1
|
Pabla P, Jones E, Piasecki M, Phillips B. Skeletal muscle dysfunction with advancing age. Clin Sci (Lond) 2024; 138:863-882. [PMID: 38994723 PMCID: PMC11250095 DOI: 10.1042/cs20231197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
As a result of advances in medical treatments and associated policy over the last century, life expectancy has risen substantially and continues to increase globally. However, the disconnect between lifespan and 'health span' (the length of time spent in a healthy, disease-free state) has also increased, with skeletal muscle being a substantial contributor to this. Biological ageing is accompanied by declines in both skeletal muscle mass and function, termed sarcopenia. The mechanisms underpinning sarcopenia are multifactorial and are known to include marked alterations in muscle protein turnover and adaptations to the neural input to muscle. However, to date, the relative contribution of each factor remains largely unexplored. Specifically, muscle protein synthetic responses to key anabolic stimuli are blunted with advancing age, whilst alterations to neural components, spanning from the motor cortex and motoneuron excitability to the neuromuscular junction, may explain the greater magnitude of function losses when compared with mass. The consequences of these losses can be devastating for individuals, their support networks, and healthcare services; with clear detrimental impacts on both clinical (e.g., mortality, frailty, and post-treatment complications) and societal (e.g., independence maintenance) outcomes. Whether declines in muscle quantity and quality are an inevitable component of ageing remains to be completely understood. Nevertheless, strategies to mitigate these declines are of vital importance to improve the health span of older adults. This review aims to provide an overview of the declines in skeletal muscle mass and function with advancing age, describes the wide-ranging implications of these declines, and finally suggests strategies to mitigate them, including the merits of emerging pharmaceutical agents.
Collapse
Affiliation(s)
- Pardeep Pabla
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
| | - Eleanor J. Jones
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), U.K
- NIHR Nottingham Biomedical Research Centre (BRC), U.K
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), U.K
- NIHR Nottingham Biomedical Research Centre (BRC), U.K
| |
Collapse
|
2
|
Solinas G, Becattini B. An adipoincretin effect links adipostasis with insulin secretion. Trends Endocrinol Metab 2024; 35:466-477. [PMID: 38861922 DOI: 10.1016/j.tem.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 06/13/2024]
Abstract
The current paradigm for the insulin system focuses on the phenomenon of glucose-stimulated insulin secretion and insulin action on blood glucose control. This historical glucose-centric perspective may have introduced a conceptual bias in our understanding of insulin regulation. A body of evidence demonstrating that in vivo variations in blood glucose and insulin secretion can be largely dissociated motivated us to reconsider the fundamental design of the insulin system as a control system for metabolic homeostasis. Here, we propose that a minimal glucose-centric model does not accurately describe the physiological behavior of the insulin system and propose a new paradigm focusing on the effects of incretins, arguing that under fasting conditions, insulin is regulated by an adipoincretin effect.
Collapse
Affiliation(s)
- Giovanni Solinas
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Barbara Becattini
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Becattini B, Molinaro A, Henricsson M, Borén J, Solinas G. Adipocyte PI3K links adipostasis with baseline insulin secretion at fasting through an adipoincretin effect. Cell Rep 2024; 43:114132. [PMID: 38656871 DOI: 10.1016/j.celrep.2024.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Insulin-PI3K signaling controls insulin secretion. Understanding this feedback mechanism is crucial for comprehending how insulin functions. However, the role of adipocyte insulin-PI3K signaling in controlling insulin secretion in vivo remains unclear. Using adipocyte-specific PI3Kα knockout mice (PI3KαAdQ) and a panel of isoform-selective PI3K inhibitors, we show that PI3Kα and PI3Kβ activities are functionally redundant in adipocyte insulin signaling. PI3Kβ-selective inhibitors have no effect on adipocyte AKT phosphorylation in control mice but blunt it in adipocytes of PI3KαAdQ mice, demonstrating adipocyte-selective pharmacological PI3K inhibition in the latter. Acute adipocyte-selective PI3K inhibition increases serum free fatty acid (FFA) and potently induces insulin secretion. We name this phenomenon the adipoincretin effect. The adipoincretin effect operates in fasted mice with increasing FFA and decreasing glycemia, indicating that it is not primarily a control system for blood glucose. This feedback control system defines the rates of adipose tissue lipolysis and chiefly controls basal insulin secretion during fasting.
