1
|
Han M, Han P, Wang Z, Kong L, Xu Q, Liu Q, Sun Y. Alternative splicing in aging and aging-related diseases: From pathogenesis to therapy. Pharmacol Ther 2025; 272:108887. [PMID: 40414568 DOI: 10.1016/j.pharmthera.2025.108887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/10/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Aging is a complex biological process associated with nearly all diseases. Alternative splicing is increasingly recognized as an important contributor to aging and a key research pathway for extending human lifespan. In this review, we highlight the findings of alternative splicing in the hallmarks of aging including key processes such as genomic instability, telomere length, protein stability, autophagy processes, etc., as well as antagonistic hallmarks of aging such as various metabolic signals, energy metabolism, clearance of senescent cells, stem cell self-renewal, cell communication and inflammatory process, etc. We also discuss the roles of alternative splicing in age-related diseases, including neurodegenerative diseases, cardiovascular diseases, skeletal muscle-related diseases, metabolic disorders, cancer, sensory degeneration, and chronic inflammation, etc. These studies suggest that new anti-aging therapies could be developed by regulating key splicing proteins or specific splicing events.
Collapse
Affiliation(s)
- Mingrui Han
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Peiru Han
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zihui Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Qianqian Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China.
| |
Collapse
|
2
|
Shin GS, Jo AR, Kim J, Kim JY, Kim CH, An MJ, Lee HM, Park Y, Hwangbo Y, Kim JW. Lamin B1 regulates RNA splicing factor expression by modulating the spatial positioning and chromatin interactions of the ETS1 gene locus. Anim Cells Syst (Seoul) 2025; 29:149-162. [PMID: 39968360 PMCID: PMC11834782 DOI: 10.1080/19768354.2025.2465325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Lamin B1, a crucial component of the nuclear lamina, plays a pivotal role in chromatin organization and transcriptional regulation in eukaryotic cells. While recent studies have highlighted the connection between Lamin B1 and RNA splicing regulation, the precise molecular mechanisms remain elusive. In this study, we demonstrate that Lamin B1 depletion leads to a global reduction in splicing factor expression, as evidenced by analysis of multiple RNA-seq datasets. Motif analysis suggests that members of the ETS transcription factor family likely bind to the promoter regions of these splicing factors. Further analysis using transcription factor databases and ChIP-seq data identified ETS1 as a key regulator of splicing factor expression. Hi-C sequencing revealed that the loss of Lamin B1 disrupts inter-LAD chromatin interactions near the ETS1 gene locus, resulting in its downregulation. These findings suggest that Lamin B1 indirectly regulates RNA splicing by sustaining proper ETS1 expression, uncovering a novel link between nuclear architecture, gene regulation, and RNA splicing.
Collapse
Affiliation(s)
- Geun-Seup Shin
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ah-Ra Jo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jinho Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ji-Young Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Chul-Hong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Mi-Jin An
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun-Min Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yuna Park
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yujeong Hwangbo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Gao L, Jia R. Alternative Splicing: Emerging Roles in Anti-Aging Strategies. Biomolecules 2025; 15:131. [PMID: 39858525 PMCID: PMC11763286 DOI: 10.3390/biom15010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/21/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Alternative splicing plays a fundamental role in gene expression and protein complexity. Aberrant splicing impairs cell homeostasis and is closely associated with aging and cellular senescence. Significant changes to alternative splicing, including dysregulated splicing events and the abnormal expression of splicing factors, have been detected during the aging process or in age-related disorders. Here, we highlight the possibility of suppressing aging and cellular senescence by controlling alternative splicing. In this review, we will summarize the latest research progress on alternative splicing in aging and cellular senescence, discuss the roles and regulatory mechanisms of alternative splicing during aging, and then excavate existing and potential approaches to anti-aging by controlling alternative splicing. Novel therapeutic breakthroughs concerning aging and senescence entail a further understanding of regulating alternative splicing mechanically and accurately.
Collapse
Affiliation(s)
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
4
|
Deschênes M, Durand M, Olivier M, Pellerin‐Viger A, Rodier F, Chabot B. A defective splicing machinery promotes senescence through MDM4 alternative splicing. Aging Cell 2024; 23:e14301. [PMID: 39118304 PMCID: PMC11561654 DOI: 10.1111/acel.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Defects in the splicing machinery are implicated in various diseases, including cancer. We observed a general reduction in the expression of spliceosome components and splicing regulators in human cell lines undergoing replicative, stress-induced, and telomere uncapping-induced senescence. Supporting the view that defective splicing contributes to senescence, splicing inhibitors herboxidiene, and pladienolide B induced senescence in normal and cancer cell lines. Furthermore, depleting individual spliceosome components also promoted senescence. All senescence types were associated with an alternative splicing transition from the MDM4-FL variant to MDM4-S. The MDM4 splicing shift was reproduced when splicing was inhibited, and spliceosome components were depleted. While decreasing the level of endogenous MDM4 promoted senescence and cell survival independently of the MDM4-S expression status, cell survival was also improved by increasing MDM4-S. Overall, our work establishes that splicing defects modulate the alternative splicing of MDM4 to promote senescence and cell survival.
