1
|
Pan Y, Lin H, Chung M, Yang Y, Zhang L, Pan X, Cai S. Generation of phenotypically stable and functionally mature human bone marrow MSCs derived Schwann cells via the induction of human iPSCs-derived sensory neurons. Stem Cell Res Ther 2025; 16:106. [PMID: 40025574 PMCID: PMC11872329 DOI: 10.1186/s13287-025-04217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/11/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Phenotypically unstable Schwann cell-like cells (SCLCs), derived from mesenchymal stem cells (MSCs) require intercellular contact-mediated cues for Schwann cell (SCs)-fate commitment. Although rat dorsal root ganglion (DRG) neurons provide contact-mediated signals for the conversion of SCLCs into fate-committed SCs, the use of animal cells is clinically unacceptable. To overcome this problem, we previously acquired human induced pluripotent stem cell-derived sensory neurons (hiPSC-dSNs) as surrogates of rat DRG neurons that committed rat bone marrow SCLCs to the SC fate. In this study, we explored whether hiPSC-dSNs could mimic rat DRG neuron effects to obtain fate-committed SCs from hBMSC-derived SCLCs. METHODS hiPSCs were induced into hiPSC-dSNs using a specific chemical small molecule combination. hBMSCs were induced into hBMSC-derived SCLCs in a specific culture medium and then co-cultured with hiPSC-dSNs to generate SCs. The identity of hBMSC-derived SCs (hBMSC-dSCs) was examined by immunofluorescence, western bolt, electronic microscopy, and RNA-seq. Immunofluorescence was also used to detect the myelination capacity. Enzyme-linked immunosorbent assay and neurite outgrowth analysis were used to test the secretion of neurotrophic factors. RESULTS The hBMSC-dSCs exhibited bi-/tri-polar morphology of SCs and maintained the expression of the SC markers S100, p75NTR, p0, GFAP, and Sox10, even after withdrawing the glia-inducing factors or hiPSC-dSNs. Electronic microscopy and RNA-seq analysis provided evidence that hBMSC-dSCs were similar to the original human SCs in terms of their function and a variety of characteristics. Furthermore, these cells formed MBP-positive segments and secreted neurotrophic factors to facilitate the neurite outgrowth of Neuro2A. CONCLUSIONS These results demonstrated that phenotypically stable and functionally mature hBMSC-dSCs were generated efficiently via the co-culture of hiPSC-dSNs and hBMSC-derived SCLCs. Our findings may provide a promising protocol through which stable and fully developed hBMSC-dSCs can be used for transplantation to regenerate myelin sheath.
Collapse
Affiliation(s)
- Yu Pan
- Laboratory of Regenerative Medicine, Medical School, The 2nd Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Haohui Lin
- Laboratory of Regenerative Medicine, Medical School, The 2nd Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Yang
- Laboratory of Regenerative Medicine, Medical School, The 2nd Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Li Zhang
- Laboratory of Regenerative Medicine, Medical School, The 2nd Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Xiaohua Pan
- Laboratory of Regenerative Medicine, Medical School, The 2nd Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Sa Cai
- Laboratory of Regenerative Medicine, Medical School, The 2nd Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.
| |
Collapse
|
2
|
Zhang L, Xie J, Dai W, Lu B, Yi S. Schwann cells in regeneration and cancer. Front Pharmacol 2025; 16:1506552. [PMID: 39981185 PMCID: PMC11840318 DOI: 10.3389/fphar.2025.1506552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
Schwann cells are specific peripheral glial cells with remarkable plasticity following peripheral nerve injury. Injury responses stimulate c-Jun activation in Schwann cells, drive epithelial-mesenchymal transition and cellular phenotypic changes, and induce the generation of reprogrammed repair Schwann cells to orchestrate peripheral nerve regeneration process. Schwann cells and/or Schwann cell-derived molecules are commonly used as supporting cells and/or neurotrophic factors to construct Schwann cell-based tissue-engineered nerve grafts for repairing severe peripheral nerve injury with long defects. Transplantation of Schwann cells and/or Schwann cell-derived molecules also serves as a helpful approach for the treatment of other injured tissues, such as the spinal cord, skin, digit tip, and bone. Schwann cells are not only associated with tissue regeneration but also involved in tumorigenesis and tumor progression. Schwann cells are the major cellular component of neurofibromatosis type 1 and the sole cell type in neurofibromatosis type 2 and schwannomatosis. In addition, Schwann cells also function as an important player in the tumor microenvironment and aid in the growth and invasiveness of many other solid cancers. In the present review, we outline the physiological and pathological activities of Schwann cells and discuss the functional roles of Schwann cells in homeostasis, regeneration, and cancer.
Collapse
Affiliation(s)
- Lan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Jiale Xie
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Wenyu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Bing Lu
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Qiu P, Wang L, Wang J, Wang X, Xu J, An X, Han F, Dong Z, Zhang J, Shi P, Niu Q. Adhesive chitosan-based hybrid biohydrogels for peripheral nerve injury repair. Front Cell Dev Biol 2024; 12:1499766. [PMID: 39610708 PMCID: PMC11602492 DOI: 10.3389/fcell.2024.1499766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
With the rapid progress of industrialization, the incidence of peripheral nerve injuries caused by trauma has been continuously increasing. These injuries result in a significant number of disabilities and irreversible functional impairments, not only severely impacting the health and quality of life of patients but also placing a heavy economic burden on families and society. Effectively promoting peripheral nerve regeneration has thus become a key focus and challenge in current research. In recent years, hybrid biohydrogels with adhesive properties have gained widespread attention due to their excellent biocompatibility, mechanical stability, conductivity, and biodegradability. These materials can provide an optimal microenvironment to promote neuron adhesion and axonal extension while offering outstanding mechanical strength to meet the fixation requirements in clinical surgeries. This paper systematically reviews the application of adhesive hybrid biohydrogels in peripheral nerve injury repair, highlighting the latest research progress in promoting nerve regeneration and improving functional recovery, and discusses the challenges and future prospects for their clinical application.