Collapse
Affiliation(s)
- Barbara Becattini
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Angela Molinaro
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Giovanni Solinas
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Musci RV, Andrie KM, Walsh MA, Valenti ZJ, Linden MA, Afzali MF, Bork S, Campbell M, Johnson T, Kail TE, Martinez R, Nguyen T, Sanford J, Wist S, Murrell MD, McCord JM, Hybertson BM, Zhang Q, Javors MA, Santangelo KS, Hamilton KL. Phytochemical compound PB125 attenuates skeletal muscle mitochondrial dysfunction and impaired proteostasis in a model of musculoskeletal decline. J Physiol 2023; 601:2189-2216. [PMID: 35924591 PMCID: PMC9898472 DOI: 10.1113/jp282273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
Impaired mitochondrial function and disrupted proteostasis contribute to musculoskeletal dysfunction. However, few interventions simultaneously target these two drivers to prevent musculoskeletal decline. Nuclear factor erythroid 2-related factor 2 (Nrf2) activates a transcriptional programme promoting cytoprotection, metabolism, and proteostasis. We hypothesized daily treatment with a purported Nrf2 activator, PB125, in Hartley guinea pigs, a model of musculoskeletal decline, would attenuate the progression of skeletal muscle mitochondrial dysfunction and impaired proteostasis and preserve musculoskeletal function. We treated 2- and 5-month-old male and female Hartley guinea pigs for 3 and 10 months, respectively, with the phytochemical compound PB125. Longitudinal assessments of voluntary mobility were measured using Any-MazeTM open-field enclosure monitoring. Cumulative skeletal muscle protein synthesis rates were measured using deuterium oxide over the final 30 days of treatment. Mitochondrial oxygen consumption in soleus muscles was measured using high resolution respirometry. In both sexes, PB125 (1) increased electron transfer system capacity; (2) attenuated the disease/age-related decline in coupled and uncoupled mitochondrial respiration; and (3) attenuated declines in protein synthesis in the myofibrillar, mitochondrial and cytosolic subfractions of the soleus. These effects were not associated with statistically significant prolonged maintenance of voluntary mobility in guinea pigs. Collectively, treatment with PB125 contributed to maintenance of skeletal muscle mitochondrial respiration and proteostasis in a pre-clinical model of musculoskeletal decline. Further investigation is necessary to determine if these documented effects of PB125 are also accompanied by slowed progression of other aspects of musculoskeletal dysfunction. KEY POINTS: Aside from exercise, there are no effective interventions for musculoskeletal decline, which begins in the fifth decade of life and contributes to disability and cardiometabolic diseases. Targeting both mitochondrial dysfunction and impaired protein homeostasis (proteostasis), which contribute to the age and disease process, may mitigate the progressive decline in overall musculoskeletal function (e.g. gait, strength). A potential intervention to target disease drivers is to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2) activation, which leads to the transcription of genes responsible for redox homeostasis, proteome maintenance and mitochondrial energetics. Here, we tested a purported phytochemical Nrf2 activator, PB125, to improve mitochondrial function and proteostasis in male and female Hartley guinea pigs, which are a model for musculoskeletal ageing. PB125 improved mitochondrial respiration and attenuated disease- and age-related declines in skeletal muscle protein synthesis, a component of proteostasis, in both male and female Hartley guinea pigs.
