1
|
Saleh H, Seaman LAK, Palmer WC. Proposed dietary recommendations for iron overload: a guide for physician practice. Curr Opin Gastroenterol 2023; 39:146-149. [PMID: 36976854 DOI: 10.1097/mog.0000000000000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
PURPOSE OF REVIEW Iron overload disorders such as hemochromatosis involve unregulated absorption of dietary iron, leading to excessive iron accumulation in multiple organs. Phlebotomy is the standard of care for removal of excess iron, but dietary modification is not standardized in practice. The purpose of this article is to help standardize hemochromatosis diet counseling based on commonly asked patient questions. RECENT FINDINGS The clinical benefit regarding dietary modification in iron overload patients is limited due to lack of large clinical trials, but preliminary results are promising. Recent studies suggest diet modification could reduce iron burden in hemochromatosis patients resulting in less annual phlebotomy as supported through small patient studies, concepts of physiology, and animal studies. SUMMARY This article is a guide for physicians to counsel hemochromatosis patients based on commonly asked questions such as foods to avoid, foods to consume, use of alcohol, and use of supplements. The goal of this guide is to help standardize hemochromatosis diet counseling to reduce phlebotomy amount in patients. Standardization of diet counseling could help facilitate future patient studies to analyze the clinical significance.
Collapse
Affiliation(s)
| | | | - William C Palmer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
2
|
Barney DE, Gordon BS, Hennigar SR. REDD1 deletion and treadmill running increase liver hepcidin and gluconeogenic enzymes in male mice. J Nutr Sci 2023; 12:e49. [PMID: 37123395 PMCID: PMC10131055 DOI: 10.1017/jns.2023.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
The iron-regulatory hormone hepcidin is transcriptionally up-regulated by gluconeogenic signals. Recent evidence suggeststhat increases in circulating hepcidin may decrease dietary iron absorption following prolonged exercise, however evidence is limited on whether gluconeogenic signals contribute to post-exercise increases in hepcidin. Mice with genetic knockout of regulated in development and DNA response-1 (REDD1) display greater glycogen depletion following exercise, possibly indicating greater gluconeogenesis. The objective of the present study was to determine liver hepcidin, markers of gluconeogenesis and iron metabolism in REDD1 knockout and wild-type mice following prolonged exercise. Twelve-week-old male REDD1 knockout and wild-type mice were randomised to rest or 60 min treadmill running with 1, 3 or 6 h recovery (n = 5-8/genotype/group). Liver gene expression of hepcidin (Hamp) and gluconeogenic enzymes (Ppargc1a, Creb3l3, Pck1, Pygl) were determined by qRT-PCR. Effects of genotype, exercise and their interaction were assessed by two-way ANOVAs with Tukey's post-hoc tests, and Pearson correlations were used to assess the relationships between Hamp and study outcomes. Liver Hamp increased 1- and 4-fold at 3 and 6 h post-exercise, compared to rest (P-adjusted < 0⋅009 for all), and was 50% greater in REDD1 knockout compared to wild-type mice (P = 0⋅0015). Liver Ppargc1a, Creb3l3 and Pck1 increased with treadmill running (P < 0⋅0001 for all), and liver Ppargc1a, Pck1 and Pygl were greater with REDD1 deletion (P < 0⋅02 for all). Liver Hamp was positively correlated with liver Creb3l3 (R = 0⋅62, P < 0⋅0001) and Pck1 (R = 0⋅44, P = 0⋅0014). In conclusion, REDD1 deletion and prolonged treadmill running increased liver Hamp and gluconeogenic regulators of Hamp, suggesting gluconeogenic signalling of hepcidin with prolonged exercise.