Collapse
Affiliation(s)
- Mathieu Deschênes
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecCanada
| | - Mathieu Durand
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecCanada
| | - Marc‐Alexandre Olivier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuebecCanada
- Institut du Cancer de MontréalMontréalQuebecCanada
| | - Alicia Pellerin‐Viger
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuebecCanada
- Institut du Cancer de MontréalMontréalQuebecCanada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuebecCanada
- Institut du Cancer de MontréalMontréalQuebecCanada
- Department of Radiology, Radio‐Oncology and Nuclear MedicineUniversité de MontréalMontréalQuebecCanada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecCanada
| |
Collapse
|
5
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
6
|
Bramwell LR, Harries LW. Senescence, regulators of alternative splicing and effects of trametinib treatment in progeroid syndromes. GeroScience 2024; 46:1861-1879. [PMID: 37751047 PMCID: PMC10828446 DOI: 10.1007/s11357-023-00933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
Progeroid syndromes such as Hutchinson Gilford Progeroid syndrome (HGPS), Werner syndrome (WS) and Cockayne syndrome (CS), result in severely reduced lifespans and premature ageing. Normal senescent cells show splicing factor dysregulation, which has not yet been investigated in syndromic senescent cells. We sought to investigate the senescence characteristics and splicing factor expression profiles of progeroid dermal fibroblasts. Natural cellular senescence can be reversed by application of the senomorphic drug, trametinib, so we also investigated its ability to reverse senescence characteristics in syndromic cells. We found that progeroid cultures had a higher senescence burden, but did not always have differences in levels of proliferation, DNA damage repair and apoptosis. Splicing factor gene expression appeared dysregulated across the three syndromes. 10 µM trametinib reduced senescent cell load and affected other aspects of the senescence phenotype (including splicing factor expression) in HGPS and Cockayne syndromes. Werner syndrome cells did not demonstrate changes in in senescence following treatment. Splicing factor dysregulation in progeroid cells provides further evidence to support this mechanism as a hallmark of cellular ageing and highlights the use of progeroid syndrome cells in the research of ageing and age-related disease. This study suggests that senomorphic drugs such as trametinib could be a useful adjunct to therapy for progeroid diseases.
Collapse
Affiliation(s)
- Laura R Bramwell
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lorna W Harries
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
7
|
Ji L, Li J, Liu D, Qiao Y, Zhao W, Liu Y, Zheng S. RUNX2 mutation inhibits the cellular senescence of dental follicle cells via ERK signalling pathway. Oral Dis 2024; 30:1337-1349. [PMID: 37154397 DOI: 10.1111/odi.14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 04/22/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVE The aim of this study was to explore the regulatory effect of RUNX2 mutation on dental follicle cells (DFCs) senescence and clarify the underlying mechanism. This study aimed to explore the basis for a novel mechanism of delayed permanent tooth eruption in cleidocranial dysplasia (CCD) patients. MATERIALS AND METHODS Dental follicles were collected from a CCD patient and healthy controls. Senescence-associated β-galactosidase (SA-β-gal) staining, Ki67 staining, cell cycle assays, and senescence-related gene and protein expression assays were performed to assess DFCs senescence. Western blotting was performed to detect the activation of mitogen-activated protein kinase (MAPK) signalling pathways, and the molecular mechanism underlying RUNX2 regulating in DFCs senescence was explored. RESULTS RUNX2 mutation inhibited the cellular senescence of DFCs from the CCD patient compared with healthy controls. Ki67 staining showed that mutant RUNX2 promoted DFCs proliferation, and cell cycle assays revealed that the healthy control-derived DFCs arrested at G1 phase. RUNX2 mutation significantly downregulated senescence-associated gene and protein expression. RUNX2 mutation suppressed ERK signalling pathway activation, an ERK inhibitor decreased healthy control-derived DFCs senescence, and an ERK activator promoted CCD patient-derived DFCs senescence. CONCLUSIONS RUNX2 mutation delayed DFCs senescence through the ERK signalling pathway, which may be responsible for delayed permanent tooth eruption in CCD patients.
Collapse
Affiliation(s)
- LingLi Ji
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Jie Li
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Dandan Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Yanchun Qiao
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Weiwei Zhao
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Yang Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| |
Collapse
|
8
|
Bramwell LR, Frankum R, Harries LW. Repurposing Drugs for Senotherapeutic Effect: Potential Senomorphic Effects of Female Synthetic Hormones. Cells 2024; 13:517. [PMID: 38534362 PMCID: PMC10969307 DOI: 10.3390/cells13060517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Repurposing previously approved drugs may fast track the route to the clinic for potential senotherapeutics and improves the inefficiency of the clinical drug development pipeline. We performed a repurposing screen of 240 clinically approved molecules in human primary dermal fibroblasts for their effects on CDKN2A expression. Molecules demonstrating effects on CDKN2A expression underwent secondary screening for senescence-associated beta galactosidase (SAB) activity, based on effect size, direction, and/or molecule identity. Selected molecules then underwent a more detailed assessment of senescence phenotypes including proliferation, apoptosis, DNA damage, senescence-associated secretory phenotype (SASP) expression, and regulators of alternative splicing. A selection of the molecules demonstrating effects on senescence were then used in a new bioinformatic structure-function screen to identify common structural motifs. In total, 90 molecules displayed altered CDKN2A expression at one or other dose, of which 15 also displayed effects on SAB positivity in primary human dermal fibroblasts. Of these, 3 were associated with increased SAB activity, and 11 with reduced activity. The female synthetic sex hormones-diethylstilboestrol, ethynyl estradiol and levonorgestrel-were all associated with a reduction in aspects of the senescence phenotype in male cells, with no effects visible in female cells. Finally, we identified that the 30 compounds that decreased CDKN2A activity the most had a common substructure linked to this function. Our results suggest that several drugs licensed for other indications may warrant exploration as future senotherapies, but that different donors and potentially different sexes may respond differently to senotherapeutic compounds. This underlines the importance of considering donor-related characteristics when designing drug screening platforms.
