes being studied, and eQTL analysis revealed strong evidence for correlation between ciliary gene expression levels and laboratory traits. Perhaps most interestingly, our analysis identified different ciliary subcompartments as being specifically associated with distinct sets of phenotypes. Taken together, our data demonstrate the utility of a Mendelian pathway-based approach to genomic association studies, challenge the widely held belief that the cilium is an organelle important mainly in development and in rare syndromic disease pathogenesis, and provide a framework for the continued integration of common and rare disease genetics to provide insight into the pathophysiology of human diseases of immense public health burden.
Collapse
Affiliation(s)
- Theodore George Drivas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Anastasia Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA
| | - Xinyuan Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA
| | - Marylyn DeRiggi Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA.
| |
Collapse
|
6
|
Tian JL, Gomeshtapeh FI. Potential Roles of O-GlcNAcylation in Primary Cilia- Mediated Energy Metabolism. Biomolecules 2020; 10:biom10111504. [PMID: 33139642 PMCID: PMC7693894 DOI: 10.3390/biom10111504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The primary cilium, an antenna-like structure on most eukaryotic cells, functions in transducing extracellular signals into intracellular responses via the receptors and ion channels distributed along it membrane. Dysfunction of this organelle causes an array of human diseases, known as ciliopathies, that often feature obesity and diabetes; this indicates the primary cilia's active role in energy metabolism, which it controls mainly through hypothalamic neurons, preadipocytes, and pancreatic β-cells. The nutrient sensor, O-GlcNAc, is widely involved in the regulation of energy homeostasis. Not only does O-GlcNAc regulate ciliary length, but it also modifies many components of cilia-mediated metabolic signaling pathways. Therefore, it is likely that O-GlcNAcylation (OGN) plays an important role in regulating energy homeostasis in primary cilia. Abnormal OGN, as seen in cases of obesity and diabetes, may play an important role in primary cilia dysfunction mediated by these pathologies.
Collapse
Affiliation(s)
- Jie L. Tian
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-583-5551
| | | |
Collapse
|
7
|
Gill R, Stratigopoulos G, Lee JH, Leibel RL. Functional genomic characterization of the FTO locus in African Americans. Physiol Genomics 2019; 51:517-528. [PMID: 31530225 PMCID: PMC6879815 DOI: 10.1152/physiolgenomics.00057.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND SNPs in the first intron of the fat mass and obesity-associated (FTO) gene represent the strongest genome-wide associations with adiposity [body mass index (BMI)]; the molecular basis for these associations is under intense investigation. In European populations, the focus of most genome-wide association studies conducted to date, the single nucleotide polymorphisms (SNPs) have indistinguishable associations due to the high level of linkage disequilibrium (LD). However, in African American (AA) individuals, reduced LD and increased haplotype diversity permit finer distinctions among obesity-associated SNPs. Such distinctions are important to mechanistic inferences and for selection of disease SNPs relevant to specific populations. METHODS To identify specific FTO SNP(s) directly related to adiposity, we performed: 1) haplotype analyses of individual-level data in 3,335 AAs from the Atherosclerosis Risk in Communities Cohort (ARIC) study; as well as 2) statistical fine-mapping using summary statistics from a study of FTO in over 20 000 AAs and over 1000 functional genomic annotations. RESULTS Our haplotype analyses suggest that in AAs at least two distinct signals underlie the intron 1 FTO-adiposity signal. Fine mapping showed that two SNPs have the highest posterior probability of association (PPA) with BMI: rs9927317 (PPA = 0.94) and rs62033405 (PPA = 0.99). These variants overlap possible enhancer sites and the 5'-regions of transcribed genes in the substantia nigra, chondrocytes, and white adipocytes. CONCLUSIONS We found two SNPs in FTO with the highest probability of direct association with BMI in AAs, as well as tissue-specific mechanisms by which these variants may contribute to the pathogenesis of obesity.