Collapse
Affiliation(s)
- David E. Barney
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Bradley S. Gordon
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Stephen R. Hennigar
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
- Corresponding author: Stephen R. Hennigar, email
| |
Collapse
|
3
|
Hennigar SR, Berryman CE, Kelley AM, Anderson BJ, Young AJ, McClung JP, Pasiakos SM. High-Altitude Acclimatization Suppresses Hepcidin Expression During Severe Energy Deficit. High Alt Med Biol 2020; 21:232-236. [PMID: 32316799 DOI: 10.1089/ham.2019.0109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hennigar, Stephen R., Claire E. Berryman, Alyssa M. Kelley, Bradley J. Anderson, Andrew J. Young, James P. McClung, and Stefan M. Pasiakos. High-altitude acclimatization suppresses hepcidin expression during severe energy deficit. High Alt Med Biol. 21:232-236, 2020. Background: The erythropoietic cells in the bone marrow require iron to synthesize heme for incorporation into hemoglobin. Exposure to hypoxic conditions, such as extended sojourns to high altitude (HA), results in increased erythropoiesis and an increased physiological requirement for iron. In addition to increasing iron requirements, hypoxic conditions suppress appetite and often lead to decreased energy intake. The objective of this study was to determine the combined effects of severe energy deficit and hypoxia on hepcidin and measures of iron status in lowlanders sojourning to HA. Methods: Iron status indicators and hepcidin were determined in 17 healthy male volunteers (mean ± standard deviation, age 23 ± 6 years, body mass index 27 ± 4 kg/m2) fed a controlled diet (12 ± 1.2 mg iron/day) during a 20-day sojourn to 4300 m above sea level. Results: Chronic exposure to HA during severe energy deficit increased hematocrit by 12% (p < 0.01) and decreased serum hepcidin by 37% (p < 0.01) compared with baseline. Ferritin declined by 18% (p = 0.02) and transferrin saturation and soluble transferrin receptor increased by 55% and 83%, respectively (p < 0.01 for both) compared with baseline. Conclusions: HA acclimatization suppresses hepcidin expression to increase iron availability during severe energy deficit. Registered at ClinicalTrials.gov as NCT02731066.
Collapse
Affiliation(s)
- Stephen R Hennigar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida, USA.,Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA.,Oak Ridge Institute for Science and Education, Belcamp, Maryland, USA
| | - Claire E Berryman
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida, USA.,Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA.,Oak Ridge Institute for Science and Education, Belcamp, Maryland, USA
| | - Alyssa M Kelley
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA.,Oak Ridge Institute for Science and Education, Belcamp, Maryland, USA
| | - Bradley J Anderson
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA.,Oak Ridge Institute for Science and Education, Belcamp, Maryland, USA
| | - Andrew J Young
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA.,Oak Ridge Institute for Science and Education, Belcamp, Maryland, USA
| | - James P McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| |
Collapse
|
4
|
Hepcidin and Erythroferrone Correlate with Hepatic Iron Transporters in Rats Supplemented with Multispecies Probiotics. Molecules 2020; 25:molecules25071674. [PMID: 32260496 PMCID: PMC7180848 DOI: 10.3390/molecules25071674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
The influence of probiotic supplementation on iron metabolism remains poorly investigated. However, a range of studies, especially on Lactobacillus plantarum 299v (Lp229v), have indicated a possible positive impact of probiotics on iron absorption. The aim of the study was to determine the effect of multistrain probiotic supply on iron balance. Thirty Wistar rats were randomized into three groups: placebo (KK group), and multistrain probiotic per os in a daily dose of 2.5 × 109 colony forming units (CFU) (PA group) or 1 × 1010 CFU (PB group). Multistrain probiotic consisted of nine bacterial strains: Bifidobacterium bifidum W23, B. lactis W51, B. lactis W52, Lactobacillus acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, Lactococcus lactis W19, and Lc. lactis W58, in equal proportions. After six weeks, blood and organ samples were collected. No differences were found between the three groups in terms of serum concentrations of hepcidin (HEPC), lactoferrin (LTF), homocysteine (HCY), ferritin (Ft), or erythroferrone (ErFe), or in liver content of divalent metal transporter 1 (DMT1), transferrin receptors 1 and 2 (TfR), or ZRT/IRT-like protein 14 (ZIP14) proteins. In the overall sample, positive correlations were noted between the serum concentrations of hepcidin and lactoferrin, and hepcidin and ferritin; serum concentration of hepcidin and DMT1 and TfR1 in the liver; and serum concentration of erythroferrone and TfR2 in the liver. The correlations of serum hepcidin and erythroferrone with liver DMT1 and TfR represent significant mechanisms of Fe homeostasis. Our study has shown that multistrain probiotic supplementation used in the experiment did not disrupt the biochemical and hepatic regulatory processes of Fe balance and did not demonstrate significant influence on selected parameters of Fe metabolism.
Collapse
|
5
|
Abstract
Since its discovery in 2001, there have been a number of important discoveries and findings that have increased our knowledge about the functioning of hepcidin. Hepcidin, the master iron regulator has been shown to be regulated by a number of physiological stimuli and their associated signaling pathways. This chapter will summarize our current understanding of how these physiological stimuli and downstream signaling molecules are involved in hepcidin modulation and ultimately contribute to the regulation of systemic or local iron homeostasis. The signaling pathways and molecules described here have been shown to primarily affect hepcidin at a transcriptional level, but these transcriptional changes correlate with changes in systemic iron levels as well, supporting the functional effects of hepcidin regulation by these signaling pathways.
Collapse
Affiliation(s)
- Gautam Rishi
- The Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - V Nathan Subramaniam
- The Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|