Collapse
Affiliation(s)
| | | | - Lorna W. Harries
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter EX2 5DW, UK; (L.R.B.); (R.F.)
| |
Collapse
|
9
|
Zhang Q, Liu J, Liu H, Ao L, Xi Y, Chen D. Genome-wide epistasis analysis reveals gene-gene interaction network on an intermediate endophenotype P-tau/Aβ 42 ratio in ADNI cohort. Sci Rep 2024; 14:3984. [PMID: 38368488 PMCID: PMC10874417 DOI: 10.1038/s41598-024-54541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in the elderly worldwide. The exact etiology of AD, particularly its genetic mechanisms, remains incompletely understood. Traditional genome-wide association studies (GWAS), which primarily focus on single-nucleotide polymorphisms (SNPs) with main effects, provide limited explanations for the "missing heritability" of AD, while there is growing evidence supporting the important role of epistasis. In this study, we performed a genome-wide SNP-SNP interaction detection using a linear regression model and employed multiple GPUs for parallel computing, significantly enhancing the speed of whole-genome analysis. The cerebrospinal fluid (CSF) phosphorylated tau (P-tau)/amyloid-[Formula: see text] (A[Formula: see text]) ratio was used as a quantitative trait (QT) to enhance statistical power. Age, gender, and clinical diagnosis were included as covariates to control for potential non-genetic factors influencing AD. We identified 961 pairs of statistically significant SNP-SNP interactions, explaining a high-level variance of P-tau/A[Formula: see text] level, all of which exhibited marginal main effects. Additionally, we replicated 432 previously reported AD-related genes and found 11 gene-gene interaction pairs overlapping with the protein-protein interaction (PPI) network. Our findings may contribute to partially explain the "missing heritability" of AD. The identified subnetwork may be associated with synaptic dysfunction, Wnt signaling pathway, oligodendrocytes, inflammation, hippocampus, and neuronal cells.
Collapse
Affiliation(s)
- Qiushi Zhang
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Junfeng Liu
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Hongwei Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, China
| | - Lang Ao
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Yang Xi
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Dandan Chen
- School of Automation Engineering, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China.
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, China.
| |
Collapse
|
10
|
Baralle M, Romano M. Age-Related Alternative Splicing: Driver or Passenger in the Aging Process? Cells 2023; 12:2819. [PMID: 38132139 PMCID: PMC10742131 DOI: 10.3390/cells12242819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Alternative splicing changes are closely linked to aging, though it remains unclear if they are drivers or effects. As organisms age, splicing patterns change, varying gene isoform levels and functions. These changes may contribute to aging alterations rather than just reflect declining RNA quality control. Three main splicing types-intron retention, cassette exons, and cryptic exons-play key roles in age-related complexity. These events modify protein domains and increase nonsense-mediated decay, shifting protein isoform levels and functions. This may potentially drive aging or serve as a biomarker. Fluctuations in splicing factor expression also occur with aging. Somatic mutations in splicing genes can also promote aging and age-related disease. The interplay between splicing and aging has major implications for aging biology, though differentiating correlation and causation remains challenging. Declaring a splicing factor or event as a driver requires comprehensive evaluation of the associated molecular and physiological changes. A greater understanding of how RNA splicing machinery and downstream targets are impacted by aging is essential to conclusively establish the role of splicing in driving aging, representing a promising area with key implications for understanding aging, developing novel therapeutical options, and ultimately leading to an increase in the healthy human lifespan.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| |
Collapse
|
11
|
Morales ML, García-Vicente R, Rodríguez-García A, Reyes-Palomares A, Vincelle-Nieto Á, Álvarez N, Ortiz-Ruiz A, Garrido-García V, Giménez A, Carreño-Tarragona G, Sánchez R, Ayala R, Martínez-López J, Linares M. Posttranslational splicing modifications as a key mechanism in cytarabine resistance in acute myeloid leukemia. Leukemia 2023; 37:1649-1659. [PMID: 37422594 PMCID: PMC10400425 DOI: 10.1038/s41375-023-01963-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Despite the approval of several drugs for AML, cytarabine is still widely used as a therapeutic approach. However, 85% of patients show resistance and only 10% overcome the disease. Using RNA-seq and phosphoproteomics, we show that RNA splicing and serine-arginine-rich (SR) proteins phosphorylation were altered during cytarabine resistance. Moreover, phosphorylation of SR proteins at diagnosis were significantly lower in responder than non-responder patients, pointing to their utility to predict response. These changes correlated with altered transcriptomic profiles of SR protein target genes. Notably, splicing inhibitors were therapeutically effective in treating sensitive and resistant AML cells as monotherapy or combination with other approved drugs. H3B-8800 and venetoclax combination showed the best efficacy in vitro, demonstrating synergistic effects in patient samples and no toxicity in healthy hematopoietic progenitors. Our results establish that RNA splicing inhibition, alone or combined with venetoclax, could be useful for the treatment of newly diagnosed or relapsed/refractory AML.
Collapse
Affiliation(s)
- María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain.
| | - Roberto García-Vicente
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology, Veterinary School, Universidad Complutense de Madrid, ES 28040, Madrid, Spain
| | - África Vincelle-Nieto
- Department of Biochemistry and Molecular Biology, Veterinary School, Universidad Complutense de Madrid, ES 28040, Madrid, Spain
| | - Noemí Álvarez
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Alejandra Ortiz-Ruiz
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Vanesa Garrido-García
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Alicia Giménez
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Gonzalo Carreño-Tarragona
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Ricardo Sánchez
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Rosa Ayala
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
- Department of Medicine, Medicine School, Universidad Complutense de Madrid, ES 28040, Madrid, Spain
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
- Department of Medicine, Medicine School, Universidad Complutense de Madrid, ES 28040, Madrid, Spain
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040, Madrid, Spain.
| |
Collapse
|
12
|
Harries LW. Dysregulated RNA processing and metabolism: a new hallmark of ageing and provocation for cellular senescence. FEBS J 2023; 290:1221-1234. [PMID: 35460337 DOI: 10.1111/febs.16462] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 12/23/2022]
Abstract
The human genome is capable of producing hundreds of thousands of different proteins and non-coding RNAs from <20 000 genes, in a co-ordinated and regulated fashion. This is achieved by a collection of phenomena known as mRNA processing and metabolism, and encompasses events in the life cycle of an RNA from synthesis to degradation. These factors are critical determinants of cellular adaptability and plasticity, which allows the cell to adjust its transcriptomic output in response to its internal and external environment. Evidence is building that dysfunctional RNA processing and metabolism may be a key contributor to the development of cellular senescence. Senescent cells by definition have exited cell cycle, but have gained functional features such as the secretion of the senescence-associated secretory phenotype (SASP), a known driver of chronic disease and perhaps even ageing itself. In this review, I will outline the impact of dysregulated mRNA processing and metabolism on senescence and ageing at the level of genes, cells and systems, and describe the mechanisms by which progressive deterioration in these processes may impact senescence and organismal ageing. Finally, I will present the evidence implicating this important process as a new hallmark of ageing, which could be harnessed in the future to develop new senotherapeutic interventions for chronic disease.
Collapse
|
13
|
An Y, Zhu J, Wang X, Sun X, Luo C, Zhang Y, Ye Y, Li X, Abulizi A, Huang Z, Zhang H, Yang B, Xie Z. Oridonin Delays Aging Through the AKT Signaling Pathway. Front Pharmacol 2022; 13:888247. [PMID: 35662728 PMCID: PMC9157590 DOI: 10.3389/fphar.2022.888247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
Aging is a major risk factor for chronic diseases and disability in humans. Nowadays, no effective anti-aging treatment is available clinically. In this study, oridonin was selected based on the drug screening strategy similar to Connectivity MAP (CMAP) but upon transcriptomes of 102 traditional Chinese medicines treated cell lines. Oridonin is a diterpenoid isolated from Rabdosia rubescens. As reported, Oridonin exhibits a variety of pharmacological activities, including antitumor, antibacterial and anti-inflammatory activities. Here, we found that oridonin inhibited cellular senescence in human diploid fibroblasts (2BS and WI-38), manifested by decreased senescence-associated β-galactosidase (SA-β-gal) staining. Compared with the elderly control group, the positive cell rate in the oridonin intervention group was reduced to 48.5%. Notably, oridonin prolonged the lifespan of yeast by 48.9%, and extended the average life span of naturally aged mice by 21.6%. Our mice behavior experiments exhibited that oridonin significantly improved the health status of naturally aged mice. In addition, oridonin also delayed doxorubicin-induced cellular senescence and mouse senescence. Compared with the model group, the percentage of SA-β-gal positive cells in the oridonin treatment group was reduced to 59.8%. It extended the average lifespan of mice by 53.8% and improved healthspan. Mechanistically, we showed that oridonin delayed aging through the AKT signaling pathway and reversed the genetic changes caused by doxorubicin-induced cell senescence. Therefore, oridonin is a potential candidate for the development of anti-aging drugs.
Collapse
Affiliation(s)
- Yongpan An
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Jie Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Xin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Xinpei Sun
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Chunxiong Luo
- School of Physics, Peking University, Beijing, China
| | - Yukun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Yuwei Ye
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Xiaowei Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Abudumijiti Abulizi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Zhizhen Huang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Hang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Zhengwei Xie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China.,Peking University-Yunnan Baiyao International Medical Research Center, Peking University Health Science Center, Peking University, Beijing, China.,Beijing Gigaceuticals Tech. Co. Ltd., Beijing, China
| |
Collapse
|
14
|
Abstract
SUMMARY Skin aging is an outward manifestation of other cellular and molecular aging processes occurring elsewhere in the body. These processes are known collectively as the "hallmarks" of aging, which are a series of basic health maintenance mechanisms that fail over time. Cellular senescence is one of the most studied of the hallmarks of aging; senescent cells accumulate over time and are major drives of the aging process. Here, we discuss the impact of cellular senescence in the context of skin aging, and discuss the emerging landscape of interventions designed for their selective removal by targeted cell death (senolytics) or rejuvenation (senomorphics). We discuss the serotherapeutic strategies that are currently under investigation for systemic aging, which may bring eventual benefits for skin health. Next, we discuss a newly discovered hallmark of aging, dysregulated mRNA processing, which can be targeted for the senomorphic effect. Finally, we highlight a new modality for manipulation of disrupted mRNA processing, oligonucleotide therapeutics. The emerging field of senotherapeutics is set to revolutionize how we view and treat skin aging, and senotherapies are now poised to become a new class of skincare interventions.
Collapse
|
15
|
Jeffery N, Chambers D, Invergo BM, Ames RM, Harries LW. Changes to the identity of EndoC-βH1 beta cells may be mediated by stress-induced depletion of HNRNPD. Cell Biosci 2021; 11:144. [PMID: 34301309 PMCID: PMC8305497 DOI: 10.1186/s13578-021-00658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 12/02/2022] Open
Abstract
Background Beta cell identity changes occur in the islets of donors with diabetes, but the molecular basis of this remains unclear. Protecting residual functional beta cells from cell identity changes may be beneficial for patients with diabetes. Results A somatostatin-positive cell population was induced in stressed clonal human EndoC-βH1 beta cells and was isolated using FACS. A transcriptomic characterisation of somatostatin-positive cells was then carried out. Gain of somatostatin-positivity was associated with marked dysregulation of the non-coding genome. Very few coding genes were differentially expressed. Potential candidate effector genes were assessed by targeted gene knockdown. Targeted knockdown of the HNRNPD gene induced the emergence of a somatostatin-positive cell population in clonal EndoC-βH1 beta cells comparable with that we have previously reported in stressed cells. Conclusions We report here a role for the HNRNPD gene in determination of beta cell identity in response to cellular stress. These findings widen our understanding of the role of RNA binding proteins and RNA biology in determining cell identity and may be important for protecting remaining beta cell reserve in diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00658-6.