Collapse
Affiliation(s)
- Pengjia Qiu
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Lei Wang
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Jing Wang
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Xingdong Wang
- Department of Orthopedics, Sichuan Gemflower Hospital, North Sichuan Medical College, Sichuan, China
| | - Jianchao Xu
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Xiaokai An
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Fengwang Han
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Zhao Dong
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Jiangtao Zhang
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Peiwen Shi
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Qiang Niu
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| |
Collapse
|
4
|
Spezia MC, Dy CJ, Brogan DM. The Physiologic Basis of Molecular Therapeutics for Peripheral Nerve Injury: A Primer. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:676-680. [PMID: 39381384 PMCID: PMC11456656 DOI: 10.1016/j.jhsg.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/16/2024] [Indexed: 10/10/2024] Open
Abstract
Peripheral nerve injuries affect a significant number of patients who experience trauma affecting the hand and upper extremity. Improving unsatisfactory outcomes from repair of these injuries remains a clinical challenge despite advancements in microsurgical repair. Imperfections of the nerve regeneration process, including imprecise reinnervation, distal axon degradation, and muscular atrophy, complicate the repair process. However, the capacity for peripheral nerves to regenerate offers an avenue for therapeutic advancement. Regeneration is a temporally and spatially dynamic process coordinated by Schwann cells and neurons among other cell types. Neurotrophic factors are a primary means of controlling cell growth and differentiation in the repair setting. Sustained axon survival and regrowth and consequently functional outcomes of nerve repair in animal models are improved by the administration of neurotrophic factors, including glial cell-derived neurotrophic factor, nerve growth factor, sterile alpha and TIR motif containing 1, and erythropoietin. Targeted and sustained delivery of neurotrophic factors through gelatin-based nerve conduits, multiluminal conduits, and hydrogels have been shown to enhance the innate roles of these factors to promote expedient and accurate peripheral nerve regeneration in animal models. These delivery methods may help address the practical limitations to clinical use of neurotrophic factors, including systemic side effects and the need for carefully timed, precisely localized release schedules. In addition, tacrolimus has also improved peripheral nerve regrowth in animal models and has recently shown promise in addressing human disease. Ultimately, this realm of adjunct pharmacotherapies provides ample promise to improve patient outcomes and advance the field of peripheral nerve repair.
Collapse
Affiliation(s)
- Marie C. Spezia
- University of Missouri-Columbia School of Medicine, Columbia, MO
- The Institute of Clinical and Translational Sciences and Clinical Research Training Center, Washington University, St. Louis, MO
| | - Christopher J. Dy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - David M. Brogan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Liao S, Chen Y, Luo Y, Zhang M, Min J. The phenotypic changes of Schwann cells promote the functional repair of nerve injury. Neuropeptides 2024; 106:102438. [PMID: 38749170 DOI: 10.1016/j.npep.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
Functional recovery after nerve injury is a significant challenge due to the complex nature of nerve injury repair and the non-regeneration of neurons. Schwann cells (SCs), play a crucial role in the nerve injury repair process because of their high plasticity, secretion, and migration abilities. Upon nerve injury, SCs undergo a phenotypic change and redifferentiate into a repair phenotype, which helps in healing by recruiting phagocytes, removing myelin fragments, promoting axon regeneration, and facilitating myelin formation. However, the repair phenotype can be unstable, limiting the effectiveness of the repair. Recent research has found that transplantation of SCs can be an effective treatment option, therefore, it is essential to comprehend the phenotypic changes of SCs and clarify the related mechanisms to develop the transplantation therapy further.
Collapse
Affiliation(s)
- Shufen Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yan Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yin Luo
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Mengqi Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jun Min
- Neurology Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
6
|
Shan Y, Xu L, Cui X, Wang E, Jiang F, Li J, Ouyang H, Yin T, Feng H, Luo D, Zhang Y, Li Z. A responsive cascade drug delivery scaffold adapted to the therapeutic time window for peripheral nerve injury repair. MATERIALS HORIZONS 2024; 11:1032-1045. [PMID: 38073476 DOI: 10.1039/d3mh01511d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Peripheral nerve injury (PNI) is a common clinical challenge, requiring timely and orderly initiation of synergistic anti-inflammatory and reparative therapy. Although the existing cascade drug delivery system can realize sequential drug release through regulation of the chemical structure of drug carriers, it is difficult to adjust the release kinetics of each drug based on the patient's condition. Therefore, there is an urgent need to develop a cascade drug delivery system that can dynamically adjust drug release and realize personalized treatment. Herein, we developed a responsive cascade drug delivery scaffold (RCDDS) which can adapt to the therapeutic time window, in which Vitamin B12 is used in early controllable release to suppress inflammation and nerve growth factor promotes regeneration by cascade loading. The RCDDS exhibited the ability to modulate the drug release kinetics by hierarchically opening polymer chains triggered by ultrasound, enabling real-time adjustment of the anti-inflammatory and neuroregenerative therapeutic time window depending on the patient's status. In the rat sciatic nerve injury model, the RCDDS group was able to achieve neural repair effects comparable to the autograft group in terms of tissue structure and motor function recovery. The development of the RCDDS provides a useful route toward an intelligent cascade drug delivery system for personalized therapy.