Collapse
Affiliation(s)
- Robert V. Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Kendra M. Andrie
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maureen A. Walsh
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Zackary J. Valenti
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Melissa A. Linden
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Maryam F. Afzali
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sydney Bork
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Margaret Campbell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Taylor Johnson
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Thomas E. Kail
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Richard Martinez
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Tessa Nguyen
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Joseph Sanford
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sara Wist
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | - Joe M. McCord
- Pathways Bioscience, Aurora, CO
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Brooks M. Hybertson
- Pathways Bioscience, Aurora, CO
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Qian Zhang
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | | | - Kelly S. Santangelo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Karyn L. Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
Jalili C, Talebi S, Bagheri R, Ghanavati M, Camera DM, Amirian P, Zarpoosh M, Dizaji MK, Kermani MAH, Moradi S. The Association between Dietary Inflammatory Index and Aging Biomarkers/Conditions: A Systematic Review and Dose-response Meta-analysis. J Nutr Health Aging 2023; 27:378-390. [PMID: 37248762 DOI: 10.1007/s12603-023-1919-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVES We performed a current study to examine the association between dietary inflammatory index (DII) score and older age-related muscle conditions, including sarcopenia, low muscle mass, low muscle strength, frailty, and/or disability. DESIGN Systematic review and dose-response meta-analysis. SETTING A systematic literature search was performed using Scopus, PubMed/MEDLINE, and ISI Web of Science without limitation until October 04, 2022. Relative risk (RR) and 95% confidence interval (CI) were pooled by applying a random-effects model, while validated methods examined assess quality and publication bias via Newcastle-Ottawa Scale, Egger's regression asymmetry, and Begg's rank correlation tests respectively. A dose-response meta-analysis was conducted to estimate the RRs per 1-unit increment in DII scores. PARTICIPANTS Adults (≥18 years). MEASURES The risk of older age-related muscle conditions (sarcopenia, low muscle mass, low muscle strength, frailty, and/or disability). RESULTS Data were available from 19 studies with 68079 participants. Results revealed that a higher DII score was significantly related to an increased risk of sarcopenia (RR=1.50; 95% CI: 1.26, 1.79; I2=53.3%; p<0.001; n=10; sample size =43097), low muscle strength (RR=1.47; 95% CI: 1.24, 1.74; I2=6.6%; p<0.001; n=4; sample size =9339), frailty (RR=1.61; 95% CI: 1.41, 1.84; I2=0.0%; p<0.001; study=5; participant=3882) and disability (RR=1.41; 95% CI: 1.16, 1.72; I2=58.4%; p=0.001; n=5; sample size =13760), but not low muscle mass (RR=1.24; 95% CI: 0.98, 1.56; I2=49.3%; p=0.069; n=4; sample size =11222). Additionally, results of the linear dose-response indicated that an increase of one point in the DII score was related to a 14% higher risk of sarcopenia, 6% higher risk of low muscle mass, 7% higher risk of low muscle strength, and a 7% higher risk of disability in adults. Non-linear dose-response relationships also revealed a positive linear association between the DII score and the risk of sarcopenia (Pnonlinearity = 0.097, Pdose-response<0.001), frailty (Pnonlinearity = 0.844, Pdose-response=0.010) and disability (Pnonlinearity = 0.596, Pdose-response=0.007). CONCLUSION Adherence to a pro-inflammatory diet was significantly associated with a higher risk of sarcopenia and other age-associated adverse effects such as low muscle strength, disability, and frailty. These results indicate a necessity to prioritize the reduction of pro-inflammatory diets to help promote overall older age-related muscle conditions.
Collapse
Affiliation(s)
- C Jalili
- Sajjad Moradi, Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Acute effects of prior dietary fat ingestion on postprandial metabolic responses to protein and carbohydrate co-ingestion in overweight and obese men: A randomised crossover trial. Clin Nutr 2022; 41:1623-1635. [PMID: 35764009 DOI: 10.1016/j.clnu.2022.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity and insulin resistance are associated with an impaired sensitivity to anabolic stimuli such as dietary protein (anabolic resistance). Omega-3 polyunsaturated fatty acids (n-3 PUFA) may be protective against the deleterious effects of saturated fatty acids (SFA) on insulin resistance. However, the contribution of excess fat consumption to anabolic and insulin resistance and the interaction between SFA and n-3 PUFA is not well studied. AIM The primary aim of this study was to investigate the effects of an oral fat pre-load, with or without the partial substitution of SFA with fish oil (FO)-derived n-3 PUFA, on indices of insulin and anabolic sensitivity in response to subsequent dietary protein and carbohydrate (dextrose) co-ingestion. METHODS Eight middle-aged males with overweight or obesity (52.8 ± 2.0 yr, BMI 31.8 ± 1.4 kg·m-2) ingested either an SFA, or isoenergetic SFA and FO emulsion (FO), or water/control (Con), 4 h prior to a bolus of milk protein and dextrose. RESULTS Lipid ingestion (in particular FO) impaired the early postprandial uptake of branched chain amino acids (BCAA) into the skeletal muscle in response to protein and dextrose, and attenuated the peak glycaemic response, but was not accompanied by differences in whole body (Matsuda Index: Con: 4.66 ± 0.89, SFA: 5.10 ± 0.94 and FO: 4.07 ± 0.59) or peripheral (forearm glucose netAUC: Con: 521.7 ± 101.7; SFA: 470.2 ± 125.5 and FO: 495.3 ± 101.6 μmol·min-1·100 g lean mass·min [t = 240-420 min]) insulin sensitivity between visits. Postprandial whole body fat oxidation was affected by visit (P = 0.024) with elevated rates in SFA and FO, relative to Con (1.85 ± 0.55; 2.19 ± 0.21 and 0.65 ± 0.35 kJ·h-1·kg-1 lean body mass, respectively), however muscle uptake of free fatty acids (FFA) was unaffected. CONCLUSION Oral lipid preloads, consisting of SFA and FO, impair the early postprandial BCAA uptake into skeletal muscle, which occurs independent of changes in insulin sensitivity. CLINICAL TRIAL REGISTRY NUMBER ClinicalTrials.gov Identifier NCT03146286.