Collapse
Affiliation(s)
- Nicola Jeffery
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK
| | | | | | - Ryan M Ames
- University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
16
|
Targeting Alternative Splicing for Reversal of Cellular Senescence in the Context of Aesthetic Aging. Plast Reconstr Surg 2021; 147:25S-32S. [PMID: 33347071 DOI: 10.1097/prs.0000000000007618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SUMMARY Cellular senescence is a state of stable cell cycle arrest that has increasingly been linked with cellular, tissue, and organismal aging; targeted removal of senescent cells brings healthspan and lifespan benefits in animal models. Newly emerging approaches to specifically ablate or rejuvenate senescent cells are now the subject of intense study to explore their utility to provide novel treatments for the aesthetic signs and diseases of aging in humans. Here, we discuss different strategies that are being trialed in vitro, and more recently in vivo, for the targeted removal or reversal of senescent cells. Finally, we describe the evidence for a newly emerging molecular mechanism that may underpin senescence; dysregulation of alternative splicing. We will explore the potential of restoring splicing regulation as a novel "senotherapeutic" approach and discuss strategies by which this could be integrated into the established portfolio of skin aging therapeutics.
Collapse
|
17
|
Wang G, Cheng X, Zhang J, Liao Y, Jia Y, Qing C. Possibility of inducing tumor cell senescence during therapy. Oncol Lett 2021; 22:496. [PMID: 33981358 PMCID: PMC8108274 DOI: 10.3892/ol.2021.12757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The treatment options for cancer include surgery, radiotherapy and chemotherapy. However, the traditional approach of high-dose chemotherapy brings tremendous toxic side effects to patients, as well as potentially causing drug resistance. Drug resistance affects cell proliferation, cell senescence and apoptosis. Cellular senescence refers to the process in which cells change from an active proliferative status to a growth-arrested status. There are multiple factors that regulate this process and cellular senescence is activated by various pathways. Senescent cells present specific characteristics, such as an increased cell volume, flattened cell body morphology, ceased cell division and the expression of β-galactosidase. Tumor senescence can be categorized into replicative senescence and premature senescence. Cellular senescence may inhibit the occurrence and development of tumors, serving as an innovative strategy for the treatment of cancer. The present review mainly focuses on senescent biomarkers, methods for the induction of cellular senescence and its possible application in the treatment of cancer.
Collapse
Affiliation(s)
- Guohui Wang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xianliang Cheng
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jingyi Zhang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuan Liao
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yinnong Jia
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
18
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021. [PMID: 33565261 DOI: 10.1002/wrna.1643.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
19
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1643. [PMID: 33565261 DOI: 10.1002/wrna.1643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
20
|
|
21
|
ZNF746/PARIS overexpression induces cellular senescence through FoxO1/p21 axis activation in myoblasts. Cell Death Dis 2020; 11:359. [PMID: 32398756 PMCID: PMC7217926 DOI: 10.1038/s41419-020-2552-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/06/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
Abstract
Various stresses, including oxidative stress, impair the proliferative capacity of muscle stem cells leading to declined muscle regeneration related to aging or muscle diseases. ZNF746 (PARIS) is originally identified as a substrate of E3 ligase Parkin and its accumulation is associated with Parkinson’s disease. In this study, we investigated the role of PARIS in myoblast function. PARIS is expressed in myoblasts and decreased during differentiation. PARIS overexpression decreased both proliferation and differentiation of myoblasts without inducing cell death, whereas PARIS depletion enhanced myoblast differentiation. Interestingly, high levels of PARIS in myoblasts or fibroblasts induced cellular senescence with alterations in gene expression associated with p53 signaling, inflammation, and response to oxidative stress. PARIS overexpression in myoblasts starkly enhanced oxidative stress and the treatment of an antioxidant Trolox attenuated the impaired proliferation caused by PARIS overexpression. FoxO1 and p53 proteins are elevated in PARIS-overexpressing cells leading to p21 induction and the depletion of FoxO1 or p53 reduced p21 levels induced by PARIS overexpression. Furthermore, both PARIS and FoxO1 were recruited to p21 promoter region and Trolox treatment attenuated FoxO1 recruitment. Taken together, PARIS upregulation causes oxidative stress-related FoxO1 and p53 activation leading to p21 induction and cellular senescence of myoblasts.
Collapse
|
22
|
Lee BP, Smith M, Buffenstein R, Harries LW. Negligible senescence in naked mole rats may be a consequence of well-maintained splicing regulation. GeroScience 2020; 42:633-651. [PMID: 31927681 PMCID: PMC7205774 DOI: 10.1007/s11357-019-00150-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Naked mole-rats (NMRs) have amongst the longest lifespans relative to body size of any known, non-volant mammalian species. They also display an enhanced stress resistance phenotype, negligible senescence and very rarely are they burdened with chronic age-related diseases. Alternative splicing (AS) dysregulation is emerging as a potential driver of senescence and ageing. We hypothesised that the expression of splicing factors, important regulators of patterns of AS, may differ in NMRs when compared to other species with relatively shorter lifespans. We designed assays specific to NMR splicing regulatory factors and also to a panel of pre-selected brain-expressed genes known to demonstrate senescence-related alterations in AS in other species, and measured age-related changes in the transcript expression levels of these using embryonic and neonatal developmental stages through to extreme old age in NMR brain samples. We also compared splicing factor expression in both young mouse and NMR spleen and brain samples. Both NMR tissues showed approximately double the expression levels observed in tissues from similarly sized mice. Furthermore, contrary to observations in other species, following a brief period of labile expression in early life stages, adult NMR splicing factors and patterns of AS for functionally relevant brain genes remained remarkably stable for at least two decades. These findings are consistent with a model whereby the conservation of splicing regulation and stable patterns of AS may contribute to better molecular stress responses and the avoidance of senescence in NMRs, contributing to their exceptional lifespan and prolonged healthspan.
Collapse
Affiliation(s)
- B P Lee
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK
| | - M Smith
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA, 94080, USA
| | - R Buffenstein
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA, 94080, USA.
| | - L W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
23
|
Jeffery N, Richardson S, Chambers D, Morgan NG, Harries LW. Cellular stressors may alter islet hormone cell proportions by moderation of alternative splicing patterns. Hum Mol Genet 2020; 28:2763-2774. [PMID: 31098640 PMCID: PMC6687954 DOI: 10.1093/hmg/ddz094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 01/12/2023] Open
Abstract
Changes to islet cell identity in response to type 2 diabetes (T2D) have been reported in rodent models, but are less well characterized in humans. We assessed the effects of aspects of the diabetic microenvironment on hormone staining, total gene expression, splicing regulation and the alternative splicing patterns of key genes in EndoC-βH1 human beta cells. Genes encoding islet hormones [somatostatin (SST), insulin (INS), Glucagon (GCG)], differentiation markers [Forkhead box O1 (FOXO1), Paired box 6, SRY box 9, NK6 Homeobox 1, NK6 Homeobox 2] and cell stress markers (DNA damage inducible transcript 3, FOXO1) were dysregulated in stressed EndoC-βH1 cells, as were some serine arginine rich splicing factor splicing activator and heterogeneous ribonucleoprotein particle inhibitor genes. Whole transcriptome analysis of primary T2D islets and matched controls demonstrated dysregulated splicing for ~25% of splicing events, of which genes themselves involved in messenger ribonucleic acid processing and regulation of gene expression comprised the largest group. Approximately 5% of EndoC-βH1 cells exposed to these factors gained SST positivity in vitro. An increased area of SST staining was also observed ex vivo in pancreas sections recovered at autopsy from donors with type 1 diabetes (T1D) or T2D (9.3% for T1D and 3% for T2D, respectively compared with 1% in controls). Removal of the stressful stimulus or treatment with the AKT Serine/Threonine kinase inhibitor SH-6 restored splicing factor expression and reversed both hormone staining effects and patterns of gene expression. This suggests that reversible changes in hormone expression may occur during exposure to diabetomimetic cellular stressors, which may be mediated by changes in splicing regulation.
Collapse
Affiliation(s)
- Nicola Jeffery
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW, UK
| | - Sarah Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW, UK
| | - David Chambers
- Wolfson Centre for Age-Related Diseases, King's College London, London WC2R 2LS, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW, UK
| |
Collapse
|
24
|
Faragher RGA, Ostler EL. Resveralogues: From Novel Ageing Mechanisms to New Therapies? Gerontology 2020; 66:231-237. [PMID: 31914446 DOI: 10.1159/000504845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022] Open
Abstract
For much of the 20th century the ageing process was thought to be the result of the interplay of many different biological processes, each with relatively small effects on organismal lifespan. However, this model is no longer tenable. Rather it seems a few biological mechanisms, including nutrient sensing, telomere attrition and cellular senescence, mediate large effects on health and longevity. Biogerontology may have suffered from initial delusions of complexity. However, we argue that it is premature to assume either that the list of biological processes influencing lifespan is now comprehensive or that these mechanisms act independently of each other. A case in point is provided by recent work linking together changes in RNA splicing with advancing age and the ability of polyphenolics based on resveratrol to reverse replicative senescence. In this opinion piece, we propose a novel model in which the factors regulating splice restriction and those controlling cell senescence intersect across chronological and divisional time, giving rise to senescent and growing cells with more diverse properties than previously thought. We also consider therapeutic opportunities and potential problems in the light of this revised conceptual understanding of human cell senescence and ageing.
Collapse
Affiliation(s)
- Richard G A Faragher
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom,
| | - Elizabeth L Ostler
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
25
|
Bhadra M, Howell P, Dutta S, Heintz C, Mair WB. Alternative splicing in aging and longevity. Hum Genet 2019; 139:357-369. [PMID: 31834493 DOI: 10.1007/s00439-019-02094-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022]
Abstract
Alternative pre-mRNA splicing increases the complexity of the proteome that can be generated from the available genomic coding sequences. Dysregulation of the splicing process has been implicated in a vast repertoire of diseases. However, splicing has recently been linked to both the aging process itself and pro-longevity interventions. This review focuses on recent research towards defining RNA splicing as a new hallmark of aging. We highlight dysfunctional alternative splicing events that contribute to the aging phenotype across multiple species, along with recent efforts toward deciphering mechanistic roles for RNA splicing in the regulation of aging and longevity. Further, we discuss recent research demonstrating a direct requirement for specific splicing factors in pro-longevity interventions, and specifically how nutrient signaling pathways interface to splicing factor regulation and downstream splicing targets. Finally, we review the emerging potential of using splicing profiles as a predictor of biological age and life expectancy. Understanding the role of RNA splicing components and downstream targets altered in aging may provide opportunities to develop therapeutics and ultimately extend healthy lifespan in humans.
Collapse
Affiliation(s)
- Malini Bhadra
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Porsha Howell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Sneha Dutta
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Caroline Heintz
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Haque S, Ames RM, Moore K, Pilling LC, Peters LL, Bandinelli S, Ferrucci L, Harries LW. circRNAs expressed in human peripheral blood are associated with human aging phenotypes, cellular senescence and mouse lifespan. GeroScience 2019; 42:183-199. [PMID: 31811527 PMCID: PMC7031184 DOI: 10.1007/s11357-019-00120-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022] Open
Abstract
Circular RNAs (circRNAs) are an emerging class of non-coding RNA molecules that are thought to regulate gene expression and human disease. Despite the observation that circRNAs are known to accumulate in older organisms and have been reported in cellular senescence, their role in aging remains relatively unexplored. Here, we have assessed circRNA expression in aging human blood and followed up age-associated circRNA in relation to human aging phenotypes, mammalian longevity as measured by mouse median strain lifespan and cellular senescence in four different primary human cell types. We found that circRNAs circDEF6, circEP300, circFOXO3 and circFNDC3B demonstrate associations with parental longevity or hand grip strength in 306 subjects from the InCHIANTI study of aging, and furthermore, circFOXO3 and circEP300 also demonstrate differential expression in one or more human senescent cell types. Finally, four circRNAs tested showed evidence of conservation in mouse. Expression levels of one of these, circPlekhm1, was nominally associated with lifespan. These data suggest that circRNA may represent a novel class of regulatory RNA involved in the determination of aging phenotypes, which may show future promise as both biomarkers and future therapeutic targets for age-related disease.
Collapse
Affiliation(s)
- Shahnaz Haque
- RNA-Mediated Mechanisms of Disease Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, RILD South, Barrack Road, Exeter, EX2 5DW, UK
| | - Ryan M Ames
- Biosciences, University of Exeter, Exeter, UK
| | - Karen Moore
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Luke C Pilling
- Epidemiology and Public Health, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Luanne L Peters
- The Jackson Laboratory Nathan Shock Centre of Excellence in the Basic Biology of Aging, Bar Harbor, ME, USA
| | | | - Luigi Ferrucci
- National Institute on Aging, Clinical Research Branch, Harbor Hospital, Baltimore, MD, 21225, USA
| | - Lorna W Harries
- RNA-Mediated Mechanisms of Disease Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, RILD South, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
27
|
Faragher R. Oxytosin as a novel antidegenerative? Br J Dermatol 2019; 181:1122-1123. [DOI: 10.1111/bjd.18546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R.G.A. Faragher
- School of Pharmacy and Biomolecular Sciences Huxley Building University of Brighton Brighton East Sussex BN2 4GJ U.K
| |
Collapse
|
28
|
Lee BP, Mulvey L, Barr G, Garratt J, Goodman E, Selman C, Harries LW. Dietary restriction in ILSXISS mice is associated with widespread changes in splicing regulatory factor expression levels. Exp Gerontol 2019; 128:110736. [DOI: 10.1016/j.exger.2019.110736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
|
29
|
Lye JJ, Latorre E, Lee BP, Bandinelli S, Holley JE, Gutowski NJ, Ferrucci L, Harries LW. Astrocyte senescence may drive alterations in GFAPα, CDKN2A p14 ARF, and TAU3 transcript expression and contribute to cognitive decline. GeroScience 2019; 41:561-573. [PMID: 31654269 PMCID: PMC6885035 DOI: 10.1007/s11357-019-00100-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
The accumulation of senescent cells in tissues is causally linked to the development of several age-related diseases; the removal of senescent glial cells in animal models prevents Tau accumulation and cognitive decline. Senescent cells can arise through several distinct mechanisms; one such mechanism is dysregulation of alternative splicing. In this study, we characterised the senescent cell phenotype in primary human astrocytes in terms of SA-β-Gal staining and SASP secretion, and then assessed splicing factor expression and candidate gene splicing patterns. Finally, we assessed associations between expression of dysregulated isoforms and premature cognitive decline in 197 samples from the InCHIANTI study of ageing, where expression was present in both blood and brain. We demonstrate here that senescent astrocytes secrete a modified SASP characterised by increased IL8, MMP3, MMP10, and TIMP2 but decreased IL10 levels. We identified significant changes in splicing factor expression for 10/20 splicing factors tested in senescent astrocytes compared with early passage cells, as well as dysregulation of isoform levels for 8/13 brain or senescence genes tested. Finally, associations were identified between peripheral blood GFAPα, TAU3, and CDKN2A (P14ARF) isoform levels and mild or severe cognitive decline over a 3–7-year period. Our data are suggestive that some of the features of cognitive decline may arise from dysregulated splicing of important genes in senescent brain support cells, and that defects in alternative splicing or splicing regulator expression deserve exploration as points of therapeutic intervention in the future.
Collapse
Affiliation(s)
- Jed J Lye
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, EX2 5DW, UK
| | - Eva Latorre
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, EX2 5DW, UK
| | - Ben P Lee
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, EX2 5DW, UK
| | | | - Janet E Holley
- University of Exeter Medical School & Neurology Department, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, UK
| | - Nicholas J Gutowski
- University of Exeter Medical School & Neurology Department, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, UK
| | - Luigi Ferrucci
- National Institute on Aging, Clinical Research Branch, Harbor Hospital, Baltimore, MD, 21225, USA
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, EX2 5DW, UK.