Collapse
Affiliation(s)
- Yizhu Shan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Engui Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
| | - Fengying Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiaxuan Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
| | - Han Ouyang
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongqing Feng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Xu H, Gao Z, Wang Z, Wu W, Li H, Liu Y, Jia S, Hao D, Zhu L. Electrospun PCL Nerve Conduit Filled with GelMA Gel for CNTF and IGF-1 Delivery in Promoting Sciatic Nerve Regeneration in Rat. ACS Biomater Sci Eng 2023; 9:6309-6321. [PMID: 37919884 DOI: 10.1021/acsbiomaterials.3c01048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Neural tissue engineering is an essential strategy to repair long-segment peripheral nerve defects. Modification of the nerve conduit is an effective way to improve the local microenvironment of the injury site and facilitate nerve regeneration. However, the concurrent release of multiple growth cues that regulate the activity of Schwann cells and neurons remains a challenge. The present study involved the fabrication of a composite hydrogel, specifically methacrylate-anhydride gelatin-ciliary neurotrophic factor/insulin-like growth factor-1 (GelMA-CNTF/IGF-1), with the aim of providing a sustained release of CNTF and IGF-1. The GelMA-CNTF/IGF-1 hydrogels exhibited a swelling rate of 10.2% following a 24 h incubation in vitro. In vitro, GelMA hydrogels demonstrated a high degree of efficiency in the sustained release of CNTF and IGF-1 proteins, with a release rate of 85.9% for CNTF and 90.9% for IGF-1 shown at day 28. In addition, the GelMA-CNTF/IGF-1 composite hydrogel promoted the proliferation of Schwann cells and the production of nerve growth factor (NGF), connective tissue growth factor (CTGF), fibronectin, and laminin and also considerably promoted the axonal growth of neurons. Furthermore, GelMA-CNTF/IGF-1 hydrogels were loaded into PCL electrospun nerve conduits to repair 15 mm sciatic nerve defects in rats. In vivo studies indicated that PCL-GelMA-CNTF/IGF-1 could efficiently accelerate the regeneration of the rat sciatic nerve, promote the formation of the myelin sheath of new axons, promote the electrophysiological function of regenerated nerves, and eventually improve the recovery of motor function in rats. Overall, the PCL-GelMA-CNTF/IGF-1 scaffold presents an attractive new approach for generating an optimal therapeutic alternative for peripheral nerve restoration.
Collapse
Affiliation(s)
- Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Ziheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Zhiyuan Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Weidong Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Hui Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710054, China
| |
Collapse
|
8
|
Zhang H, Zhang Z, Lin H. Research progress on the reduced neural repair ability of aging Schwann cells. Front Cell Neurosci 2023; 17:1228282. [PMID: 37545880 PMCID: PMC10398339 DOI: 10.3389/fncel.2023.1228282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Peripheral nerve injury (PNI) is associated with delayed repair of the injured nerves in elderly patients, resulting in loss of nerve function, chronic pain, muscle atrophy, and permanent disability. Therefore, the mechanism underlying the delayed repair of peripheral nerves in aging patients should be investigated. Schwann cells (SCs) play a crucial role in repairing PNI and regulating various nerve-repair genes after injury. SCs also promote peripheral nerve repair through various modalities, including mediating nerve demyelination, secreting neurotrophic factors, establishing Büngner bands, clearing axon and myelin debris, and promoting axon remyelination. However, aged SCs undergo structural and functional changes, leading to demyelination and dedifferentiation disorders, decreased secretion of neurotrophic factors, impaired clearance of axonal and myelin debris, and reduced capacity for axon remyelination. As a result, aged SCs may result in delayed repair of nerves after injury. This review article aimed to examine the mechanism underlying the diminished neural repair ability of aging SCs.
Collapse
|
9
|
Pereira CT, Hill EE, Stasyuk A, Parikh N, Dhillon J, Wang A, Li A. Molecular Basis of Surgical Coaptation Techniques in Peripheral Nerve Injuries. J Clin Med 2023; 12:jcm12041555. [PMID: 36836090 PMCID: PMC9966153 DOI: 10.3390/jcm12041555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Peripheral nerve injuries requiring surgical repair affect over 100,000 individuals in the US annually. Three accepted methods of peripheral repair include end-to-end, end-to-side, and side-to-side neurorrhaphy, each with its own set of indications. While it remains important to understand the specific circumstances in which each method is employed, a deeper understanding of the molecular mechanisms underlying the repair can add to the surgeon's decision-making algorithm when considering each technique, as well as help decide nuances in technique such as the need for making epineurial versus perineurial windows, length and dept of the nerve window, and distance from target muscle. In addition, a thorough knowledge of individual factors that are active in a particular repair can help guide research into adjunct therapies. This paper serves to summarize the similarities and divergences of the three commonly used nerve repair strategies and the scope of molecular mechanisms and signal transduction pathways in nerve regeneration as well as to identify the gaps in knowledge that should be addressed if we are to improve clinical outcomes in our patients.
Collapse
Affiliation(s)
- Clifford T. Pereira
- Department of Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Division of Plastic Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Correspondence:
| | - Elise E. Hill
- Department of Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Department of Surgery, David Grant Medical Center, Travis Air Force Base, Fairfield, CA 94535, USA
| | - Anastasiya Stasyuk
- School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Neil Parikh
- School of Medicine, Boston University, Boston, MA 02118, USA
| | | | - Aijun Wang
- Department of Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Andrew Li
- Department of Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Division of Plastic Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA
| |
Collapse
|
10
|
Li Z, Jiang Z, Lu L, Liu Y. Microfluidic Manipulation for Biomedical Applications in the Central and Peripheral Nervous Systems. Pharmaceutics 2023; 15:pharmaceutics15010210. [PMID: 36678839 PMCID: PMC9862045 DOI: 10.3390/pharmaceutics15010210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Physical injuries and neurodegenerative diseases often lead to irreversible damage to the organizational structure of the central nervous system (CNS) and peripheral nervous system (PNS), culminating in physiological malfunctions. Investigating these complex and diverse biological processes at the macro and micro levels will help to identify the cellular and molecular mechanisms associated with nerve degeneration and regeneration, thereby providing new options for the development of new therapeutic strategies for the functional recovery of the nervous system. Due to their distinct advantages, modern microfluidic platforms have significant potential for high-throughput cell and organoid cultures in vitro, the synthesis of a variety of tissue engineering scaffolds and drug carriers, and observing the delivery of drugs at the desired speed to the desired location in real time. In this review, we first introduce the types of nerve damage and the repair mechanisms of the CNS and PNS; then, we summarize the development of microfluidic platforms and their application in drug carriers. We also describe a variety of damage models, tissue engineering scaffolds, and drug carriers for nerve injury repair based on the application of microfluidic platforms. Finally, we discuss remaining challenges and future perspectives with regard to the promotion of nerve injury repair based on engineered microfluidic platform technology.