Collapse
Affiliation(s)
- Richard Gill
- Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, New York, New York
- Genomics Analysis Unit, Amgen Research, Cambridge, Massachusetts
| | - George Stratigopoulos
- Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Joseph H Lee
- Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, New York, New York
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York
- Gertrude H. Sergievsky Center, Columbia University, New York, New York
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| |
Collapse
|
8
|
Ranzenhofer LM, Mayer LES, Davis HA, Mielke-Maday HK, McInerney H, Korn R, Gupta N, Brown AJ, Schebendach J, Tanofsky-Kraff M, Thaker V, Chung WK, Leibel RL, Walsh BT, Rosenbaum M. The FTO Gene and Measured Food Intake in 5- to 10-Year-Old Children Without Obesity. Obesity (Silver Spring) 2019; 27:1023-1029. [PMID: 31119882 PMCID: PMC6561098 DOI: 10.1002/oby.22464] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/15/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Genetic variation in the first intron of FTO (e.g., single-nucleotide polymorphism [SNP] rs9939609) is strongly associated with adiposity. This effect is thought to be mediated (at least in part) via increasing caloric intake, although the precise molecular genetic mechanisms are not fully understood. Prior pediatric studies of FTO have included youth with overweight and obesity; however, they have not informed whether a genotypic effect on ingestive behavior is present prior to obesity onset. Therefore, this study investigated the association between FTO and caloric intake in children aged 5 to 10 years without obesity (adiposity ≤ 95th percentile). METHODS A total of 122 children were genotyped for rs9939609 and ate ad libitum from a laboratory lunch buffet following a standardized breakfast. Linear regressions, adjusting for body mass, were used to examine the association between FTO "dose" (number of copies of SNP rs9939609) and intake variables. RESULTS There was a significant association between FTO and total intake. Each risk allele predicted an additional 64 calories, accounting for 3% of the variance. There were no associations between FTO and macronutrient preference, energy density, or diet variety. Results were influenced by race. CONCLUSIONS Results corroborate and extend prior work by showing a dose-dependent effect on food intake in children without obesity.
Collapse
Affiliation(s)
- Lisa M Ranzenhofer
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Laurel E S Mayer
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Haley A Davis
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Hanna K Mielke-Maday
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Hailey McInerney
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Rachel Korn
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Nikita Gupta
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Amanda J Brown
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Janet Schebendach
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | | | - Vidhu Thaker
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Wendy K Chung
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - B Timothy Walsh
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Michael Rosenbaum
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
9
|
Wang L, De Solis AJ, Goffer Y, Birkenbach KE, Engle SE, Tanis R, Levenson JM, Li X, Rausch R, Purohit M, Lee JY, Tan J, De Rosa MC, Doege CA, Aaron HL, Martins GJ, Brüning JC, Egli D, Costa R, Berbari N, Leibel RL, Stratigopoulos G. Ciliary gene RPGRIP1L is required for hypothalamic arcuate neuron development. JCI Insight 2019; 4:e123337. [PMID: 30728336 PMCID: PMC6413800 DOI: 10.1172/jci.insight.123337] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/03/2019] [Indexed: 12/16/2022] Open
Abstract
Intronic polymorphisms in the α-ketoglutarate-dependent dioxygenase gene (FTO) that are highly associated with increased body weight have been implicated in the transcriptional control of a nearby ciliary gene, retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L). Previous studies have shown that congenital Rpgrip1l hypomorphism in murine proopiomelanocortin (Pomc) neurons causes obesity by increasing food intake. Here, we show by congenital and adult-onset Rpgrip1l deletion in Pomc-expressing neurons that the hyperphagia and obesity are likely due to neurodevelopmental effects that are characterized by a reduction in the Pomc/Neuropeptide Y (Npy) neuronal number ratio and marked increases in arcuate hypothalamic-paraventricular hypothalamic (ARH-PVH) axonal projections. Biallelic RPGRIP1L mutations result in fewer cilia-positive human induced pluripotent stem cell-derived (iPSC-derived) neurons and blunted responses to Sonic Hedgehog (SHH). Isogenic human ARH-like embryonic stem cell-derived (ESc-derived) neurons homozygous for the obesity-risk alleles at rs8050136 or rs1421085 have decreased RPGRIP1L expression and have lower numbers of POMC neurons. RPGRIP1L overexpression increases POMC cell number. These findings suggest that apparently functional intronic polymorphisms affect hypothalamic RPGRIP1L expression and impact development of POMC neurons and their derivatives, leading to hyperphagia and increased adiposity.
Collapse
Affiliation(s)
- Liheng Wang
- Naomi Berrie Diabetes Center and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Alain J. De Solis
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Yossef Goffer
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Kathryn E. Birkenbach
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Staci E. Engle
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Ross Tanis
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Jacob M. Levenson
- University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Xueting Li
- Institute of Human Nutrition graduate program, Columbia University, New York, New York, USA
| | - Richard Rausch
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Manika Purohit
- Zuckerman Institute, Columbia University, New York, New York, USA
| | - Jen-Yi Lee
- Cancer Research Laboratory Molecular Imaging Center, University of California, Berkeley, 94720, USA
| | - Jerica Tan
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Maria Caterina De Rosa
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Claudia A. Doege
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Holly L. Aaron
- Cancer Research Laboratory Molecular Imaging Center, University of California, Berkeley, 94720, USA
| | | | - Jens C. Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- National Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dieter Egli
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Rui Costa
- Zuckerman Institute, Columbia University, New York, New York, USA
| | - Nicolas Berbari
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Rudolph L. Leibel
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - George Stratigopoulos
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| |
Collapse
|
10
|
Wiegering A, Rüther U, Gerhardt C. The ciliary protein Rpgrip1l in development and disease. Dev Biol 2018; 442:60-68. [DOI: 10.1016/j.ydbio.2018.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 07/28/2018] [Indexed: 12/28/2022]
|