| |
Collapse
|
30
|
Galvis D, Walsh D, Harries LW, Latorre E, Rankin J. A dynamical systems model for the measurement of cellular senescence. J R Soc Interface 2019; 16:20190311. [PMID: 31594522 PMCID: PMC6833332 DOI: 10.1098/rsif.2019.0311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Senescent cells provide a good in vitro model to study ageing. However, cultures of ‘senescent’ cells consist of a mix of cell subtypes (proliferative, senescent, growth-arrested and apoptotic). Determining the proportion of senescent cells is crucial for studying ageing and developing new anti-degenerative therapies. Commonly used markers such as doubling population, senescence-associated β-galactosidase, Ki-67, γH2AX and TUNEL assays capture diverse and overlapping cellular populations and are not purely specific to senescence. A newly developed dynamical systems model follows the transition of an initial culture to senescence tracking population doubling, and the proportion of cells in proliferating, growth-arrested, apoptotic and senescent states. Our model provides a parsimonious description of transitions between these states accruing towards a predominantly senescent population. Using a genetic algorithm, these model parameters are well constrained by an in vitro human primary fibroblast dataset recording five markers at 16 time points. The computational model accurately fits to the data and translates these joint markers into the first complete description of the proportion of cells in different states over the lifetime. The high temporal resolution of the dataset demonstrates the efficacy of strategies for reconstructing the trajectory towards replicative senescence with a minimal number of experimental recordings.
Collapse
Affiliation(s)
- Daniel Galvis
- Living Systems Institute, University of Exeter, Exeter, UK.,Translational Research Exchange at Exeter, University of Exeter, Exeter, UK
| | - Darren Walsh
- Institute of Biomedical and Clinical Science, University of Exeter, Medical School, RILD Building, Barrack Road, Exeter EX2 5DW, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Science, University of Exeter, Medical School, RILD Building, Barrack Road, Exeter EX2 5DW, UK
| | - Eva Latorre
- Institute of Biomedical and Clinical Science, University of Exeter, Medical School, RILD Building, Barrack Road, Exeter EX2 5DW, UK.,Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | - James Rankin
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Road, Exeter EX4 4QF, UK.,EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter EX4 4QJ, UK
| |
Collapse
|
31
|
Lee BP, Pilling LC, Bandinelli S, Ferrucci L, Melzer D, Harries LW. The transcript expression levels of HNRNPM, HNRNPA0 and AKAP17A splicing factors may be predictively associated with ageing phenotypes in human peripheral blood. Biogerontology 2019; 20:649-663. [PMID: 31292793 PMCID: PMC6733819 DOI: 10.1007/s10522-019-09819-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022]
Abstract
Dysregulation of splicing factor expression is emerging as a driver of human ageing; levels of transcripts encoding splicing regulators have previously been implicated in ageing and cellular senescence both in vitro and in vivo. We measured the expression levels of an a priori panel of 20 age- or senescence-associated splicing factors by qRT-PCR in peripheral blood samples from the InCHIANTI Study of Aging, and assessed longitudinal relationships with human ageing phenotypes (cognitive decline and physical ability) using multivariate linear regression. AKAP17A, HNRNPA0 and HNRNPM transcript levels were all predictively associated with severe decline in MMSE score (p = 0.007, 0.001 and 0.008 respectively). Further analyses also found expression of these genes was associated with a performance decline in two other cognitive measures; the Trail Making Test and the Purdue Pegboard Test. AKAP17A was nominally associated with a decline in mean hand-grip strength (p = 0.023), and further analyses found nominal associations with two other physical ability measures; the Epidemiologic Studies of the Elderly-Short Physical Performance Battery and calculated speed (m/s) during a timed 400 m fast walking test. These data add weight to the hypothesis that splicing dyregulation may contribute to the development of some ageing phenotypes in the human population.
Collapse
Affiliation(s)
- Benjamin P Lee
- Institute of Biomedical and Clinical Sciences, University of Exeter College of Medicine and Health, RILD Building, RD&E NHSFT Campus, Barrack Rd, Exeter, EX2 5DW, UK
| | - Luke C Pilling
- Epidemiology and Public Health, University of Exeter College of Medicine and Health, RILD Building, RD&E NHSFT Campus, Barrack Rd, Exeter, EX2 5DW, UK
| | | | - Luigi Ferrucci
- National Institute on Aging, Clinical Research Branch, Harbor Hospital, Baltimore, MD, 21225, USA
| | - David Melzer
- Epidemiology and Public Health, University of Exeter College of Medicine and Health, RILD Building, RD&E NHSFT Campus, Barrack Rd, Exeter, EX2 5DW, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter College of Medicine and Health, RILD Building, RD&E NHSFT Campus, Barrack Rd, Exeter, EX2 5DW, UK.
| |
Collapse
|
32
|
Harries LW. RNA Biology Provides New Therapeutic Targets for Human Disease. Front Genet 2019; 10:205. [PMID: 30906315 PMCID: PMC6418379 DOI: 10.3389/fgene.2019.00205] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
RNA is the messenger molecule that conveys information from the genome and allows the production of biomolecules required for life in a responsive and regulated way. Most genes are able to produce multiple mRNA products in response to different internal or external environmental signals, in different tissues and organs, and at specific times in development or later life. This fine tuning of gene expression is dependent on the coordinated effects of a large and intricate set of regulatory machinery, which together orchestrate the genomic output at each locus and ensure that each gene is expressed at the right amount, at the right time and in the correct location. This complexity of control, and the requirement for both sequence elements and the entities that bind them, results in multiple points at which errors may occur. Errors of RNA biology are common and found in association with both rare, single gene disorders, but also more common, chronic diseases. Fortunately, complexity also brings opportunity. The existence of many regulatory steps also offers multiple levels of potential therapeutic intervention which can be exploited. In this review, I will outline the specific points at which coding RNAs may be regulated, indicate potential means of intervention at each stage, and outline with examples some of the progress that has been made in this area. Finally, I will outline some of the remaining challenges with the delivery of RNA-based therapeutics but indicate why there are reasons for optimism.
Collapse
Affiliation(s)
- Lorna W. Harries
- RNA-Mediated Mechanisms of Disease, College of Medicine and Health, The Institute of Biomedical and Clinical Science, Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|