Collapse
|
11
|
Zhou S, Wan L, Liu X, Hu D, Lu F, Chen X, Liang F. Diminished schwann cell repair responses play a role in delayed diabetes-associated wound healing. Front Physiol 2022; 13:814754. [PMID: 36620211 PMCID: PMC9813439 DOI: 10.3389/fphys.2022.814754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus is the most common metabolic disease associated with impaired wound healing. Recently, Schwann cells (SCs), the glia of the peripheral nervous system, have been suggested to accelerate normal skin wound healing. However, the roles of SCs in diabetic wound healing are not fully understood. In this study, Full-thickness wounds were made in the dorsal skin of C57/B6 mice and db/db (diabetic) mice. Tissue samples were collected at different time points, and immunohistochemical and immunofluorescence analyses were performed to detect markers of de-differentiated SCs, including myelin basic protein, Sox 10, p75, c-Jun, and Ki67. In addition, in vitro experiments were performed using rat SC (RSC96) and murine fibroblast (L929) cell lines to examine the effects of high glucose conditions (50 mM) on the de-differentiation of SCs and the paracrine effects of SCs on myofibroblast formation. Here, we found that, compared with that in normal mice, wound healing was delayed and SCs failed to rapidly activate a repair program after skin wound injury in diabetic mice. Furthermore, we found that SCs from diabetic mice displayed functional impairments in cell de-differentiation, cell-cycle re-entry, and cell migration. In vitro, hyperglycemia impaired RSC 96 cell de-differentiation, cell-cycle re-entry, and cell migration, as well as their paracrine effects on myofibroblast formation, including the secretion of TGF-β and Timp1. These results suggest that delayed wound healing in diabetes is due in part to a diminished SC repair response and attenuated paracrine effects on myofibroblast formation.
Collapse
Affiliation(s)
- Shaolong Zhou
- Aesthetic Medical School, Yichun University, Yichun, China
| | - Lingling Wan
- School of Chemical and Biological Engineering, Yichun University, Yichun, China,Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Liu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Delin Hu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Feng Lu, ; Fangguo Liang, ; Xihang Chen,
| | - Xihang Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Feng Lu, ; Fangguo Liang, ; Xihang Chen,
| | - Fangguo Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Feng Lu, ; Fangguo Liang, ; Xihang Chen,
| |
Collapse
|
12
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
13
|
Hizay A, Ozsoy U, Savas K, Yakut-Uzuner S, Ozbey O, Akkan SS, Bahsi P. Effect of Ultrasound Therapy on Expression of Vascular Endothelial Growth Factor, Vascular Endothelial Growth Factor Receptors, CD31 and Functional Recovery After Facial Nerve Injury. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1453-1467. [PMID: 35534304 DOI: 10.1016/j.ultrasmedbio.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/08/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Functional recovery is provided by some neurotrophic factors released from the near vicinity of the injury site. Ultrasound treatment is known to increase neurotrophic factor expression. This study was aimed at determining the effect of ultrasound treatment on the expression of vascular endothelial growth factor (VEGF), its receptors and new vessel formation after facial nerve injury. Sixty-four Wistar rats were divided into four groups: control (group 1), sham (group 2), facial-facial coaptation (group 3), and facial-facial coaptation and ultrasound treatment (group 4). Animals in each group were evaluated on the 14th and 28th days. Immunohistochemical staining and electrophysiological and gene-level evaluations were performed for the expression of VEGF and its receptors. When the results were evaluated, it was determined that VEGF, VEGFR1 (VEGF receptor 1), VEGFR2 (VEGF receptor 2) and CD31 levels were significantly higher in groups 3 and 4 compared with the control and sham groups. The increase in these values was more prominent after 28 d of ultrasound treatment than all groups. Electrophysiological results revealed similar evident functional improvement in group 4 with decreased latency and increased amplitudes compared with group 3. Our findings suggest that ultrasound treatment might promote injured facial nerve regeneration by stimulating release of VEGF and its receptors and may result in functional improvement.
Collapse
Affiliation(s)
- Arzu Hizay
- Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| | - Umut Ozsoy
- Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Kamil Savas
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Sezin Yakut-Uzuner
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ozlem Ozbey
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Simla Su Akkan
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Pinar Bahsi
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
14
|
Vallejo FA, Diaz A, Errante EL, Smartz T, Khan A, Silvera R, Brooks AE, Lee YS, Burks SS, Levi AD. Systematic review of the therapeutic use of Schwann cells in the repair of peripheral nerve injuries: Advancements from animal studies to clinical trials. Front Cell Neurosci 2022; 16:929593. [PMID: 35966198 PMCID: PMC9372346 DOI: 10.3389/fncel.2022.929593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Objective To systematically evaluate the literature on the therapeutic use of Schwann cells (SC) in the repair of peripheral nerve injuries. Methods The Cochrane Library and PubMed databases were searched using terms [(“peripheral nerve injury” AND “Schwann cell” AND “regeneration”) OR (“peripheral nerve injuries”)]. Studies published from 2008 to 2022 were eligible for inclusion in the present study. Only studies presenting data from in-vivo investigations utilizing SCs in the repair of peripheral nerve injuries qualified for review. Studies attempting repair of a gap of ≥10 mm were included. Lastly, studies needed to have some measure of quantifiable regenerative outcome data such as histomorphometry, immunohistochemical, electrophysiology, or other functional outcomes. Results A search of the PubMed and Cochrane databases revealed 328 studies. After screening using the abstracts and methods, 17 studies were found to meet our inclusion criteria. Good SC adherence and survival in conduit tubes across various studies was observed. Improvement in morphological and functional outcomes with the use of SCs in long gap peripheral nerve injuries was observed in nearly all studies. Conclusion Based on contemporary literature, SCs have demonstrated clear potential in the repair of peripheral nerve injury in animal studies. It has yet to be determined which nerve conduit or graft will prove superior for delivery and retention of SCs for nerve regeneration. Recent developments in isolation and culturing techniques will enable further translational utilization of SCs in future clinical trials.
Collapse
Affiliation(s)
- Frederic A. Vallejo
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anthony Diaz
- Department of Neurosurgery, University of Connecticut, Farmington, CT, United States
| | - Emily L. Errante
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Taylor Smartz
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aisha Khan
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Risset Silvera
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Adriana E. Brooks
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yee-Shuan Lee
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephen Shelby Burks
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Allan D. Levi
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Allan D. Levi
| |
Collapse
|
15
|
Liu T, Wang Y, Lu L, Liu Y. SPIONs mediated magnetic actuation promotes nerve regeneration by inducing and maintaining repair-supportive phenotypes in Schwann cells. J Nanobiotechnology 2022; 20:159. [PMID: 35351151 PMCID: PMC8966266 DOI: 10.1186/s12951-022-01337-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/26/2022] [Indexed: 12/18/2022] Open
Abstract
Background Schwann cells, the glial cells in the peripheral nervous system, are highly plastic. In response to nerve injury, Schwann cells are reprogrammed to a series of specialized repair-promoting phenotypes, known as repair Schwann cells, which play a pivotal role in nerve regeneration. However, repair Schwann cells represent a transient and unstable cell state, and these cells progressively lose their repair phenotypes and repair‐supportive capacity; the transience of this state is one of the key reasons for regeneration failure in humans. Therefore, the ability to control the phenotypic stability of repair Schwann cells is of great practical importance as well as biological interest. Results We designed and prepared a type of fluorescent–magnetic bifunctional superparamagnetic iron oxide nanoparticles (SPIONs). In the present study, we established rat sciatic nerve injury models, then applied SPIONs to Schwann cells and established an effective SPION-mediated magnetic actuation system targeting the sciatic nerves. Our results demonstrate that magnetic actuation mediated by SPIONs can induce and maintain repair-supportive phenotypes of Schwann cells, thereby promoting regeneration and functional recovery of the sciatic nerve after crush injury. Conclusions Our research indicate that Schwann cells can sense these external, magnetically driven mechanical forces and transduce them to intracellular biochemical signals that promote nerve regeneration by inducing and maintaining the repair phenotypes of Schwann cells. We hope that this study will provide a new therapeutic strategy to promote the regeneration and repair of injured peripheral nerves. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01337-5.
Collapse
Affiliation(s)
- Ting Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Yang Wang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| | - Laijin Lu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
16
|
Jessen KR, Mirsky R. The Role of c-Jun and Autocrine Signaling Loops in the Control of Repair Schwann Cells and Regeneration. Front Cell Neurosci 2022; 15:820216. [PMID: 35221918 PMCID: PMC8863656 DOI: 10.3389/fncel.2021.820216] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
After nerve injury, both Schwann cells and neurons switch to pro-regenerative states. For Schwann cells, this involves reprogramming of myelin and Remak cells to repair Schwann cells that provide the signals and mechanisms needed for the survival of injured neurons, myelin clearance, axonal regeneration and target reinnervation. Because functional repair cells are essential for regeneration, it is unfortunate that their phenotype is not robust. Repair cell activation falters as animals get older and the repair phenotype fades during chronic denervation. These malfunctions are important reasons for the poor outcomes after nerve damage in humans. This review will discuss injury-induced Schwann cell reprogramming and the concept of the repair Schwann cell, and consider the molecular control of these cells with emphasis on c-Jun. This transcription factor is required for the generation of functional repair cells, and failure of c-Jun expression is implicated in repair cell failures in older animals and during chronic denervation. Elevating c-Jun expression in repair cells promotes regeneration, showing in principle that targeting repair cells is an effective way of improving nerve repair. In this context, we will outline the emerging evidence that repair cells are sustained by autocrine signaling loops, attractive targets for interventions aimed at promoting regeneration.
Collapse
Affiliation(s)
- Kristjan R. Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
17
|
Neurotrophic factors combined with stem cells in the treatment of sciatic nerve injury in rats:a meta-analysis. Biosci Rep 2021; 42:230438. [PMID: 34897384 PMCID: PMC8762346 DOI: 10.1042/bsr20211399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/02/2021] [Accepted: 12/09/2021] [Indexed: 12/02/2022] Open
Abstract
Treatment of peripheral nerve regeneration with stem cells (SCs) alone has some limitations. For this reason, we evaluate the efficacy of neurotrophic factors combined with stem cell transplantation in the treatment of sciatic nerve injury (SNI) in rats. PubMed, Cochrane Library, Embase, WanFang, VIP and China National Knowledge Infrastructure databases were retrieved from inception to October 2021, and control experiments on neurotrophic factors combined with stem cells in the treatment of SNI in rats were searched. Nine articles and 551 rats were included in the meta-analysis. The results of meta-analysis confirmed that neurotrophic factor combined with stem cells for the treatment of SNI yielded more effective repair than normal rats with regard to sciatic nerve index, electrophysiological detection index, electron microscope observation index, and recovery rate of muscle wet weight. The conclusion is that neurotrophic factor combined with stem cells is more conducive to peripheral nerve regeneration and functional recovery than stem cells alone. However, due to the limitation of the quality of the included literature, the above conclusions need to be verified by randomized controlled experiments with higher quality and larger samples.
Collapse
|
18
|
Liu S, Liu Y, Zhou L, Li C, Zhang M, Zhang F, Ding Z, Wen Y, Zhang P. XT-type DNA hydrogels loaded with VEGF and NGF promote peripheral nerve regeneration via a biphasic release profile. Biomater Sci 2021; 9:8221-8234. [PMID: 34739533 DOI: 10.1039/d1bm01377g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peripheral nerve injury (PNI) remains an unresolved challenge in the medicine area. With the development of biomaterial science and tissue engineering, a variety of nerve conduits were widely applied for repairing long defect PNI. DNA materials are developing rapidly due to their multiple advantages. In the present study, we aim to combine a DNA hydrogel, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) to construct a new type of delivery system, which could achieve a biphasic release profile of VEGF and NGF by taking advantage of the different degradation rates between X- and T-type DNA. In vitro results showed that the DNA gel + VEGF/NGF system could promote proliferation, migration and myelination of Rat Schwann cells (RSC) while maintaining cell viability. In vivo results indicated a better effect of DNA gel + VEGF/NGF on promoting repair of long defect PNI than the hollow chitin conduits (CT), DNA gel or VEGF/NGF group. The new technology invention holds promising clinical application prospects for repairing PNI and may be used broadly after step-by-step improvement.
Collapse
Affiliation(s)
- Songyang Liu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China. .,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Yijun Liu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China. .,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China.,Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, the Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Ci Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China. .,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China. .,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China. .,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Zhentao Ding
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China. .,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China. .,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| |
Collapse
|
19
|
Arthur-Farraj P, Coleman MP. Lessons from Injury: How Nerve Injury Studies Reveal Basic Biological Mechanisms and Therapeutic Opportunities for Peripheral Nerve Diseases. Neurotherapeutics 2021; 18:2200-2221. [PMID: 34595734 PMCID: PMC8804151 DOI: 10.1007/s13311-021-01125-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Since Waller and Cajal in the nineteenth and early twentieth centuries, laboratory traumatic peripheral nerve injury studies have provided great insight into cellular and molecular mechanisms governing axon degeneration and the responses of Schwann cells, the major glial cell type of peripheral nerves. It is now evident that pathways underlying injury-induced axon degeneration and the Schwann cell injury-specific state, the repair Schwann cell, are relevant to many inherited and acquired disorders of peripheral nerves. This review provides a timely update on the molecular understanding of axon degeneration and formation of the repair Schwann cell. We discuss how nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha TIR motif containing protein 1 (SARM1) are required for axon survival and degeneration, respectively, how transcription factor c-JUN is essential for the Schwann cell response to nerve injury and what each tells us about disease mechanisms and potential therapies. Human genetic association with NMNAT2 and SARM1 strongly suggests aberrant activation of programmed axon death in polyneuropathies and motor neuron disorders, respectively, and animal studies suggest wider involvement including in chemotherapy-induced and diabetic neuropathies. In repair Schwann cells, cJUN is aberrantly expressed in a wide variety of human acquired and inherited neuropathies. Animal models suggest it limits axon loss in both genetic and traumatic neuropathies, whereas in contrast, Schwann cell secreted Neuregulin-1 type 1 drives onion bulb pathology in CMT1A. Finally, we discuss opportunities for drug-based and gene therapies to prevent axon loss or manipulate the repair Schwann cell state to treat acquired and inherited neuropathies and neuronopathies.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| | - Michael P Coleman
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
20
|
Zhang M, Li L, An H, Zhang P, Liu P. Repair of Peripheral Nerve Injury Using Hydrogels Based on Self-Assembled Peptides. Gels 2021; 7:152. [PMID: 34698159 PMCID: PMC8544532 DOI: 10.3390/gels7040152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injury often occurs in young adults and is characterized by complex regeneration mechanisms, poor prognosis, and slow recovery, which not only creates psychological obstacles for the patients but also causes a significant burden on society, making it a fundamental problem in clinical medicine. Various steps are needed to promote regeneration of the peripheral nerve. As a bioremediation material, self-assembled peptide (SAP) hydrogels have attracted international attention. They can not only be designed with different characteristics but also be applied in the repair of peripheral nerve injury by promoting cell proliferation or drug-loaded sustained release. SAP hydrogels are widely used in tissue engineering and have become the focus of research. They have extensive application prospects and are of great potential biological value. In this paper, the application of SAP hydrogel in peripheral nerve injury repair is reviewed, and the latest progress in peptide composites and fabrication techniques are discussed.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China;
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Lei Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan 250012, China;
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100044, China;
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China;
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Peilai Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan 250012, China;
| |
Collapse
|
21
|
Wagstaff LJ, Gomez-Sanchez JA, Fazal SV, Otto GW, Kilpatrick AM, Michael K, Wong LYN, Ma KH, Turmaine M, Svaren J, Gordon T, Arthur-Farraj P, Velasco-Aviles S, Cabedo H, Benito C, Mirsky R, Jessen KR. Failures of nerve regeneration caused by aging or chronic denervation are rescued by restoring Schwann cell c-Jun. eLife 2021; 10:e62232. [PMID: 33475496 PMCID: PMC7819709 DOI: 10.7554/elife.62232] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
After nerve injury, myelin and Remak Schwann cells reprogram to repair cells specialized for regeneration. Normally providing strong regenerative support, these cells fail in aging animals, and during chronic denervation that results from slow axon growth. This impairs axonal regeneration and causes significant clinical problems. In mice, we find that repair cells express reduced c-Jun protein as regenerative support provided by these cells declines during aging and chronic denervation. In both cases, genetically restoring Schwann cell c-Jun levels restores regeneration to control levels. We identify potential gene candidates mediating this effect and implicate Shh in the control of Schwann cell c-Jun levels. This establishes that a common mechanism, reduced c-Jun in Schwann cells, regulates success and failure of nerve repair both during aging and chronic denervation. This provides a molecular framework for addressing important clinical problems, suggesting molecular pathways that can be targeted to promote repair in the PNS.
Collapse
Affiliation(s)
- Laura J Wagstaff
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Jose A Gomez-Sanchez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández‐CSICSan Juan de AlicanteSpain
| | - Shaline V Fazal
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Georg W Otto
- University College London Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of EdinburghEdinburghUnited Kingdom
| | - Kirolos Michael
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Liam YN Wong
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Ki H Ma
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin‐MadisonMadisonUnited States
| | - Mark Turmaine
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - John Svaren
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin‐MadisonMadisonUnited States
| | - Tessa Gordon
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick ChildrenTorontoCanada
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Sergio Velasco-Aviles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández‐CSICSan Juan de AlicanteSpain
- Hospital General Universitario de Alicante, ISABIALAlicanteSpain
| | - Hugo Cabedo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández‐CSICSan Juan de AlicanteSpain
- Hospital General Universitario de Alicante, ISABIALAlicanteSpain
| | - Cristina Benito
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Kristjan R Jessen
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
22
|
Eggers R, de Winter F, Tannemaat MR, Malessy MJA, Verhaagen J. GDNF Gene Therapy to Repair the Injured Peripheral Nerve. Front Bioeng Biotechnol 2020; 8:583184. [PMID: 33251197 PMCID: PMC7673415 DOI: 10.3389/fbioe.2020.583184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
A spinal root avulsion is the most severe proximal peripheral nerve lesion possible. Avulsion of ventral root filaments disconnects spinal motoneurons from their target muscles, resulting in complete paralysis. In patients that undergo brachial plexus nerve repair, axonal regeneration is a slow process. It takes months or even years to bridge the distance from the lesion site to the distal targets located in the forearm. Following ventral root avulsion, without additional pharmacological or surgical treatments, progressive death of motoneurons occurs within 2 weeks (Koliatsos et al., 1994). Reimplantation of the avulsed ventral root or peripheral nerve graft can act as a conduit for regenerating axons and increases motoneuron survival (Chai et al., 2000). However, this beneficial effect is transient. Combined with protracted and poor long-distance axonal regeneration, this results in permanent function loss. To overcome motoneuron death and improve functional recovery, several promising intervention strategies are being developed. Here, we focus on GDNF gene-therapy. We first introduce the experimental ventral root avulsion model and discuss its value as a proxy to study clinical neurotmetic nerve lesions. Second, we discuss our recent studies showing that GDNF gene-therapy is a powerful strategy to promote long-term motoneuron survival and improve function when target muscle reinnervation occurs within a critical post-lesion period. Based upon these observations, we discuss the influence of timing of the intervention, and of the duration, concentration and location of GDNF delivery on functional outcome. Finally, we provide a perspective on future research directions to realize functional recovery using gene therapy.
Collapse
Affiliation(s)
- Ruben Eggers
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Martijn R Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Martijn J A Malessy
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Treatment with AAV1-Rheb(S16H) provides neuroprotection in a mouse model of photothrombosis-induced ischemic stroke. Neuroreport 2020; 31:971-978. [PMID: 32694311 DOI: 10.1097/wnr.0000000000001506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We recently reported that upregulation of the constitutively active ras homolog enriched in brain [Rheb(S16H)], which induces the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, can protect adult neurons, mediated by the induction of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), in animal models of neurodegenerative diseases. Here we show that neuronal transduction of Rheb(S16H) using adeno-associated virus serotype 1 provides neuroprotection in a mouse model of photothrombosis-induced ischemic stroke. Rheb(S16H)-expressing neurons exhibited neurotrophic effects, such as mTORC1 activation, increases in neuronal size, and BDNF production, in mouse cerebral cortex. Moreover, the upregulation of neuronal Rheb(S16H) significantly attenuated ischemic damage and behavioral impairments as compared to untreated mice, suggesting that Rheb(S16H) upregulation in cortical neurons may be a useful strategy to treat ischemic stroke.
Collapse
|
24
|
Xia B, Gao J, Li S, Huang L, Zhu L, Ma T, Zhao L, Yang Y, Luo K, Shi X, Mei L, Zhang H, Zheng Y, Lu L, Luo Z, Huang J. Mechanical stimulation of Schwann cells promote peripheral nerve regeneration via extracellular vesicle-mediated transfer of microRNA 23b-3p. Theranostics 2020; 10:8974-8995. [PMID: 32802175 PMCID: PMC7415818 DOI: 10.7150/thno.44912] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Peripheral nerves are unique in their remarkable elasticity. Schwann cells (SCs), important components of the peripheral nervous system (PNS), are constantly subjected to physiological and mechanical stresses from dynamic stretching and compression forces during movement. So far, it is not clear if SCs sense and respond to mechanical signals. It is also unknown whether mechanical stimuli can interfere with the intercellular communications between neurons and SCs, and what role extracellular vesicles (EVs) play in this process. The present study aimed to examine the effect of mechanical stimuli on the EV-mediated intercellular communication between neurons and SCs, explore their effect on axonal regeneration, and investigate the underlying mechanism. Methods: Purified SCs were stimulated using a magnetic force-based mechanical stimulation (MS) system and EVs were purified from mechanically stimulated SCs (MS-SCs-EVs) and non-stimulated SCs (SCs-EVs). The effect of MS-SCs-EVs on axonal elongation was examined in vitro and in vivo. High throughput miRNA sequencing was performed to compare the differential miRNA profiles between MS-SCs-EVs and SCs-EVs. The functional role of differentially expressed miRNAs on neurite extension in MS-SCs-EVs was examined. Also, the putative target genes of differentially expressed miRNAs in MS-SCs-EVs were predicted by bioinformatics tools, and the regulatory effect of those miRNAs on putative target genes was validated both in vitro and in vivo. Results: The MS-SCs-EVs showed an average size of 137.52±1.77 nm, and could be internalized by dorsal root ganglion (DRG) neurons. Compared to SCs-EVs, MS-SCs-EVs showed a stronger ability to enhance neurite outgrowth in vitro and nerve regeneration in vivo. High throughput miRNA sequencing identified a number of differentially expressed miRNAs in MS-SCs-EVs. Further analysis of those EV-miRNAs demonstrated that miR-23b-3p played a predominant role in MS-SCs-EVs since its deprivation abolished their enhanced axonal elongation. Furthermore, we identified neuropilin 1 (Nrp1) in neurons as the target gene of miR-23b-3p in MS-SCs-EVs. This observation was supported by the evidence that miR-23b-3p could decrease Nrp1-3'-UTR-WT luciferase activity in vitro and down-regulate Nrp1 expression in neurons. Conclusion: Our findings suggested that mechanical stimuli are capable of modulating the intercellular communication between neurons and SCs by altering miRNA composition in MS-SCs-EVs. Transfer of miR-23b-3p by MS-SCs-EVs from mechanically stimulated SCs to neurons decreased neuronal Nrp1 expression, which was responsible, at least in part, for the beneficial effect of MS-SCs-EVs on axonal regeneration. Our results highlighted the potential therapeutic value of MS-SCs-EVs and miR-23b-3p-enriched EVs in peripheral nerve injury repair.
Collapse
Affiliation(s)
- Bing Xia
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jianbo Gao
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shengyou Li
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liangliang Huang
- Department of Orthopedics, the General Hospital of Central Theater Command of People's Liberation Army, Wuhan, 430070, People's Republic of China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital Affiliated to Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710054, People's Republic of China
| | - Teng Ma
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Laihe Zhao
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yujie Yang
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Kai Luo
- Department of Orthopedics, the 985th Hospital People's Liberation Army Joint Logistics Support Force, Taiyuan, 030000, People's Republic of China
| | - Xiaowei Shi
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liangwei Mei
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Hao Zhang
- Department of Spinal Surgery, the People's Hospital of Longhua District, Shenzhen, 518109, People's Republic of China
| | - Yi Zheng
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Lei Lu
- Department of Oral Anatomy and Physiology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhuojing Luo
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jinghui Huang
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| |
Collapse
|
25
|
Wilcox M, Gregory H, Powell R, Quick TJ, Phillips JB. Strategies for Peripheral Nerve Repair. CURRENT TISSUE MICROENVIRONMENT REPORTS 2020; 1:49-59. [PMID: 33381765 PMCID: PMC7749870 DOI: 10.1007/s43152-020-00002-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW This review focuses on biomechanical and cellular considerations required for development of biomaterials and engineered tissues suitable for implantation following PNI, as well as translational requirements relating to outcome measurements for testing success in patients. RECENT FINDINGS Therapies that incorporate multiple aspects of the regenerative environment are likely to be key to improving therapies for nerve regeneration. This represents a complex challenge when considering the diversity of biological, chemical and mechanical factors involved. In addition, clinical outcome measures following peripheral nerve repair which are sensitive and responsive to changes in the tissue microenvironment following neural injury and regeneration are required. SUMMARY Effective new therapies for the treatment of PNI are likely to include engineered tissues and biomaterials able to evoke a tissue microenvironment that incorporates both biochemical and mechanical features supportive to regeneration. Translational development of these technologies towards clinical use in humans drives a concomitant need for improved clinical measures to quantify nerve regeneration.
Collapse
Affiliation(s)
- Matthew Wilcox
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX UK
- UCL Centre for Nerve Engineering, University College London, London, UK
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Holly Gregory
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Rebecca Powell
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Tom J. Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
| | - James B. Phillips
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| |
Collapse
|
26
|
Fadia NB, Bliley JM, DiBernardo GA, Crammond DJ, Schilling BK, Sivak WN, Spiess AM, Washington KM, Waldner M, Liao HT, James IB, Minteer DM, Tompkins-Rhoades C, Cottrill AR, Kim DY, Schweizer R, Bourne DA, Panagis GE, Asher Schusterman M, Egro FM, Campwala IK, Simpson T, Weber DJ, Gause T, Brooker JE, Josyula T, Guevara AA, Repko AJ, Mahoney CM, Marra KG. Long-gap peripheral nerve repair through sustained release of a neurotrophic factor in nonhuman primates. Sci Transl Med 2020; 12:12/527/eaav7753. [DOI: 10.1126/scitranslmed.aav7753] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/26/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023]
Abstract
Severe injuries to peripheral nerves are challenging to repair. Standard-of-care treatment for nerve gaps >2 to 3 centimeters is autografting; however, autografting can result in neuroma formation, loss of sensory function at the donor site, and increased operative time. To address the need for a synthetic nerve conduit to treat large nerve gaps, we investigated a biodegradable poly(caprolactone) (PCL) conduit with embedded double-walled polymeric microspheres encapsulating glial cell line–derived neurotrophic factor (GDNF) capable of providing a sustained release of GDNF for >50 days in a 5-centimeter nerve defect in a rhesus macaque model. The GDNF-eluting conduit (PCL/GDNF) was compared to a median nerve autograft and a PCL conduit containing empty microspheres (PCL/Empty). Functional testing demonstrated similar functional recovery between the PCL/GDNF-treated group (75.64 ± 10.28%) and the autograft-treated group (77.49 ± 19.28%); both groups were statistically improved compared to PCL/Empty-treated group (44.95 ± 26.94%). Nerve conduction velocity 1 year after surgery was increased in the PCL/GDNF-treated macaques (31.41 ± 15.34 meters/second) compared to autograft (25.45 ± 3.96 meters/second) and PCL/Empty (12.60 ± 3.89 meters/second) treatment. Histological analyses included assessment of Schwann cell presence, myelination of axons, nerve fiber density, and g-ratio. PCL/GDNF group exhibited a statistically greater average area occupied by individual Schwann cells at the distal nerve (11.60 ± 33.01 μm2) compared to autograft (4.62 ± 3.99 μm2) and PCL/Empty (4.52 ± 5.16 μm2) treatment groups. This study demonstrates the efficacious bridging of a long peripheral nerve gap in a nonhuman primate model using an acellular, biodegradable nerve conduit.
Collapse
Affiliation(s)
- Neil B. Fadia
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jacqueline M. Bliley
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Donald J. Crammond
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Wesley N. Sivak
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alexander M. Spiess
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kia M. Washington
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthias Waldner
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Han-Tsung Liao
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Isaac B. James
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Danielle M. Minteer
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Adam R. Cottrill
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Deok-Yeol Kim
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Riccardo Schweizer
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Debra A. Bourne
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - George E. Panagis
- Department of Biology, University of Pittsburgh, Greensburg, PA 15601, USA
| | - M. Asher Schusterman
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Francesco M. Egro
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Tyler Simpson
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Douglas J. Weber
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Trent Gause
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jack E. Brooker
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tvisha Josyula
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Astrid A. Guevara
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alexander J. Repko
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Kacey G. Marra
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|