Collapse
|
7
|
Freitas EDS, Katsanos CS. (Dys)regulation of Protein Metabolism in Skeletal Muscle of Humans With Obesity. Front Physiol 2022; 13:843087. [PMID: 35350688 PMCID: PMC8957804 DOI: 10.3389/fphys.2022.843087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/07/2022] [Indexed: 01/22/2023] Open
Abstract
Studies investigating the proteome of skeletal muscle present clear evidence that protein metabolism is altered in muscle of humans with obesity. Moreover, muscle quality (i.e., strength per unit of muscle mass) appears lower in humans with obesity. However, relevant evidence to date describing the protein turnover, a process that determines content and quality of protein, in muscle of humans with obesity is quite inconsistent. This is due, at least in part, to heterogeneity in protein turnover in skeletal muscle of humans with obesity. Although not always evident at the mixed-muscle protein level, the rate of synthesis is generally lower in myofibrillar and mitochondrial proteins in muscle of humans with obesity. Moreover, alterations in the synthesis of protein in muscle of humans with obesity are manifested more readily under conditions that stimulate protein synthesis in muscle, including the fed state, increased plasma amino acid availability to muscle, and exercise. Current evidence supports various biological mechanisms explaining impairments in protein synthesis in muscle of humans with obesity, but this evidence is rather limited and needs to be reproduced under more defined experimental conditions. Expanding our current knowledge with direct measurements of protein breakdown in muscle, and more importantly of protein turnover on a protein by protein basis, will enhance our understanding of how obesity modifies the proteome (content and quality) in muscle of humans with obesity.
Collapse
Affiliation(s)
| | - Christos S Katsanos
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic in Arizona, Scottsdale, AZ, United States
| |
Collapse
|
8
|
Fryk E, Olausson J, Mossberg K, Strindberg L, Schmelz M, Brogren H, Gan LM, Piazza S, Provenzani A, Becattini B, Lind L, Solinas G, Jansson PA. Hyperinsulinemia and insulin resistance in the obese may develop as part of a homeostatic response to elevated free fatty acids: A mechanistic case-control and a population-based cohort study. EBioMedicine 2021; 65:103264. [PMID: 33712379 PMCID: PMC7992078 DOI: 10.1016/j.ebiom.2021.103264] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background It is commonly accepted that in obesity free fatty acids (FFA) cause insulin resistance and hyperglycemia, which drives hyperinsulinemia. However, hyperinsulinemia is observed in subjects with normoglycaemia and thus the paradigm above should be reevaluated. Methods We describe two studies: MD-Lipolysis, a case control study investigating the mechanisms of obesity-driven insulin resistance by a systemic metabolic analysis, measurements of adipose tissue lipolysis by microdialysis, and adipose tissue genomics; and POEM, a cohort study used for validating differences in circulating metabolites in relation to adiposity and insulin resistance observed in the MD-Lipolysis study. Findings In insulin-resistant obese with normal glycaemia from the MD-Lipolysis study, hyperinsulinemia was associated with elevated FFA. Lipolysis, assessed by glycerol release per adipose tissue mass or adipocyte surface, was similar between obese and lean individuals. Adipose tissue from obese subjects showed reduced expression of genes mediating catecholamine-driven lipolysis, lipid storage, and increased expression of genes driving hyperplastic growth. In the POEM study, FFA levels were specifically elevated in obese-overweight subjects with normal fasting glucose and high fasting levels of insulin and C-peptide. Interpretation In obese subjects with normal glycaemia elevated circulating levels of FFA at fasting are the major metabolic derangement candidate driving fasting hyperinsulinemia. Elevated FFA in obese with normal glycaemia were better explained by increased fat mass rather than by adipose tissue insulin resistance. These results support the idea that hyperinsulinemia and insulin resistance may develop as part of a homeostatic adaptive response to increased adiposity and FFA. Funding Swedish-Research-Council (2016-02660); Diabetesfonden (DIA2017-250; DIA2018-384; DIA2020-564); Novo-Nordisk-Foundation (NNF17OC0027458; NNF19OC0057174); Cancerfonden (CAN2017/472; 200840PjF); Swedish-ALF-agreement (2018-74560).
Collapse
Affiliation(s)
- Emanuel Fryk
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Josefin Olausson
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Mossberg
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Lena Strindberg
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Schmelz
- Department of Anesthesiology and Intensive Care Medicine Mannheim, University of Heidelberg, Heidelberg Germany
| | - Helén Brogren
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Li-Ming Gan
- Department of Cardiology Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Silvano Piazza
- Centre for Integrative Biology, CIBIO, University of Trento, Trento Italy; Computational Biology, International Centre for Genetic Engineering and Biotechnology, ICGEB, 34149 Trieste, Italy
| | | | - Barbara Becattini
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Lars Lind
- Dep of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Giovanni Solinas
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Per-Anders Jansson
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
9
|
Lynch GM, Murphy CH, Castro EDM, Roche HM. Inflammation and metabolism: the role of adiposity in sarcopenic obesity. Proc Nutr Soc 2020; 79:1-13. [PMID: 32669148 DOI: 10.1017/s0029665120007119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sarcopenic obesity is characterised by the double burden of diminished skeletal muscle mass and the presence of excess adiposity. From a mechanistic perspective, both obesity and sarcopenia are associated with sub-acute, chronic pro-inflammatory states that impede metabolic processes, disrupting adipose and skeletal functionality, which may potentiate disease. Recent evidence suggests that there is an important cross-talk between metabolism and inflammation, which has shifted focus upon metabolic-inflammation as a key emerging biological interaction. Dietary intake, physical activity and nutritional status are important environmental factors that may modulate metabolic-inflammation. This paradigm will be discussed within the context of sarcopenic obesity risk. There is a paucity of data in relation to the nature and the extent to which nutritional status affects metabolic-inflammation in sarcopenic obesity. Research suggests that there may be scope for the modulation of sarcopenic obesity with alterations in diet. The potential impact of increasing protein consumption and reconfiguration of dietary fat composition in human dietary interventions are evaluated. This review will explore emerging data with respect to if and how different dietary components may modulate metabolic-inflammation, particularly with respect to adiposity, within the context of sarcopenic obesity.
Collapse
Affiliation(s)
- G M Lynch
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - C H Murphy
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - E de Marco Castro
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - H M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| |
Collapse
|
10
|
Tachtsis B, Whitfield J, Hawley JA, Hoffman NJ. Omega-3 Polyunsaturated Fatty Acids Mitigate Palmitate-Induced Impairments in Skeletal Muscle Cell Viability and Differentiation. Front Physiol 2020; 11:563. [PMID: 32581844 PMCID: PMC7283920 DOI: 10.3389/fphys.2020.00563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Accumulation of excess saturated free fatty acids such as palmitate (PAL) in skeletal muscle leads to reductions in mitochondrial integrity, cell viability and differentiation. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) counteract PAL-induced lipid accumulation. EPA and DHA, as well as the n-3 PUFA docosapentaenoic acid (DPA), may therefore mitigate PAL-induced lipotoxicity to promote skeletal muscle cell survival and differentiation. C2C12 myoblasts were treated with 50 μM EPA, DPA, or DHA in the absence or presence of 500 μM PAL for 16 h either prior to myoblast analysis or induction of differentiation. Myoblast viability and markers of apoptosis, endoplasmic reticulum (ER) stress and myotube differentiation capacity were investigated using fluorescence microscopy and immunoblotting. High-resolution respirometry was used to assess mitochondrial function and membrane integrity. PAL induced cell death via apoptosis and increased protein content of ER stress markers BiP and CHOP. EPA, DPA, and DHA co-treatment maintained cell viability, prevented PAL-induced apoptosis and attenuated PAL-induced increases in BiP, whereas only DPA prevented increases in CHOP. PAL subsequently reduced protein content of the differentiation marker myogenin and inhibited myotube formation, and all n-3 PUFAs promoted myotube formation in the presence of PAL. Furthermore, DPA prevented PAL-induced release of cytochrome c and maintained mitochondrial integrity. These findings demonstrate the n-3 PUFAs EPA, DPA and DHA elicit similar protective effects against PAL-induced impairments in muscle cell viability and differentiation. Mechanistically, the protective effects of DPA against PAL lipotoxicity are attributable in part to its ability to maintain mitochondrial respiratory capacity via mitigating PAL-induced loss of mitochondrial membrane integrity.
Collapse
Affiliation(s)
- Bill Tachtsis
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Tsintzas K, Jones R, Pabla P, Mallinson J, Barrett DA, Kim DH, Cooper S, Davies A, Taylor T, Chee C, Gaffney C, van Loon LJC, Stephens FB. Effect of acute and short-term dietary fat ingestion on postprandial skeletal muscle protein synthesis rates in middle-aged, overweight, and obese men. Am J Physiol Endocrinol Metab 2020; 318:E417-E429. [PMID: 31910028 DOI: 10.1152/ajpendo.00344.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Muscle anabolic resistance to dietary protein is associated with obesity and insulin resistance. However, the contribution of excess consumption of fat to anabolic resistance is not well studied. The aim of these studies was to test the hypothesis that acute and short-term dietary fat overload will impair the skeletal muscle protein synthetic response to dietary protein ingestion. Eight overweight/obese men [46.4 ± 1.4 yr, body mass index (BMI) 32.3 ± 5.4 kg/m2] participated in the acute feeding study, which consisted of two randomized crossover trials. On each occasion, subjects ingested an oral meal (with and without fat emulsion), 4 h before the coingestion of milk protein, intrinsically labeled with [1-13C]phenylalanine, and dextrose. Nine overweight/obese men (44.0 ± 1.7 yr, BMI 30.1 ± 1.1 kg/m2) participated in the chronic study, which consisted of a baseline, 1-wk isocaloric diet, followed by a 2-wk high-fat diet (+25% energy excess). Acutely, incorporation of dietary amino acids into the skeletal muscle was twofold higher (P < 0.05) in the lipid trial compared with control. There was no effect of prior lipid ingestion on indices of insulin sensitivity (muscle glucose uptake, pyruvate dehydrogenase complex activity, and Akt phosphorylation) in response to the protein/dextrose drink. Fat overfeeding had no effect on muscle protein synthesis or glucose disposal in response to whey protein ingestion, despite increased muscle diacylglycerol C16:0 (P = 0.06) and ceramide C16:0 (P < 0.01) levels. Neither acute nor short-term dietary fat overload has a detrimental effect on the skeletal muscle protein synthetic response to dietary protein ingestion in overweight/obese men, suggesting that dietary-induced accumulation of intramuscular lipids per se is not associated with anabolic resistance.
Collapse
Affiliation(s)
- Kostas Tsintzas
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Robert Jones
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Pardeep Pabla
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Joanne Mallinson
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - David A Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Scott Cooper
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Amanda Davies
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Tariq Taylor
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Carolyn Chee
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Christopher Gaffney
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Luc J C van Loon
- Department of Human Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Francis B Stephens
- School of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
12
|
Beals JW, Burd NA, Moore DR, van Vliet S. Obesity Alters the Muscle Protein Synthetic Response to Nutrition and Exercise. Front Nutr 2019; 6:87. [PMID: 31263701 PMCID: PMC6584965 DOI: 10.3389/fnut.2019.00087] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
Improving the health of skeletal muscle is an important component of obesity treatment. Apart from allowing for physical activity, skeletal muscle tissue is fundamental for the regulation of postprandial macronutrient metabolism, a time period that represents when metabolic derangements are most often observed in adults with obesity. In order for skeletal muscle to retain its capacity for physical activity and macronutrient metabolism, its protein quantity and composition must be maintained through the efficient degradation and resynthesis for proper tissue homeostasis. Life-style behaviors such as increasing physical activity and higher protein diets are front-line treatment strategies to enhance muscle protein remodeling by primarily stimulating protein synthesis rates. However, the muscle of individuals with obesity appears to be resistant to the anabolic action of targeted exercise regimes and protein ingestion when compared to normal-weight adults. This indicates impaired muscle protein remodeling in response to the main anabolic stimuli to human skeletal muscle tissue is contributing to poor muscle health with obesity. Deranged anabolic signaling related to insulin resistance, lipid accumulation, and/or systemic/muscle inflammation are likely at the root of the anabolic resistance of muscle protein synthesis rates with obesity. The purpose of this review is to discuss the impact of protein ingestion and exercise on muscle protein remodeling in people with obesity, and the potential mechanisms underlining anabolic resistance of their muscle.
Collapse
Affiliation(s)
- Joseph W Beals
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, United States
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Stephan van Vliet
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|