1
|
Li R, Wang D, Yang H, Pu L, Li X, Yang F, Zhu R. Important role and underlying mechanism of non‑SMC condensin I complex subunit G in tumours (Review). Oncol Rep 2024; 51:77. [PMID: 38639175 DOI: 10.3892/or.2024.8736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
At present, the incidence of tumours is increasing on a yearly basis, and tumourigenesis is usually associated with chromosomal instability and cell cycle dysregulation. Moreover, abnormalities in the chromosomal structure often lead to DNA damage, further exacerbating gene mutations and chromosomal rearrangements. However, the non‑SMC condensin I complex subunit G (NCAPG) of the structural maintenance of chromosomes family is known to exert a key role in tumour development. It has been shown that high expression of NCAPG is closely associated with tumour development and progression. Overexpression of NCAPG variously affects chromosome condensation and segregation during cell mitosis, influences cell cycle regulation, promotes tumour cell proliferation and invasion, and inhibits apoptosis. In addition, NCAPG has been associated with tumour cell stemness, tumour resistance and recurrence. The aim of the present review was to explore the underlying mechanisms of NCAPG during tumour development, with a view towards providing novel targets and strategies for tumour therapy, and through the elucidation of the mechanisms involved, to lay the foundation for future developments in health.
Collapse
Affiliation(s)
- Ruobing Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Dechun Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hong Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Leilei Pu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xiaohong Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Fumei Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Rong Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
2
|
Samareh Salavatipour M, Poursalehi Z, Hosseini Rouzbahani N, Mohammadyar S, Vasei M. CRISPR-Cas9 in basic and translational aspects of cancer therapy. BIOIMPACTS : BI 2024; 14:30087. [PMID: 39493894 PMCID: PMC11530967 DOI: 10.34172/bi.2024.30087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 11/05/2024]
Abstract
Introduction The discovery of gene editing techniques has opened a new era within the field of biology and enabled scientists to manipulate nucleic acid molecules. CRISPR-Cas9 genome engineering has revolutionized this achievement by successful targeting the DNA molecule and editing its sequence. Since genomic changes are the basis of the birth and growth of many tumors, CRISPR-Cas9 method has been successfully applied to identify and manipulate the genes which are involved in initiating and driving some neoplastic processes. Methods By review of the existing literature on application of CRISPR-Cas9 in cancer, different databases, such as PubMed and Google Scholar, we started data collection for "CRISPR-Cas9", "Genome Editing", "Cancer", "Solid tumors", "Hematologic malignancy" "Immunotherapy", "Diagnosis", "Drug resistance" phrases. Clinicaltrials.gov, a resource that provides access to information on clinical trials, was also searched in this review. Results We have defined the basics of this technology and then mentioned some clinical and preclinical studies using this technology in the treatment of a variety of solid tumors as well as hematologic neoplasms. Finally, we described the progress made by this technology in boosting immune-mediated cell therapy in oncology, such as CAR-T cells, CAR-NK cells, and CAR-M cells. Conclusion CRISPR-Cas9 system revolutionized the therapeutic strategies in some solid malignant tumors and leukemia through targeting the key genes involved in the pathogenesis of these cancers.
Collapse
Affiliation(s)
- Maryam Samareh Salavatipour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Poursalehi
- Department of Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Negin Hosseini Rouzbahani
- Department of Medical Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Sohaib Mohammadyar
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Vasei
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
AMJAD ELHAM, PEZZANI RAFFAELE, SOKOUTI BABAK. A review of the literature on the use of CRISPR/Cas9 gene therapy to treat hepatocellular carcinoma. Oncol Res 2024; 32:439-461. [PMID: 38361756 PMCID: PMC10865741 DOI: 10.32604/or.2023.044473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/24/2023] [Indexed: 02/17/2024] Open
Abstract
Noncoding RNAs instruct the Cas9 nuclease to site-specifically cleave DNA in the CRISPR/Cas9 system. Despite the high incidence of hepatocellular carcinoma (HCC), the patient's outcome is poor. As a result of the emergence of therapeutic resistance in HCC patients, clinicians have faced difficulties in treating such tumor. In addition, CRISPR/Cas9 screens were used to identify genes that improve the clinical response of HCC patients. It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer, with a particular emphasis on HCC as part of the current state of knowledge. Thus, in order to locate recent developments in oncology research, we examined both the Scopus database and the PubMed database. The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs. Drug resistance can be overcome with the help of the CRISPR/Cas9 system. HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening, although this method is not without limitations. It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy. CRISPR and its applications to tumor research, particularly in HCC, are examined in this study through a review of the literature.
Collapse
Affiliation(s)
- ELHAM AMJAD
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665813, Iran
| | - RAFFAELE PEZZANI
- Phytotherapy Lab, Endocrinology Unit, Dipartimento di Medicina (DIMED), University of Padova, Via Ospedale 105, Padova, 35128, Italy
- Associazione Italiana Per La Ricerca Oncologica Di Base, Associazione Italiana Per La Ricerca Oncologica Di Base, Padova, 35128, Italy
| | - BABAK SOKOUTI
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665813, Iran
| |
Collapse
|
4
|
Xiao C, Gong J, Jie Y, Liang W, Tai Y, Qin W, Lu T, Chong Y, Hei Z, Hu B, Zhang Q. E2F1-mediated Up-regulation of NCAPG Promotes Hepatocellular Carcinoma Development by Inhibiting Pyroptosis. J Clin Transl Hepatol 2024; 12:25-35. [PMID: 38250463 PMCID: PMC10794265 DOI: 10.14218/jcth.2022.00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 01/23/2024] Open
Abstract
Background and Aims As a subunit of the condensin complex, NCAPG has an important role in maintaining chromosome condensation, but its biological function and regulatory mechanism in hepatocellular carcinoma (HCC) remains undefined. Methods The prognostic ability of NCAPG in HCC patients was examined by univariate and multivariate Cox regression analysis. ROC curves were plotted to compare the predictive ability of NCAPG and AFP. Double luciferase reporter system, and ChIP were used to investigate transcriptional potential of E2F1 to NCAPG. Pyroptosis was observed by scanning electron microscopy. Protein expression of NCAPG, E2F1, and major proteins constituting NLRP3 inflammasome was determined by western blotting and ELISA. An in vivo tumor formation assay was conducted to verify the in vitro results. Results Up-regulated NCAPG was identified in HCC tissues compared with adjacent tissue and high NCAPG was positively correlated with poor prognosis. Serum NCAPG mRNA level was a prognostic factor in HCC patients and also a diagnostic factor with higher predictive ability compared with AFP [AUROC 0.766 (95% CI: 0.650-0.881) vs. 0.649 (95% CI 0.506-0.793)]. HBx transfection resulted in concomitant up-regulation of E2F1 and NCAPG. E2F1 significantly increased the activity of luciferase reporter fused with NCAPG reporter, and the interaction of E2F1 and NCAPG gene was confirmed by ChIP. Silencing of E2F1 resulted in significant down-regulation of NCAPG. Knockdown of NCAPG promote pyroptosis mediated by NLRP3 inflammasome activation in multiple HCC cell lines and also suppressed tumorigenesis in vitro. Conclusions We identified a novel role of NCAPG in the regulation of NLRP3 inflammasome-mediated pyroptosis, which was regulated by its upstream transactivator, E2F1. The role of E2F1-NCAPG-NLRP3 regulation of pyroptosis network may be a potential target in HCC treatment.
Collapse
Affiliation(s)
- Cuicui Xiao
- Biotherapy Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yusheng Jie
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weicheng Liang
- Biotherapy Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Cell-Gene Therapy Translational Medicine Research Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Tai
- Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Qin
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tongyu Lu
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yutian Chong
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziqing Hei
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Hu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi Zhang
- Biotherapy Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Cell-Gene Therapy Translational Medicine Research Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Jia Y, Yang J, Chen Y, Liu Y, Jin Y, Wang C, Gong B, Zhao Q. Identification of NCAPG as an Essential Gene for Neuroblastoma Employing CRISPR-Cas9 Screening Database and Experimental Verification. Int J Mol Sci 2023; 24:14946. [PMID: 37834394 PMCID: PMC10573393 DOI: 10.3390/ijms241914946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. Patients with neuroblastoma have a poor prognosis. The development of therapy targets and the ability to predict prognosis will be enhanced through further exploration of the genetically related genes of neuroblastoma. The present investigation utilized CRISPR-Cas9 genome-wide screening based on the DepMap database to determine essential genes for neuroblastoma cells' continued survival. WGCNA analysis was used to determine the progression-related genes, and a prognostic signature was constructed. The signature gene, NCAPG, was downregulated in neuroblastoma cells to explore its impact on various cellular processes. This research used DepMap and WGCNA to pinpoint 45 progression-related essential genes for neuroblastoma. A risk signature comprising NCAPG and MAD2L1 was established. The suppression of NCAPG prevented neuroblastoma cells from proliferating, migrating, and invading. The results of flow cytometric analysis demonstrated that NCAPG inhibition caused cell cycle arrest during the G2 and S phases and the activation of apoptosis. Additionally, NCAPG downregulation activated the p53-mediated apoptotic pathway, inducing cell apoptosis. The present work showed that NCAPG knockdown reduced neuroblastoma cell progression and may serve as a basis for further investigation into diagnostic indicators and therapy targets for neuroblastoma.
Collapse
Affiliation(s)
- Yubin Jia
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jiaxing Yang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yankun Chen
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yan Jin
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chaoyu Wang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Baocheng Gong
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; (Y.J.); (J.Y.); (Y.C.); (Y.L.); (Y.J.); (C.W.)
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
6
|
Yu S, Zhao R, Zhang B, Lai C, Li L, Shen J, Tan X, Shao J. Research progress and application of the CRISPR/Cas9 gene-editing technology based on hepatocellular carcinoma. Asian J Pharm Sci 2023; 18:100828. [PMID: 37583709 PMCID: PMC10424087 DOI: 10.1016/j.ajps.2023.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is now a common cause of cancer death, with no obvious change in patient survival over the past few years. Although the traditional therapeutic modalities for HCC patients mainly involved in surgery, chemotherapy, and radiotherapy, which have achieved admirable achievements, challenges are still existed, such as drug resistance and toxicity. The emerging gene therapy of clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9-based (CRISPR/Cas9), as an alternative to traditional treatment methods, has attracted considerable attention for eradicating resistant malignant tumors and regulating multiple crucial events of target gene-editing. Recently, advances in CRISPR/Cas9-based anti-drugs are presented at the intersection of science, such as chemistry, materials science, tumor biology, and genetics. In this review, the principle as well as statues of CRISPR/Cas9 technique were introduced first to show its feasibility. Additionally, the emphasis was placed on the applications of CRISPR/Cas9 technology in therapeutic HCC. Further, a broad overview of non-viral delivery systems for the CRISPR/Cas9-based anti-drugs in HCC treatment was summarized to delineate their design, action mechanisms, and anticancer applications. Finally, the limitations and prospects of current studies were also discussed, and we hope to provide comprehensively theoretical basis for the designing of anti-drugs.
Collapse
Affiliation(s)
- Shijing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ruirui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bingchen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunmei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Linyan Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiarong Tan
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
7
|
Lin J, Li G, Bai Y, Xie Y. NCAPG as a novel prognostic biomarker in numerous cancers: a meta-analysis and bioinformatics analysis. Aging (Albany NY) 2023; 15:2503-2524. [PMID: 36996493 PMCID: PMC10120898 DOI: 10.18632/aging.204621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Identification of effective biomarkers for cancer prognosis is a primary research challenge. Recently, several studies have reported the relationship between NCAPG and the occurrence of various tumors. However, none have combined meta-analytical and bioinformatics approaches to systematically assess the role of NCAPG in cancer. METHODS We searched four databases, namely, PubMed, Web of Science, Embase, and the Cochrane Library, for relevant articles published before April 30, 2022. The overall hazard ratio or odds ratio and 95% confidence intervals were calculated to assess the relationship between NCAPG expression and cancer survival prognosis or clinical characteristics. Furthermore, the aforementioned results were validated using the GEPIA2, Kaplan-Meier plotter, and PrognoScan databases. RESULTS The meta-analysis included eight studies with 1096 samples. The results showed that upregulation of NCAPG was correlated with poorer overall survival (hazard ratio = 2.90, 95% confidence interval = 2.06-4.10, P < 0.001) in the cancers included in the study. Subgroup analysis showed that in some cancers, upregulation of NCAPG was correlated with age, distant metastasis, lymph node metastasis, TNM stage, relapse, differentiation, clinical stage, and vascular invasion. These results were validated using the GEPIA2, UALCAN, and PrognoScan databases. We also explored the processes of NCAPG methylation and phosphorylation. CONCLUSION Dysregulated NCAPG expression is associated with the clinical prognostic and pathological features of various cancers. Therefore, NCAPG can serve as a human cancer therapeutic target and a new potential prognostic biomarker.
Collapse
|
8
|
Qin Z, Xie B, Qian J, Ma X, Zhang L, Wei J, Wang Z, Fan L, Zhu Z, Qian Z, Yin H, Zhu F, Tan Y. Over-expression of RRM2 predicts adverse prognosis correlated with immune infiltrates: A potential biomarker for hepatocellular carcinoma. Front Oncol 2023; 13:1144269. [PMID: 37056349 PMCID: PMC10086364 DOI: 10.3389/fonc.2023.1144269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundRibonucleotide reductase regulatory subunit M2 (RRM2) has been reported to be an oncogene in some malignant tumors, such as lung adenocarcinoma, oral squamous cell carcinoma, glioblastoma, and breast cancer. However, the clinical significance of RRM2 in hepatocellular carcinoma has been less studied. The aim of this study was to assess the importance of RRM2 in hepatocellular carcinoma (HCC) based on the Cancer Genome Atlas (TCGA) database.MethodsThe RRM2 expression levels and clinical features were downloaded from the TCGA database. Immunohistochemistry results between tumor tissues and normal tissues were downloaded from the Proteinatlas database. Meanwhile, the expression levels of RRM2 in tumor and paraneoplastic tissues were further verified by qRT-PCR and Western Blotting. Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein-interactions (PPI) network were constructed to analyze RRM2-related downstream molecules. In addition, RRM2 expression-related pathways performed by gene set enrichment analysis (GSEA). Association analysis of RRM2 gene expression and immune infiltration was performed by single-sample GSEA (ssGSEA).ResultsThe RRM2 expression level in tumor tissues was higher than normal tissues (P <0.001). The elevated expression of RRM2 in HCC was significantly correlated with T stage (P <0.05), pathologic stage (P <0.05), tumor status (P <0.05), histologic grade (P<0.001), and AFP (P <0.001). HCC with higher RRM2 expression was positively associated with worse OS (overall survival), PFS (progression-free survival), and DSS (disease-specific survival). In the univariate analysis, the expression of RRM2, T stage, M stage, pathologic stage, and tumor status were negatively correlated with OS (P <0.05). Further analysis using multivariate Cox regression showed that tumor status (P<0.01) and RRM2 expression (P<0.05) were independent prognostic factors of OS in HCC. GO/KEGG analysis showed that the critical biological process (chromosome condensation and p53 signaling pathway) might be the possible function mechanism in promoting HCC. Moreover, GSEA showed that several pathways were enriched in RRM2 high-expression samples, including PD-1 signaling, cell cycle, P27 pathway, and T cell receptor signaling pathway. RRM2 was significantly correlated with the infiltration level of CD8 T cells, Cytotoxic cells, DCs, Neutrophils, NK cells, and T helper cells (P <0.05).ConclusionOver-expression of RRM2 predict adverse prognosis and is correlated with immune infiltrates in HCC. RRM2 may be a significant molecular biomarker for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Zhongqiang Qin
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bo Xie
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jingyu Qian
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiang Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jianzhu Wei
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhaoying Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Longfei Fan
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ziyi Zhu
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhen Qian
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hongxiang Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fangquan Zhu
- Department of Surgical Oncology, Lu’an First People’s Hospital, Lu’an, China
- *Correspondence: Fangquan Zhu, ; Yulin Tan,
| | - Yulin Tan
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Fangquan Zhu, ; Yulin Tan,
| |
Collapse
|
9
|
Identification of Prognostic Biomarkers for Suppressing Tumorigenesis and Metastasis of Hepatocellular Carcinoma through Transcriptome Analysis. Diagnostics (Basel) 2023; 13:diagnostics13050965. [PMID: 36900109 PMCID: PMC10001411 DOI: 10.3390/diagnostics13050965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer is one of the deadliest diseases developed through tumorigenesis and could be fatal if it reaches the metastatic phase. The novelty of the present investigation is to explore the prognostic biomarkers in hepatocellular carcinoma (HCC) that could develop glioblastoma multiforme (GBM) due to metastasis. The analysis was conducted using RNA-seq datasets for both HCC (PRJNA494560 and PRJNA347513) and GBM (PRJNA494560 and PRJNA414787) from Gene Expression Omnibus (GEO). This study identified 13 hub genes found to be overexpressed in both GBM and HCC. A promoter methylation study showed these genes to be hypomethylated. Validation through genetic alteration and missense mutations resulted in chromosomal instability, leading to improper chromosome segregation, causing aneuploidy. A 13-gene predictive model was obtained and validated using a KM plot. These hub genes could be prognostic biomarkers and potential therapeutic targets, inhibition of which could suppress tumorigenesis and metastasis.
Collapse
|
10
|
Chiu CH. CRISPR/Cas9 genetic screens in hepatocellular carcinoma gene discovery. CURRENT RESEARCH IN BIOTECHNOLOGY 2023; 5:100127. [DOI: 10.1016/j.crbiot.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
11
|
ASPM, CDC20, DLGAP5, BUB1B, CDCA8, and NCAPG May Serve as Diagnostic and Prognostic Biomarkers in Endometrial Carcinoma. Genet Res (Camb) 2022; 2022:3217248. [PMID: 36186000 PMCID: PMC9509287 DOI: 10.1155/2022/3217248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/09/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Uterine Corpus Endometrial Carcinoma (UCEC), the most common gynecologic malignancy in developed countries, remains to be a major public health problem. Further studies are surely needed to elucidate the tumorigenesis of UCEC. Herein, intersecting 203 differentially expressed genes (DEGs) were identified with the GSE17025, GSE63678, and The Cancer Genome Atlas-UCEC datasets. The Gene Ontology/Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis and protein-protein interaction (PPI) network were performed on those 203 DEGs. Intriguingly, 6 of the top 10 nodes in the PPI network were related to unfavorable prognosis, that is, ASPM, CDC20, DLGAP5, BUB1B, CDCA8, and NCAPG. The mRNA and protein expression levels of the 6 hub genes were elevated in UCEC tissues compared to normal tissues. Higher expression of the 6 hub genes was associated with poor prognostic clinicopathological characteristics. The receiver operating characteristic curve suggested the significant diagnostic ability of the 6 hub genes for UCEC. Then, underlying pathogeneses of UCEC including promoter methylation level, TP53 mutation status, genomic genetic variation, and immune cells infiltration were analyzed. The mRNA expression level of the 6 hub genes was also higher in cervical squamous cell carcinoma and endocervical adenocarcinoma, uterine carcinosarcoma, and ovarian serous cystadenocarcinoma tissues than in corresponding normal tissues. In conclusion, ASPM, CDC20, DLGAP5, BUB1B, CDCA8, and NCAPG may be considered diagnostic and prognostic biomarkers in UCEC.
Collapse
|
12
|
Cai X, Gao J, Shi C, Guo WZ, Guo D, Zhang S. The role of NCAPG in various of tumors. Biomed Pharmacother 2022; 155:113635. [PMID: 36095957 DOI: 10.1016/j.biopha.2022.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022] Open
Abstract
Non-SMC Condensin I complex subunit G (NCAPG), a mitosis-associated chromosomal condensation protein, is related to sister chromatid appropriate separation during the condensation and fusion of chromosomes and responsible for the condensation and stabilization of chromosomes during meiosis and mitosis. Studies have shown that NCAPG is highly adjusted in a variety of cancers, and its related molecular mechanism affects tumor cell proliferation, invasion, metastasis, and apoptosis including hepatocellular carcinoma, prostate cancer, breast cancer, gastric cancer, gliomas, lung adenocarcinoma, colorectal cancer, ovarian cancer, and endometrial cancer. Clinically, the expression of NCAPG is strongly correlated with N-classification, M-classification, and clinical stage, and NCAPG is valuable for the prognosis of patients with lung adenocarcinoma. In addition, NCAPG can also reduce the sensitivity of tumor cells such as breast cancer to reduce the reaction of the original chemotherapy, so that tumor cells are drug-resistance. In summary, NCAPG can serve as a new diagnosis and treatment target for a variety of cancers, and is also a very promising prognostic marker. Therefore, this review summarizes the critical role of NCAPG in the diagnosis, treatment, and prognosis for various cancers, and the mechanism by which NCAPG plays its pivotal roles.
Collapse
Affiliation(s)
- Xin Cai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Chengcheng Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wen Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| |
Collapse
|
13
|
Bao J, Wu Y, Zhang K, Qi H. AC099850.3/NCAPG Axis Predicts Poor Prognosis and is Associated with Resistance to EGFR Tyrosine-Kinase Inhibitors in Lung Adenocarcinoma. Int J Gen Med 2022; 15:6917-6930. [PMID: 36061963 PMCID: PMC9439153 DOI: 10.2147/ijgm.s365695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background TKI-acquired resistance markedly interferes with treatment of lung cancer patients with EGFR mutant features. Long non-coding RNAs (lncRNAs) modify EGFR-TKI resistance during tumor progression. Non-structural maintenance of chromosomes condensin I complex subunit G (NCAPG) is a mitosis-related protein that is involved in tumorigenesis. We investigated the potential regulatory lncRNAs of NCAPG in lung adenocarcinoma (LUAD) and assessed their roles in EGFR-TKI resistance. Methods Data for 1678 lung cancer patients were retrieved from TCGA and GEO databases and used to evaluate NCAPG and lncRNAs expressions, as well as their prognostic significance in LUAD. Protein levels of NCAPG in LUAD were validated by immuno-histochemistry. To assess the relationship between NCAPG levels and EGFR-TKIs sensitivity, a cohort of 57 LUAD patients administered with EGFR-TKIs was used. Results Both NCAPG and lncRNA AC099850.3 were over-expressed in LUAD tissues, and correlated with tumor progression and poor prognosis in LUAD. LncRNA AC099850.3 was identified as a potential regulator of NCAPG expressions. The AC099850.3/NCAGP axis was markedly correlated with EGFR mutations and IC50 of EGFR-TKIs. Besides, elevated NCAPG levels were associated with EGFR-TKIs resistance in 57 LUAD patients undergoing TKIs treatment. Gene set enrichment analysis revealed that both AC099850.3 and NCAGP were abundant in the cell cycle and the p53 signaling pathway. Conclusion The AC099850.3/NCAPG axis is a potential prognostic predictor and therapeutic biomarker for EGFR-TKIs in LUAD.
Collapse
Affiliation(s)
- Jiaqi Bao
- Department of Thoracic Surgery, Affiliated Hospital of Chifeng University, Chifeng, People’s Republic of China
| | - Yanlong Wu
- Department of Urology, Affiliated Hospital of Chifeng University, Chifeng, People’s Republic of China
| | - Kun Zhang
- Department of Radiology, Huhhot First Hospital, Huhhot, People’s Republic of China
| | - Huijuan Qi
- Department of Gynecology, Affiliated Hospital of Chifeng University, Chifeng, People’s Republic of China
- Correspondence: Huijuan Qi, Department of Gynecology, Affiliated Hospital of Chifeng University, Chifeng, People’s Republic of China, Email
| |
Collapse
|
14
|
Zhu L, Miao Y, Xi F, Jiang P, Xiao L, Jin X, Fang M. Identification of Potential Biomarkers for Pan-Cancer Diagnosis and Prognosis Through the Integration of Large-Scale Transcriptomic Data. Front Pharmacol 2022; 13:870660. [PMID: 35677427 PMCID: PMC9169228 DOI: 10.3389/fphar.2022.870660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, bringing a significant burden to human health and society. Accurate cancer diagnosis and biomarkers that can be used as robust therapeutic targets are of great importance as they facilitate early and effective therapies. Shared etiology among cancers suggests the existence of pan-cancer biomarkers, performance of which could benefit from the large sample size and the heterogeneity of the studied patients. In this study, we conducted a systematic RNA-seq study of 9,213 tumors and 723 para-cancerous tissue samples of 28 solid tumors from the Cancer Genome Atlas (TCGA) database, and 7,008 normal tissue samples from the Genotype-Tissue Expression (GTEx) database. By differential gene expression analysis, we identified 214 up-regulated and 186 downregulated differentially expressed genes (DEGs) in more than 80% of the studied tumors, respectively, and obtained 20 highly linked up- and downregulated hub genes from them. These markers have rarely been reported in multiple tumors simultaneously. We further constructed pan-cancer diagnostic models to classify tumors and para-cancerous tissues using 10 up-regulated hub genes with an AUC of 0.894. Survival analysis revealed that these hub genes were significantly associated with the overall survival of cancer patients. In addition, drug sensitivity predictions for these hub genes in a variety of tumors obtained several broad-spectrum anti-cancer drugs targeting pan-cancer. Furthermore, we predicted immunotherapy sensitivity for cancers based on tumor mutational burden (TMB) and the expression of immune checkpoint genes (ICGs), providing a theoretical basis for the treatment of tumors. In summary, we identified a set of biomarkers that were differentially expressed in multiple types of cancers, and these biomarkers can be potentially used for diagnosis and used as therapeutic targets.
Collapse
Affiliation(s)
- Lin Zhu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,BGI-Shenzhen, Shenzhen, China
| | - Yu Miao
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Xi
- BGI-Shenzhen, Shenzhen, China
| | | | - Liang Xiao
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,BGI-Shenzhen, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
| | - Mingyan Fang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
15
|
NCAPG Promotes the Proliferation of Renal Clear Cell Carcinoma via Mediating with CDK1. DISEASE MARKERS 2022; 2022:6758595. [PMID: 35601741 PMCID: PMC9122706 DOI: 10.1155/2022/6758595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
Objective. Currently, lots of scholars have proved that the expression of NCAPG is associated with the prognosis of several cancers, while the relationship between NCAPG and renal clear cell carcinoma remains unclear, so the main aim of this research is to explore the effects of NCAPG on the progression of renal clear cell carcinoma. Methods. We observed the differential expression of NCAPG in several cancers from GEPIA online database, and the expression of NCAPG in renal clear cell carcinoma and normal tissue was compared and further verified by IHC assay. CCK-8 assay and clone formation experiment were conducted to observe the change of NCAPG on the proliferation. GraphPad was used for data analysis, and
-test and
analysis were used to analyze the correlation between NCAPG/CDK1 and renal clear cell carcinoma. Results. NCAPG was upregulated in renal clear cell carcinoma compared with the normal tissue, and the expression of NCAPG was associated with the clinical prognosis of pancreatic cancer especially with tumor size (
). Knockdown NCAPG could restrain the proliferation of renal clear cell carcinoma. CDK1 was found to be tightly related with NCAPG, and the expression of CDK1 was also associated with the prognosis. Conclusions. NCAPG was upregulated in renal clear cell carcinoma, which was related with tumor size and overall survival. NCAPG might promote the proliferation of renal clear cell carcinoma via mediating CDK1. NCAPG/CDK1 complex might provide a new treatment strategy for lots of patients with renal clear cell carcinoma.
Collapse
|
16
|
Ho CM, Lin KT, Shen R, Gu DL, Lee SS, Su WH, Jou YS. Prognostic comparative genes predict targets for sorafenib combination therapies in hepatocellular carcinoma. Comput Struct Biotechnol J 2022; 20:1752-1763. [PMID: 35495118 PMCID: PMC9024375 DOI: 10.1016/j.csbj.2022.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
Large-scale comparative transcriptomics analysis of hepatocellular carcinoma reveals 664 prognostic comparative HCC (pcHCC) genes. pcHCC genes included novel targets with potential utility in sorafenib combination therapies. Knockdown of the selective pcHCC genes NCAPG and CENPW downregulated the p38/STAT3 axis to enhance sorafenib combination treatments.
With the increasing incidence and mortality of human hepatocellular carcinoma (HCC) worldwide, revealing innovative targets to improve therapeutic strategies is crucial for prolonging the lives of patients. To identify innovative targets, we conducted a comprehensive comparative transcriptome analysis of 5,410 human HCCs and 974 mouse liver cancers to identify concordantly expressed genes associated with patient survival. Among the 664 identified prognostic comparative HCC (pcHCC) genes, upregulated pcHCC genes were associated with prognostic clinical features, including large tumor size, vascular invasion and late HCC stages. Interestingly, after validating HCC patient prognoses in multiple independent datasets, we matched the 664 aberrant pcHCC genes with the sorafenib-altered genes in TCGA_LIHC patients and found these 664 pcHCC genes were enriched in sorafenib-related functions, such as downregulated xenobiotic and lipid metabolism and upregulated cell proliferation. Therapeutic agents targeting aberrant pcHCC genes presented divergent molecular mechanisms, including suppression of sorafenib-unrelated oncogenic pathways, induction of sorafenib-unrelated ferroptosis, and modulation of sorafenib transportation and metabolism, to potentiate sorafenib therapeutic effects in HCC combination therapy. Moreover, the pcHCC genes NCAPG and CENPW, which have not been targeted in combination with sorafenib treatment, were knocked down and combined with sorafenib treatment, which reduced HCC cell viability based on disruption to the p38/STAT3 axis, thereby hypersensitizing HCC cells. Together, our results provide important resources and reveal that 664 pcHCC genes represent innovative targets suitable for developing therapeutic strategies in combination with sorafenib based on the divergent synergistic mechanisms for HCC tumor suppression.
Collapse
|
17
|
Qiang W, Dai Y, Xing X, Sun X. Identification of a metabolic reprogramming-related signature associated with prognosis and immune microenvironment of head and neck squamous cell carcinoma by in silico analysis. Cancer Med 2022; 11:3168-3181. [PMID: 35301800 PMCID: PMC9385599 DOI: 10.1002/cam4.4670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background Metabolic reprogramming is one of the essential features of tumorigenesis. Herein, this study aimed to develop a novel metabolism‐related gene signature for head and neck squamous cell carcinoma (HNSCC) patients. Methods The transcriptomic and clinical data of HNSCC samples were collected from The Cancer Genome Atlas (TCGA) and GSE65858 datasets. The metabolism‐related gene‐based prognostic signature (MRGPS) was constructed by the Least Absolute Shrinkage and Selection Operator (LASSO) regression model. The time‐dependent receiver operating characteristic (ROC) and Kaplan‐Meier (K‐M) survival curves were plotted for evaluating its predicting performance. At the same time, univariate along with multivariate analysis was carried out to explore its correlation with clinicopathologic factors. Furthermore, GSEA analysis was performed to explore the signaling pathways affected by MRGPS. We also analyzed the associations of MRGPS with the tumor immune microenvironment (TIME), as well as identified potential compounds via Connectivity Map (CMap) and molecular docking. Results A total of 12 differentially expressed metabolism‐related genes were identified and selected to construct the MRGPS. Notably, this signature performed well in predicting HNSCC patients’ survival and could serve as an independent prognostic factor in multiple datasets. In addition to the metabolism‐related pathway, this signature could also affect some immune‐related pathways. The results indicated that MRGPS is correlated with immune cells infiltration and anti‐cancer immune response. Furthermore, we identified cephaeline as a potential therapeutic compound for HNSCC. Conclusion Taken together, we established an MRGs‐based signature that has the potential to predict the clinical outcome and immune microenvironment, which help to search for potential combination immunotherapy compounds and provide a promising therapeutic strategy for treating HNSCC patients.
Collapse
Affiliation(s)
- Weijie Qiang
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Yifei Dai
- School of MedicineTsinghua UniversityBeijingChina
| | - Xiaoyan Xing
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Xiaobo Sun
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
18
|
Huang H, Liao X, Zhu G, Han C, Wang X, Yang C, Zhou X, Liang T, Huang K, Peng T. Acyl-CoA Binding Domain Containing 4 Polymorphism rs4986172 and Expression Can Serve as Overall Survival Biomarkers for Hepatitis B Virus-Related Hepatocellular Carcinoma Patients After Hepatectomy. Pharmgenomics Pers Med 2022; 15:277-300. [PMID: 35378899 PMCID: PMC8976523 DOI: 10.2147/pgpm.s349350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background The aim of our study was to evaluate the potential of expression and single nucleotide polymorphism of Acyl-CoA binding domain containing 4 (ACBD4) gene as prognosis biomarkers in patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) after hepatectomy. Methods HBV-related HCC patients from the First Affiliated Hospital of Guangxi Medical University and GSE14520 were included in the current study, as well as The Cancer Genome Atlas (TCGA) HCC verification cohort. Prognostic analysis and multiple functional enrichment analysis methods were used to evaluate the prognostic value and potential biological functions of the ACBD4 gene in HBV-related HCC. Results We found that ACBD4 gene is highly expressed in normal liver tissues and markedly down-regulated in HBV-related HCC tissues. ACBD4 gene was significantly related to overall survival (OS) of HCC in TCGA and GSE14520 cohorts, and patients with low ACBD4 expression were markedly related to poor OS. Rs4986172 was observed as an OS biomarker after hepatectomy in the Guangxi HBV-related HCC cohort. The OS of rs4986172 GG genotype was worse than that of HCC patients with A allele (AA and AG genotypes). Multifunctional enrichment analysis suggested that ACBD4 gene is closely related to the metabolic, peroxisome proliferator-activated receptor and cytochrome P450 pathway. Through connectivity map, we also identified eight compounds that may be used as targeted therapeutic agents for ACBD4 gene in HBV-related HCC; these compounds were scopoletin, alfaxalone, bephenium hydroxynaphthoate, apramycin, 4,5-dianilinophthalimide, DL-thiorphan, aminohippuric acid and quinidine. Immune microenvironment analysis revealed that there were significant differences in immune scores of HBV-related HCC tumor tissues with different ACBD4 expression levels. Conclusion Our study reveals that ACBD4 expression and rs4986172 can be serve as biomarkers of OS in HBV-related HCC patients after hepatectomy.
Collapse
Affiliation(s)
- Huasheng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Tianyi Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Correspondence: Tao Peng; Xiwen Liao, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China, Tel +86-771-5356528, Fax +86-771-5350031, Email ;
| |
Collapse
|
19
|
Li F, Lai L, You Z, Cheng H, Guo G, Tang C, Xu L, Liu H, Zhong W, Lin Y, Wang Q, Lin Y, Wei Y. Identification of UBE2I as a Novel Biomarker in ccRCC Based on a Large-Scale CRISPR-Cas9 Screening Database and Immunohistochemistry. Front Mol Biosci 2022; 9:813428. [PMID: 35211510 PMCID: PMC8861443 DOI: 10.3389/fmolb.2022.813428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The genome-wide CRISPR-cas9 dropout screening has emerged as an outstanding approach for characterization of driver genes of tumor growth. The present study aims to investigate core genes related to clear cell renal cell carcinoma (ccRCC) cell viability by analyzing the CRISPR-cas9 screening database DepMap, which may provide a novel target in ccRCC therapy. Methods: Candidate genes related to ccRCC cell viability by CRISPR-cas9 screening from DepMap and genes differentially expressed between ccRCC tissues and normal tissues from TCGA were overlapped. Weighted gene coexpression network analysis, pathway enrichment analysis, and protein-protein interaction network analysis were applied for the overlapped genes. The least absolute shrinkage and selection operator (LASSO) regression was used to construct a signature to predict the overall survival (OS) of ccRCC patients and validated in the International Cancer Genome Consortium (ICGC) and E-MTAB-1980 database. Core protein expression was determined using immunohistochemistry in 40 cases of ccRCC patients. Results: A total of 485 essential genes in the DepMap database were identified and overlapped with differentially expressed genes in the TCGA database, which were enriched in the cell cycle pathway. A total of four genes, including UBE2I, NCAPG, NUP93, and TOP2A, were included in the gene signature based on LASSO regression. The high-risk score of ccRCC patients showed worse OS compared with these low-risk patients in the ICGC and E-MTAB-1980 validation cohort. UBE2I was screened out as a key gene. The immunohistochemistry indicated UBE2I protein was highly expressed in ccRCC tissues, and a high-level nuclear translocation of UBE2I occurs in ccRCC. Based on the area under the curve (AUC) values, nuclear UBE2I had the best diagnostic power (AUC = 1). Meanwhile, the knockdown of UBE2I can inhibit the proliferation of ccRCC cells. Conclusion: UBE2I, identified by CRISPR-cas9 screening, was a core gene-regulating ccRCC cell viability, which accumulated in the nucleus and acted as a potential novel promising diagnostic biomarker for ccRCC patients. Blocking the nuclear translocation of UBE2I may have potential therapeutic value with ccRCC patients.
Collapse
Affiliation(s)
- Feng Li
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Li Lai
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Central Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Zhijie You
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Hui Cheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Guodong Guo
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Chenchen Tang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Luyun Xu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hongxia Liu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Wenting Zhong
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Youyu Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qingshui Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Hepatic Drug Research, Fuzhou, China
| | - Yao Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yongbao Wei
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
20
|
Construction of a Prognosis-Related Gene Signature by Weighted Gene Coexpression Network Analysis in Ewing Sarcoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8798624. [PMID: 35126643 PMCID: PMC8814720 DOI: 10.1155/2022/8798624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022]
Abstract
Background Ewing sarcoma (ES) is the second most common pediatric bone tumor with a high rate of metastasis, high recurrence, and low survival rate. Therefore, the identification of new biomarkers which can improve the prognosis of ES patients is urgently needed. Methods Here, GSE17679 dataset was downloaded from GEO databases. WGCNA method was used to identify one module associating with OVS (overall vital survival) and event. cytoHubba was used to screen out 50 hub genes from the module genes. Then, GSE17679 dataset was randomly divided into train cohort and test cohort. Next, univariate Cox analysis, LASSO regression analysis, and multivariate Cox analysis were conducted on 50 hub genes combined with train cohort data to select pivotal genes. Finally, an optimal 7-gene-based risk assessment model was established, which was verified by test cohort, entire GSE17679, and two independent datasets (GSE63157 and TCGA-SARC). Results The results of the functional enrichment analysis revealed that the OVS and event-associated module were mainly enriched in the protein transcription, cell proliferation, and cell-cycle control. And the train cohort was divided into high-risk and low-risk subgroups based on the median risk score; the results showed that the survival of the low-risk subgroup was significantly longer than high-risk. ROC analysis revealed that AUC values of 1, 3, and 5-year survival were 0.85, 0.94, and 0.88, and Kaplan-Meier analysis also revealed that P value < 0.0001, indicating that this model was accurate, which was also verified in the test, entire cohort, and two independent datasets (GSE63157 and TCGA-SARC). Then, we performed a comprehensive analysis (differential expression analysis, correlation analysis and survival analysis) of seven pivotal genes, and found that four genes (NCAPG, KIF4A, NUF2 and CDC20) plays a more crucial role in the prognosis of ES. Conclusion Taken together, this study established an optimal 7-gene-based risk assessment model and identified 4 potential therapeutic targets, to improve the prognosis of ES patients.
Collapse
|
21
|
Yang Z, Wu X, Li J, Zheng Q, Niu J, Li S. CCNB2, CDC20, AURKA, TOP2A, MELK, NCAPG, KIF20A, UBE2C, PRC1, and ASPM May Be Potential Therapeutic Targets for Hepatocellular Carcinoma Using Integrated Bioinformatic Analysis. Int J Gen Med 2022; 14:10185-10194. [PMID: 34992437 PMCID: PMC8710976 DOI: 10.2147/ijgm.s341379] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/09/2021] [Indexed: 01/14/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a highly malignant, recurrent and drug-resistant tumor, and patients often lose the opportunity for surgery when they are diagnosed. Abnormal gene expression is closely related to the occurrence of HCC. The aim of the present study was to identify the differentially expressed genes (DEGs) between tumor tissue and non-tumor tissue of HCC samples in order to investigate the mechanisms of liver cancer. Methods The gene expression profile (GSE62232, GSE89377, and GSE112790) was downloaded from the Gene Expression Omnibus (GEO) and analyzed using the online tool GEO2R to identify differentially expressed genes (DEGs). Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery. Protein–protein interaction (PPI) of these DEGs was analyzed based on the Search Tool for the Retrieval of Interacting Genes database and visualized by Cytoscape software. In addition, we used the online Kaplan–Meier plotter survival analysis tool to evaluate the prognostic value of hub genes expression. HPA database was used to reveal the differences in protein level of hub genes. Results A total of 50 upregulated DEGs and 122 downregulated DEGs were identified. Among them, ten hub genes with a high degree of connectivity were picked out. Overexpression of these hub genes was associated with unfavorable prognosis of HCC. Conclusion Our study suggests that CCNB2, CDC20, AURKA, TOP2A, MELK, NCAPG, KIF20A, UBE2C, PRC1, and ASPM were overexpressed in HCC compared with normal liver tissue. Overexpression of these genes was an unfavorable prognostic factor of HCC patients. Further study is needed to explore the value of them in the diagnosis and treatment of HCC. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/6-kRy19SREg
Collapse
Affiliation(s)
- Zhiqiang Yang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinglang Wu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Junbo Li
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiang Zheng
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Junwei Niu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shengwei Li
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
22
|
Wang J, Wang C, Yang L, Li K. Identification of the critical genes and miRNAs in hepatocellular carcinoma by integrated bioinformatics analysis. Med Oncol 2022; 39:21. [PMID: 34982264 DOI: 10.1007/s12032-021-01622-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a global health problem with complex etiology and pathogenesis. Microarray data are increasingly being used as a novel and effective method for cancer pathogenesis analysis. An integrative analysis of genes and miRNA for HCC was conducted to unravel the potential prognosis of HCC. Two gene microarray datasets (GSE89377 and GSE101685) and two miRNA expression profiles (GSE112264 and GSE113740) were obtained from Gene Expression Omnibus database. A total of 177 differently expressed genes (DEGs) and 80 differently expressed miRNAs (DEMs) were screened out. Functional enrichment of DEGs was proceeded by Clue GO and these genes were significantly enriched in the chemical carcinogenesis pathway. A protein-protein interaction network was then established on the STRING platform, and ten hub genes (CDC20, TOP2A, ASPM, NCAPG, AURKA, CYP2E1, HMMR, PRC1, TYMS, and CYP4A11) were visualized via Cytoscape software. Then, a miRNA-target network was established to identify the hub dysregulated miRNA. A key miRNA (hsa-miR-124-3p) was filtered. Finally, the miRNA-target-transcription factor network was constructed for hsa-miR-124-3p. The network for hsa-miR-124-3p included two transcription factors (TFs) and five targets. These identified DEGs and DEMs, TFs, targets, and regulatory networks may help advance our understanding of the underlying pathogenesis of HCC.
Collapse
Affiliation(s)
- Jun Wang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China.
| | - Chuyan Wang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China
| | - Liuqing Yang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China
| | - Kexin Li
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China
| |
Collapse
|
23
|
Liu C, Yan Y, Di F, Li W, Yin X, Dong L. Inhibition of NCAPG expression inactivates the Wnt/β-catenin signal to suppresses endometrial cancer cell growth in vitro. ENVIRONMENTAL TOXICOLOGY 2021; 36:2512-2520. [PMID: 34480403 DOI: 10.1002/tox.23364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Endometrial cancer (EC) ranks as the most prevalent malignancy occurring in the female genital tract. Non-SMC condensin I complex subunit G (NCAPG), a mitotic associated chromosomal condensing protein, is reported to be frequently abnormally expressed in several tumors and plays a vital role in carcinogenesis. Our study aimed to explore the effect of NCAPG on cell proliferation and apoptosis in EC cells and to determine the underlying mechanism. Expression and survival data of NCAPG in EC tissues were analyzed by bioinformatics methods. Cell proliferation was evaluated by EdU and CCK-8 assays. Apoptosis was assessed by flow cytometry analysis. Expression of NCAPG, proliferating cell nuclear antigen (PCNA), Ki67, Bcl-2, Bax, active caspase-3, active β-catenin, and c-Myc were determined by western blotting. NCAPG was highly expressed in EC tissues and cells and predicted poor survival for EC patients. NCAPG knockdown inhibited cell proliferation and induced apoptosis in EC cells. Additionally, NCAPG knockdown inactivated the Wnt/β-catenin pathway in EC cells. Mechanistically, β-catenin overexpression blocked the tumorigenic effects of NCAPG in EC cells. In conclusion, NCAPG silencing inhibited cell proliferation and induced apoptosis in EC cells via inhibiting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Cong Liu
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Yani Yan
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Fusheng Di
- Department of Endocrinology, Tianjin Third Central Hospital, Tianjin, China
| | - Weiwei Li
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Xiurong Yin
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Lixia Dong
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
24
|
Abstract
Hepatocellular carcinoma (HCC) is a very deadly disease. HCC initiation and progression involve multiple genetic events, including the activation of proto-oncogenes and disruption of the function of specific tumor suppressor genes. Activation of oncogenes stimulates cell growth and survival, while loss-of-function mutations of tumor suppressor genes result in unrestrained cell growth. In this review, we summarize the new findings that identified novel proto-oncogenes and tumor suppressors in HCC over the past five years. These findings may inspire the development of novel therapeutic strategies to improve the outcome of HCC patients.
Collapse
|
25
|
Xu X, Liu C, Wang Y, Koivisto O, Zhou J, Shu Y, Zhang H. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv Drug Deliv Rev 2021; 176:113891. [PMID: 34324887 DOI: 10.1016/j.addr.2021.113891] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9) is a potent technology for gene-editing. Owing to its high specificity and efficiency, CRISPR/Cas9 is extensity used for human diseases treatment, especially for cancer, which involves multiple genetic alterations. Different concepts of cancer treatment by CRISPR/Cas9 are established. However, significant challenges remain for its clinical applications. The greatest challenge for CRISPR/Cas9 therapy is how to safely and efficiently deliver it to target sites in vivo. Nanotechnology has greatly contributed to cancer drug delivery. Here, we present the action mechanisms of CRISPR/Cas9, its application in cancer therapy and especially focus on the nanotechnology-based delivery of CRISPR/Cas9 for cancer gene editing and immunotherapy to pave the way for its clinical translation. We detail the difficult barriers for CRISIR/Cas9 delivery in vivo and discuss the relative solutions for encapsulation, target delivery, controlled release, cellular internalization, and endosomal escape.
Collapse
Affiliation(s)
- Xiaoyu Xu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China; Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Chang Liu
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Yonghui Wang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Oliver Koivisto
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Junnian Zhou
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland; Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland.
| |
Collapse
|
26
|
Wu Y, Lin Y, Pan J, Tu X, Xu Y, Li H, Chen Y. NCAPG promotes the progression of lung adenocarcinoma via the TGF-β signaling pathway. Cancer Cell Int 2021; 21:443. [PMID: 34419073 PMCID: PMC8380402 DOI: 10.1186/s12935-021-02138-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Background Lung cancer has the highest case fatality rate among cancers because of uncontrolled proliferation and early metastasis of cancer cells in the lung tissue. This study aimed to clarify the role of the non-SMC condensin I complex, subunit G (NCAPG) in lung adenocarcinoma (LUAD), explore the mechanisms of its progression, and lay the foundation for the search for new biological markers. Methods We analyzed overlapping differentially expressed genes (DEGs) from three datasets; a protein–protein interaction (PPI) network was subsequently constructed and analyzed using Cytoscape. We then selected NCAPG for validation because of its poor prognosis and because it has not been sufficiently studied in the context of LUAD. Immunohistochemical analysis was used to detect the expression of NCAPG in LUAD tissues, and the relationships between NCAPG and clinical parameters were analyzed. In vitro and in vivo experiments were conducted to verify the role of NCAPG in LUAD. Finally, we studied the specific mechanism of action of NCAPG in LUAD. Results Through comprehensive analysis of the GSE43458, GSE75037, and The Cancer Genome Atlas databases, we identified 517 overlapping DEGs. Among them, NCAPG was identified as a hub gene. Immunohistochemical analysis revealed that NCAPG was strongly associated with the clinical stage, M-classification, and N-classification. Univariate and multivariate Cox regression analyses indicated that NCAPG was a prognostic risk factor for LUAD, while the in vitro experiments showed that NCAPG overexpression promoted proliferation, migration, invasion, and epithelial-mesenchymal transition. Furthermore, knockdown of NCAPG inhibited LUAD progression, both in vitro and in vivo. Mechanistically, NCAPG overexpression increased p-Smad2 and p-Smad3 expressions in the transforming growth factor β (TGF-β) signaling pathway. Additionally, rescue experiments indicated that TGF-β signaling pathway inhibitors could restore the effect of NCAPG overexpression in LUAD cells. Conclusions NCAPG may promote proliferation and migration via the TGF-β signaling pathway in LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02138-w.
Collapse
Affiliation(s)
- Yun Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Ying Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Junfan Pan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Xunwei Tu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yiquan Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Hongru Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China. .,Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, 350001, China. .,Fujian Provincial Researching Laboratory of Respiratory Diseases, Fuzhou, 350001, China.
| | - Yusheng Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China. .,Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, 350001, China. .,Fujian Provincial Researching Laboratory of Respiratory Diseases, Fuzhou, 350001, China.
| |
Collapse
|
27
|
Wu J, Zhang G, Xiong H, Zhang Y, Ding G, Ge J. miR-181c-5p mediates apoptosis of vascular endothelial cells induced by hyperoxemia via ceRNA crosstalk. Sci Rep 2021; 11:16582. [PMID: 34400675 PMCID: PMC8368219 DOI: 10.1038/s41598-021-95712-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oxygen therapy has been widely used in clinical practice, especially in anesthesia and emergency medicine. However, the risks of hyperoxemia caused by excessive O2 supply have not been sufficiently appreciated. Because nasal inhalation is mostly used for oxygen therapy, the pulmonary capillaries are often the first to be damaged by hyperoxia, causing many serious consequences. Nevertheless, the molecular mechanism by which hyperoxia injures pulmonary capillary endothelial cells (LMECs) has not been fully elucidated. Therefore, we systematically investigated these issues using next-generation sequencing and functional research techniques by focusing on non-coding RNAs. Our results showed that hyperoxia significantly induced apoptosis and profoundly affected the transcriptome profiles of LMECs. Hyperoxia significantly up-regulated miR-181c-5p expression, while down-regulated the expressions of NCAPG and lncRNA-DLEU2 in LMECs. Moreover, LncRNA-DLEU2 could bind complementarily to miR-181c-5p and acted as a miRNA sponge to block the inhibitory effect of miR-181c-5p on its target gene NCAPG. The down-regulation of lncRNA-DLEU2 induced by hyperoxia abrogated its inhibition of miR-181c-5p function, which together with the hyperoxia-induced upregulation of miR-181c-5p, all these significantly decreased the expression of NCAPG, resulting in apoptosis of LMECs. Our results demonstrated a ceRNA network consisting of lncRNA-DLEU2, miR-181c-5p and NCAPG, which played an important role in hyperoxia-induced apoptosis of vascular endothelial injury. Our findings will contribute to the full understanding of the harmful effects of hyperoxia and to find ways for effectively mitigating its deleterious effects.
Collapse
Affiliation(s)
- Jizhi Wu
- Department of Anesthesiology, Shandong Second Provincial General Hospital, Jinan, Shandong People’s Republic of China
| | - Guangqi Zhang
- Department of Anesthesiology, Jinan Second People’s Hospital, No. 148 Jingyi Road, Jinan, 250021 Shandong People’s Republic of China
| | - Hui Xiong
- grid.440144.10000 0004 1803 8437Department of Pediatric Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong People’s Republic of China
| | - Yuguang Zhang
- Eye Reseach Institute, Jinan Eye Hospital, Jinan, Shandong People’s Republic of China
| | - Gang Ding
- Ophthalmology, Jinan Eye Hospital, Jinan, Shandong People’s Republic of China
| | - Junfeng Ge
- Department of Anesthesiology, Jinan Second People’s Hospital, No. 148 Jingyi Road, Jinan, 250021 Shandong People’s Republic of China
| |
Collapse
|
28
|
Gao Y, Chang X, Xia J, Sun S, Mu Z, Liu X. Identification of HCC-Related Genes Based on Differential Partial Correlation Network. Front Genet 2021; 12:672117. [PMID: 34335688 PMCID: PMC8320536 DOI: 10.3389/fgene.2021.672117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death, but its pathogenesis is still unclear. As the disease is involved in multiple biological processes, systematic identification of disease genes and module biomarkers can provide a better understanding of disease mechanisms. In this study, we provided a network-based approach to integrate multi-omics data and discover disease-related genes. We applied our method to HCC data from The Cancer Genome Atlas (TCGA) database and obtained a functional module with 15 disease-related genes as network biomarkers. The results of classification and hierarchical clustering demonstrate that the identified functional module can effectively distinguish between the disease and the control group in both supervised and unsupervised methods. In brief, this computational method to identify potential functional disease modules could be useful to disease diagnosis and further mechanism study of complex diseases.
Collapse
Affiliation(s)
- Yuyao Gao
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou, China
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Xiao Chang
- Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, China
| | - Jie Xia
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shaoyan Sun
- School of Mathematics and Statistics, Ludong University, Yantai, China
| | - Zengchao Mu
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Xiaoping Liu
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou, China
- School of Mathematics and Statistics, Shandong University, Weihai, China
| |
Collapse
|
29
|
Lei X, Zhang M, Guan B, Chen Q, Dong Z, Wang C. Identification of hub genes associated with prognosis, diagnosis, immune infiltration and therapeutic drug in liver cancer by integrated analysis. Hum Genomics 2021; 15:39. [PMID: 34187556 PMCID: PMC8243535 DOI: 10.1186/s40246-021-00341-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Liver cancer is one of the most common cancers and causes of cancer death worldwide. The objective was to elucidate novel hub genes which were benefit for diagnosis, prognosis, and targeted therapy in liver cancer via integrated analysis. METHODS GSE84402, GSE101685, and GSE112791 were filtered from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified by using the GEO2R. The GO and KEGG pathway of DEGs were analyzed in the DAVID. PPI and TF network of the DEGs were constructed by using the STRING, TRANSFAC, and Harmonizome. The relationship between hub genes and prognoses in liver cancer was analyzed in UALCAN based on The Cancer Genome Atlas (TCGA). The diagnostic value of hub genes was evaluated by ROC. The relationship between hub genes and tumor-infiltrate lymphocytes was analyzed in TIMER. The protein levels of hub genes were verified in HPA. The interaction between the hub genes and the drug were identified in DGIdb. RESULTS In total, 108 upregulated and 60 downregulated DEGs were enriched in 148 GO terms and 20 KEGG pathways. The mRNA levels and protein levels of CDK1, HMMR, PTTG1, and TTK were higher in liver cancer tissues compared to normal tissues, which showed excellent diagnostic and prognostic value. CDK1, HMMR, PTTG1, and TTK were positively correlated with tumor-infiltrate lymphocytes, which might involve tumor immune response. The CDK1, HMMR, and TTK had close interaction with anticancer agents. CONCLUSIONS The CDK1, HMMR, PTTG1, and TTK were hub genes in liver cancer; hence, they might be potential biomarkers for diagnosis, prognosis, and targeted therapy of liver cancer.
Collapse
Affiliation(s)
- Xinyi Lei
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China
| | - Miao Zhang
- Department of Respiratory, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Bingsheng Guan
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China
| | - Qiang Chen
- Department of Oncology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhiyong Dong
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China.
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China.
| |
Collapse
|
30
|
Yang L, Yin W, Liu X, Li F, Ma L, Wang D, Li H. Identification of a five-gene signature in association with overall survival for hepatocellular carcinoma. PeerJ 2021; 9:e11273. [PMID: 33986994 PMCID: PMC8088210 DOI: 10.7717/peerj.11273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is considered to be a malignant tumor with a high incidence and a high mortality. Accurate prognostic models are urgently needed. The present study was aimed at screening the critical genes for prognosis of HCC. Methods The GSE25097, GSE14520, GSE36376 and GSE76427 datasets were obtained from Gene Expression Omnibus (GEO). We used GEO2R to screen differentially expressed genes (DEGs). A protein-protein interaction network of the DEGs was constructed by Cytoscape in order to find hub genes by module analysis. The Metascape was performed to discover biological functions and pathway enrichment of DEGs. MCODE components were calculated to construct a module complex of DEGs. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. ONCOMINE was employed to assess the mRNA expression levels of key genes in HCC, and the survival analysis was conducted using the array from The Cancer Genome Atlas (TCGA) of HCC. Then, the LASSO Cox regression model was performed to establish and identify the prognostic gene signature. We validated the prognostic value of the gene signature in the TCGA cohort. Results We screened out 10 hub genes which were all up-regulated in HCC tissue. They mainly enrich in mitotic cell cycle process. The GSEA results showed that these data sets had good enrichment score and significance in the cell cycle pathway. Each candidate gene may be an indicator of prognostic factors in the development of HCC. However, hub genes expression was weekly associated with overall survival in HCC patients. LASSO Cox regression analysis validated a five-gene signature (including CDC20, CCNB2, NCAPG, ASPM and NUSAP1). These results suggest that five-gene signature model may provide clues for clinical prognostic biomarker of HCC.
Collapse
Affiliation(s)
- Lei Yang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Weilong Yin
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Xuechen Liu
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Fangcun Li
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Li Ma
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Dong Wang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Hongxing Li
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
31
|
Feng T, Wei D, Li Q, Yang X, Han Y, Luo Y, Jiang Y. Four Novel Prognostic Genes Related to Prostate Cancer Identified Using Co-expression Structure Network Analysis. Front Genet 2021; 12:584164. [PMID: 33927744 PMCID: PMC8078837 DOI: 10.3389/fgene.2021.584164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies for males, but very little is known about its pathogenesis. This study aimed to identify novel biomarkers associated with PCa prognosis and elucidate the underlying molecular mechanism. First, The Cancer Genome Atlas (TCGA) RNA-sequencing data were utilized to identify differentially expressed genes (DEGs) between tumor and normal samples. The DEGs were then applied to construct a co-expression and mined using structure network analysis. The magenta module that was highly related to the Gleason score (r = 0.46, p = 3e-26) and tumor stage (r = 0.38, p = 2e-17) was screened. Subsequently, all genes of the magenta module underwent function annotation. From the key module, CCNA2, CKAP2L, NCAPG, and NUSAP1 were chosen as the four candidate genes. Finally, internal (TCGA) and external data sets (GSE32571, GSE70770, and GSE141551) were combined to validate and predict the value of real hub genes. The results show that the above genes are up-regulated in PCa samples, and higher expression levels show significant association with higher Gleason scores and tumor T stage. Moreover, receiver operating characteristic curve and survival analysis validate the excellent value of hub genes in PCa progression and prognosis. In addition, the protein levels of these four genes also remain higher in tumor tissues when compared with normal tissues. Gene set enrichment analysis and gene set variation analysis for a single gene reveal the close relation with cell proliferation. Meanwhile, 11 small molecular drugs that have the potential to treat PCa were also screened. In conclusion, our research identified four potential prognostic genes and several candidate molecular drugs for treating PCa.
Collapse
Affiliation(s)
- Tao Feng
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Dechao Wei
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qiankun Li
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaobing Yang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yili Han
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yong Luo
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Jiang N, Zhang X, Qin D, Yang J, Wu A, Wang L, Sun Y, Li H, Shen X, Lin J, Kantawong F, Wu J. Identification of Core Genes Related to Progression and Prognosis of Hepatocellular Carcinoma and Small-Molecule Drug Predication. Front Genet 2021; 12:608017. [PMID: 33708237 PMCID: PMC7940693 DOI: 10.3389/fgene.2021.608017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most leading causes of cancer death with a poor prognosis. However, the underlying molecular mechanisms are largely unclear, and effective treatment for it is limited. Using an integrated bioinformatics method, the present study aimed to identify the key candidate prognostic genes that are involved in HCC development and identify small-molecule drugs with treatment potential. Methods and Results In this study, by using three expression profile datasets from Gene Expression Omnibus database, 1,704 differentially expressed genes were identified, including 671 upregulated and 1,033 downregulated genes. Then, weighted co-expression network analysis revealed nine modules are related with pathological stage; turquoise module was the most associated module. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analyses (KEGG) indicated that these genes were enriched in cell division, cell cycle, and metabolic related pathways. Furthermore, by analyzing the turquoise module, 22 genes were identified as hub genes. Based on HCC data from gene expression profiling interactive analysis (GEPIA) database, nine genes associated with progression and prognosis of HCC were screened, including ANLN, BIRC5, BUB1B, CDC20, CDCA5, CDK1, NCAPG, NEK2, and TOP2A. According to the Human Protein Atlas and the Oncomine database, these genes were highly upregulated in HCC tumor samples. Moreover, multivariate Cox regression analysis showed that the risk score based on the gene expression signature of these nine genes was an independent prognostic factor for overall survival and disease-free survival in HCC patients. In addition, the candidate small-molecule drugs for HCC were identified by the CMap database. Conclusion In conclusion, the nine key gene signatures related to HCC progression and prognosis were identified and validated. The cell cycle pathway was the core pathway enriched with these key genes. Moreover, several candidate molecule drugs were identified, providing insights into novel therapeutic approaches for HCC.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,School of Pharmacy, Southwest Medical University, Luzhou, China.,International Education School, Southwest Medical University, Luzhou, China
| | - Xinzhuo Zhang
- International Education School, Southwest Medical University, Luzhou, China
| | - Dalian Qin
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jing Yang
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Long Wang
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Yueshan Sun
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Hong Li
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Xin Shen
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jing Lin
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
33
|
Dong M, Xu T, Cui X, Li H, Li X, Xia W. NCAPG upregulation mediated by four microRNAs combined with activation of the p53 signaling pathway is a predictor of poor prognosis in patients with breast cancer. Oncol Lett 2021; 21:323. [PMID: 33692855 PMCID: PMC7933778 DOI: 10.3892/ol.2021.12585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
The role of non-SMC condensin I complex subunit G (NCAPG) in breast cancer remains unclear. The present study used online databases, reverse transcription-quantitative PCR, flow cytometry and western blotting to determine the expression levels, prognosis and potential molecular mechanisms underlying the role of NCAPG in breast cancer. The association between NCAPG expression and several different clinicopathological parameters in patients with breast cancer was determined, and the results revealed that NCAPG expression was negatively associated with estrogen receptor and progesterone receptor positive status, but was positively associated with HER2 positive status, Nottingham Prognostic Index score and Scarff-Bloom-Richardson grade status. Furthermore, upregulated expression levels of NCAPG resulted in a poor prognosis in patients with breast cancer. A total of 27 microRNAs (miRNAs/miRs) were predicted to target NCAPG, among which four miRNAs (miR-101-3p, miR-195-5p, miR-214-3p and miR-944) were predicted to most likely regulate NCAPG expression in breast cancer. A total of 261 co-expressed genes of NCAPG were identified, including cell division cyclin 25 homolog C (CDC25C), and pathway enrichment analysis indicated that these co-expressed genes were significantly enriched in the p53 signaling pathway. CDC25C expression was downregulated in breast cancer and was associated with a poor prognosis. These findings suggested that upregulated NCAPG expression may be a prognostic biomarker of breast cancer.
Collapse
Affiliation(s)
- Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaoqing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wenfei Xia
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
34
|
Qiang W, Dai Y, Xing X, Sun X. Identification and validation of a prognostic signature and combination drug therapy for immunotherapy of head and neck squamous cell carcinoma. Comput Struct Biotechnol J 2021; 19:1263-1276. [PMID: 33717423 PMCID: PMC7921014 DOI: 10.1016/j.csbj.2021.01.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has become a promising therapeutic option for Head and neck squamous cell carcinoma (HNSC). However, only a small percentage of patients could benefit from it, and the overall prognosis was far from satisfactory. In this study, by comprehensively computational analyses of hundreds of HNSC samples, a prognostic signature composed of 13 immune-related genes (IRGs) was constructed. The results of the analyses in multiple datasets indicated that our signature had high predictive accuracy and could serve as an independent prognostic predictor. Based on this signature and multiple clinical variables, we also established a prognostic nomogram to quantitatively predict the survival risk of individual patients. Moreover, this signature could accurately predict survival, reflect the immune microenvironment, and predict immunotherapy efficacy among HNSC patients. Two potential drugs (doxorubicin and daunorubicin) were also identified via Connectivity Map and molecular docking, which could be used for HNSC combination therapy. Taken together, we developed and validated a robust IRG-based prognostic signature to monitor the prognosis of HNSC, which could provide a solid foundation for individualized cancer immunotherapy.
Collapse
Affiliation(s)
- Weijie Qiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China.,Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, PR China
| | - Yifei Dai
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Xiaoyan Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China.,Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, PR China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China.,Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, PR China
| |
Collapse
|
35
|
Luo H, Lin Y, Liu T, Lai FL, Zhang CT, Gao F, Zhang R. DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools. Nucleic Acids Res 2021; 49:D677-D686. [PMID: 33095861 PMCID: PMC7779065 DOI: 10.1093/nar/gkaa917] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Essential genes refer to genes that are required by an organism to survive under specific conditions. Studies of the minimal-gene-set for bacteria have elucidated fundamental cellular processes that sustain life. The past five years have seen a significant progress in identifying human essential genes, primarily due to the successful use of CRISPR/Cas9 in various types of human cells. DEG 15, a new release of the Database of Essential Genes (www.essentialgene.org), has provided major advancements, compared to DEG 10. Specifically, the number of eukaryotic essential genes has increased by more than fourfold, and that of prokaryotic ones has more than doubled. Of note, the human essential-gene number has increased by more than tenfold. Moreover, we have developed built-in analysis modules by which users can perform various analyses, such as essential-gene distributions between bacterial leading and lagging strands, sub-cellular localization distribution, enrichment analysis of gene ontology and KEGG pathways, and generation of Venn diagrams to compare and contrast gene sets between experiments. Additionally, the database offers customizable BLAST tools for performing species- and experiment-specific BLAST searches. Therefore, DEG comprehensively harbors updated human-curated essential-gene records among prokaryotes and eukaryotes with built-in tools to enhance essential-gene analysis.
Collapse
Affiliation(s)
- Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Yan Lin
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Tao Liu
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Fei-Liao Lai
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Chun-Ting Zhang
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
36
|
Chen H, Wu J, Lu L, Hu Z, