1
|
Guzewska MM, Witek KJ, Karnas E, Rawski M, Zuba-Surma E, Kaczmarek MM. miR-125b-5p impacts extracellular vesicle biogenesis, trafficking, and EV subpopulation release in the porcine trophoblast by regulating ESCRT-dependent pathway. FASEB J 2023; 37:e23054. [PMID: 37402070 DOI: 10.1096/fj.202300710r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Intercellular communication is a critical process that ensures cooperation between distinct cell types at the embryo-maternal interface. Extracellular vesicles (EVs) are considered to be potent mediators of this communication by transferring biological information in their cargo (e.g., miRNAs) to the recipient cells. miRNAs are small non-coding RNAs that affect the function and fate of neighboring and distant cells by regulating gene expression. Focusing on the maternal side of the dialog, we recently revealed the impact of embryonic signals, including miRNAs, on EV-mediated cell-to-cell communication. In this study, we show the regulatory mechanism of the miR-125b-5p ESCRT-mediated EV biogenesis pathway and the further secretion of EVs by trophoblasts at the time when the crucial steps of implantation are taking place. To test the ability of miR-125b-5p to influence the expression of genes involved in the generation and release of EV subpopulations in porcine conceptuses, we used an ex vivo approach. Next, in silico and in vitro analyses were performed to confirm miRNA-mRNA interactions. Finally, EV trafficking and release were assessed using several imaging and particle analysis tools. Our results indicated that conceptus development and implantation are accompanied by changes in the abundance of EV biogenesis and trafficking machinery. ESCRT-dependent EV biogenesis and the further secretion of EVs were modulated by miR-125b-5p, specifically impacting the ESCRT-II complex (via VPS36) and EV trafficking in primary porcine trophoblast cells. The identified miRNA-ESCRT interplay led to the generation and secretion of specific subpopulations of EVs. miRNA present at the embryo-maternal interface governs EV-mediated communication between the mother and the developing conceptus, leading to the generation, trafficking, and release of characteristic subpopulations of EVs.
Collapse
Affiliation(s)
- Maria M Guzewska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Krzysztof J Witek
- Cell and Tissue Analysis and Imaging Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Michał Rawski
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika M Kaczmarek
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
2
|
Huang Q, Shen YJ, Hsueh CY, Zhang YF, Guo Y, Yuan XH, Hu CY, Li JY, Tao L, Gong HL, Zhang M, Zhou L. Tetraspanin CD63 reduces the progression and metastasis of head and neck squamous cell carcinoma via KRT1-mediated cell cycle arrest. Heliyon 2023; 9:e17711. [PMID: 37455999 PMCID: PMC10344705 DOI: 10.1016/j.heliyon.2023.e17711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Despite the fact that metastasis is the leading cause of death in patients with head and neck squamous cell carcinoma, fundamental questions about the mechanisms that enable or inhibit metastasis remain unanswered. Tetraspanin CD63 has been linked to tumor progression and metastasis. However, few studies have examined the role of CD63 in HNSCC. In this study, we discovered that CD63 levels were abnormally altered in HNSCC tissue compared to adjacent tissue (n = 69 pairs), and that this was linked to prognosis. Through functional in vitro and in vivo experiments, the roles of CD63 in HNSCC were confirmed. Overexpression of CD63 inhibited the progression and metastasis of HNSCC cells. Using mass spectrometry and co-immunoprecipitation assays, we discovered that KRT1 could be a direct interacting partner of CD63. Furthermore, both CD63 and KRT1 expression was significantly decreased in metastatic tissue compared with primary tumor tissue (n = 13 pairs), suggesting that CD63 and KRT1 play a role in reducing the metastasis of HNSCC. In summary, we reveal a previously unrecognized role of CD63 in regulating KRT1-mediated cell cycle arrest in HNSCC cells, and our findings contribute to defining an important mechanism of HNSCC progression and metastasis.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai 200031, China
| | - Yu-Jie Shen
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai 200031, China
| | - Chi-Yao Hsueh
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai 200031, China
| | - Yi-Fan Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai 200031, China
| | - Yang Guo
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai 200031, China
| | - Xiao-Hui Yuan
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai 200031, China
| | - Chun-Yan Hu
- Department of Pathology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jiao-Yu Li
- Department of Pediatric, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lei Tao
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai 200031, China
| | - Hong-Li Gong
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai 200031, China
| | - Ming Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai 200031, China
| | - Liang Zhou
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai 200031, China
| |
Collapse
|
3
|
He M, Jiang X, Miao J, Feng W, Xie T, Liao S, Qin Z, Tang H, Lin C, Li B, Xu J, Liu Y, Mo Z, Wei Q. A new insight of immunosuppressive microenvironment in osteosarcoma lung metastasis. Exp Biol Med (Maywood) 2023; 248:1056-1073. [PMID: 37439349 PMCID: PMC10581164 DOI: 10.1177/15353702231171900] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/08/2023] [Indexed: 07/14/2023] Open
Abstract
The lung is the primary organ for the metastasis of osteosarcoma. Although the application of neoadjuvant chemotherapy and surgery has remarkably improved the survival rate of patients with osteosarcoma, prognosis is still poor for those patients with metastasis. In this study, we performed further bioinformatics analysis on single-cell RNA sequencing (scRNA-seq) data published before, containing 75,317 cells from two osteosarcoma lung metastasis and five normal lung tissues. First, we classified 17 clusters, including macrophages, T cells, endothelial cells, and so on, indicating highly intratumoral heterogeneity in osteosarcoma lung metastasis. Next, we found macrophages in osteosarcoma lung metastasis did not have significant M1 or M2 polarizations. Then, we identified that T cells occupied the most abundant among all cell clusters, and found CD8+ T cells exhibited a low expression level of immune checkpoints in osteosarcoma lung metastasis. What is more, we identified C2_Malignant cells, and found CD63 might play vital roles in determining the infiltration of T cells and malignant cells in conventional-type osteosarcoma lung metastasis. Finally, we unveiled C1_Therapeutic cluster, a subcluster of malignant cells, was sensitive to oxfendazole and mevastatin, and the potential hydrogen-bond position and binding energy of oxfendazole-KIAA0907 and mevastatin-KIAA0907 were unveiled, respectively. Our results highlighted the power of scRNA-seq technique in identifying the complex tumor microenvironment of osteosarcoma lung metastasis, making it possible to devise precision therapeutic approaches.
Collapse
Affiliation(s)
- Mingwei He
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Xiaohong Jiang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jifeng Miao
- Orthopedics Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530005, China
| | - Wenyu Feng
- Orthopedics Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530005, China
| | - Tianyu Xie
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhaojie Qin
- Department of Orthopedic, The People’s Hospital of Hechi, Hechi 547600, China
| | - Haijun Tang
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chengsen Lin
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Boxiang Li
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Yun Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| | - Qingjun Wei
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
4
|
Kim S. Biochemical characterization and cytotoxicity of polylactosamine-extended N-glycans binding isolectins from the mushroom Hericium erinaceus. Int J Biol Macromol 2023; 226:1010-1020. [PMID: 36526067 DOI: 10.1016/j.ijbiomac.2022.12.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
The mushroom Hericium erinaceus expresses isolectins with different glycan binding specificities; of these, the ricin B-like lectin HEL1 and HEL2 (HEL2a and HEL2b) can bind fucosylated N-glycans and core 1 O-glycans, respectively. However, other lectin-like protein-coding transcripts detected in the H. erinaceus transcriptome, named HEL3, remain to be characterized. Therefore, in this study, the expression levels of all these isolectins genes were compared to characterize the molecular and biochemical properties of these carbohydrate-binding proteins. Low expression genes encoding putative cytolysin proteins, HEL3a and HEL3b, were identified. Bioinformatics analyses revealed that these proteins shared highly homologous structures and carbohydrate-binding residues with other mushroom lectins. Further, their recombinant proteins, rHEL3a and rHEL3b showed an octamer composed of identical 17 kDa subunits under non-denaturing conditions and a slightly basic isoelectric point value of approximately 8.3. The hemagglutination activity of these isolectins was strongly inhibited by glycoproteins rather than free glycans. Interestingly, glycan-binding profiles showed that rHEL3 isolectins interacted with most polylactosamine (poly-LacNAc)-extended N-glycans with relatively low binding activity. Isothermal titration calorimetry also revealed that these recombinant lectins have different binding capacities toward N-glycan-containing glycoproteins. Further, treatment with different concentrations of rHEL3 lectins showed cytotoxic effects in K562, UACC62, and CHO model cell lines, which express poly-LacNAc glycans, confirmed by inhibition of proliferation. Overall, these biochemical properties indicate that rHEL3 isolectins may be used as unique lectins for detecting poly-LacNAc-extended glycans, which are known to be over-expressed in leukemia or metastatic melanoma cells, in cancer diagnostic assays and anti-cancer therapies.
Collapse
Affiliation(s)
- Seonghun Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup 56212, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea.
| |
Collapse
|
5
|
Exogenous loading of extracellular vesicles, virus-like particles, and lentiviral vectors with supercharged proteins. Commun Biol 2022; 5:485. [PMID: 35590035 PMCID: PMC9120435 DOI: 10.1038/s42003-022-03440-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/03/2022] [Indexed: 12/19/2022] Open
Abstract
Cell membrane-based biovesicles (BVs) are important candidate drug delivery vehicles and comprise extracellular vesicles, virus-like particles, and lentiviral vectors. Here, we introduce a non-enzymatic assembly of purified BVs, supercharged proteins, and plasmid DNA called pDNA-scBVs. This multicomponent vehicle results from the interaction of negative sugar moieties on BVs and supercharged proteins that contain positively charged amino acids on their surface to enhance their affinity for pDNA. pDNA-scBVs were demonstrated to mediate floxed reporter activation in culture by delivering a Cre transgene. We introduced pDNA-scBVs containing both a CRE-encoding plasmid and a BV-packaged floxed reporter into the brains of Ai9 mice. Successful delivery of both payloads by pDNA-scBVs was confirmed with reporter signal in the striatal brain region. Overall, we developed a more efficient method to load isolated BVs with cargo that functionally modified recipient cells. Augmenting the natural properties of BVs opens avenues for adoptive extracellular interventions using therapeutic loaded cargo.
Collapse
|
6
|
Cytokine-enhanced cytolytic activity of exosomes from NK Cells. Cancer Gene Ther 2022; 29:734-749. [PMID: 34316033 PMCID: PMC9209332 DOI: 10.1038/s41417-021-00352-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells play key roles in immune surveillance against tumors and viral infection. NK cells distinguish abnormal cells from healthy cells by cell-cell interaction with cell surface proteins and then attack target cells via multiple mechanisms. In addition, extracellular vesicles (EVs) derived from NK cells (NK-EVs), including exosomes, possess cytotoxic capacity against tumor cells, but their characteristics and regulation by cytokines remain unknown. Here, we report that EVs derived from human NK-92 cells stimulated with IL-15 + IL-21 show enhanced cytotoxic capacity against tumor cells. Major cytolytic granules, granzyme B and granzyme H, are enriched by IL-15 + IL-21 stimulation in NK-EVs; however, knockout experiments reveal those cytolytic granules are independent of enhanced cytotoxic capacity. To find out the key molecules, mass spectrometry analyses were performed with different cytokine conditions, no cytokine, IL-15, IL-21, or IL-15 + IL-21. We then found that CD226 (DNAM-1) on NK-EVs is enriched by IL-15 + IL-21 stimulation and that blocking antibodies against CD226 reduced the cytolytic activity of NK-EVs. We also show NK-EVs are taken up by target cells via macropinocytosis. Collectively, our findings elucidate the novel properties of NK-EVs and the mechanism of their incorporation into target cells.
Collapse
|
7
|
Assessment of TSPAN Expression Profile and Their Role in the VSCC Prognosis. Int J Mol Sci 2021; 22:ijms22095015. [PMID: 34065085 PMCID: PMC8125994 DOI: 10.3390/ijms22095015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 01/16/2023] Open
Abstract
The role and prognostic value of tetraspanins (TSPANs) in vulvar squamous cell carcinoma (VSCC) remain poorly understood. We sought to primarily determine, at both the molecular and tissue level, the expression profile of the TSPANs CD9, CD63, CD81, and CD82 in archived VSCC samples (n = 117) and further investigate their clinical relevance as prognostic markers. Our studies led us to identify CD63 as the most highly expressed TSPAN, at the gene and protein levels. Multicomparison studies also revealed that the expression of CD9 was associated with tumor size, whereas CD63 upregulation was associated with histological diagnosis and vascular invasion. Moreover, low expression of CD81 and CD82 was associated with worse prognosis. To determine the role of TSPANs in VSCC at the cellular level, we assessed the mRNA levels of CD63 and CD82 in established metastatic (SW962) and non-metastatic (SW954) VSCC human cell lines. CD82 was found to be downregulated in SW962 cells, thus supporting its metastasis suppressor role. However, CD63 was significantly upregulated in both cell lines. Silencing of CD63 by siRNA led to a significant decrease in proliferation of both SW954 and SW962. Furthermore, in SW962 particularly, CD63-siRNA also remarkably inhibited cell migration. Altogether, our data suggest that the differential expression of TSPANs represents an important feature for prognosis of VSCC patients and indicates that CD63 and CD82 are likely potential therapeutic targets in VSCC.
Collapse
|
8
|
Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30:941-969. [PMID: 32363402 DOI: 10.1093/glycob/cwaa041] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
9
|
Li H, Liu J, Xiao X, Sun S, Zhang H, Zhang Y, Zhou W, Zhang B, Roy M, Liu H, Ye M, Wang Z, Liu-Smith F, Liu J. A Novel Aptamer LL4A Specifically Targets Vemurafenib-Resistant Melanoma through Binding to the CD63 Protein. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:727-738. [PMID: 31726389 PMCID: PMC6859286 DOI: 10.1016/j.omtn.2019.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 01/08/2023]
Abstract
Melanoma is a highly aggressive tumor with a poor prognosis, and half of all melanoma patients harbor BRAF mutations. A BRAF inhibitor, vemurafenib (PLX4032), has been approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) to treat advanced melanoma patients with BRAFV600E mutation. However, the efficacy of vemurafenib is impeded by adaptive resistance in almost all patients. In this study, using a cell-based SELEX (systematic evolution of ligands by exponential enrichment) strategy, we obtained a DNA aptamer (named LL4) with high affinity and specificity against vemurafenib-resistant melanoma cells. Optimized truncated form (LL4A) specifically binds to vemurafenib-resistant melanoma cells with dissociation constants in the nanomolar range and with excellent stability and low toxicity. Meanwhile, fluorescence imaging confirmed that LL4A significantly accumulated in tumors formed by vemurafenib-resistant melanoma cells, but not in control tumors formed by their corresponding parental cells in vivo. Further, a transmembrane protein CD63 was identified as the binding target of aptamer LL4A using a pull-down assay combined with the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. CD63 formed a supramolecular complex with TIMP1 and β1-integrin, activated the nuclear factor кB (NF-кB) and mitogen-activated protein kinase (MAPK) signaling pathways, and contributed to vemurafenib resistance. Potentially, the aptamer LL4A may be used diagnostically and therapeutically in humans to treat targeted vemurafenib-resistant melanoma.
Collapse
Affiliation(s)
- Hui Li
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China
| | - Juan Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China
| | - Hui Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Yibin Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Weihua Zhou
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; Department of Obstetrics and Gynecology, People's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, Hunan, Jishou 410006, China
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Mridul Roy
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Hong Liu
- The First Xiangya Hospital, Central South University, Changsha 410078, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Zi Wang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; The First Xiangya Hospital, Central South University, Changsha 410078, China.
| | - Feng Liu-Smith
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; Department of Epidemiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|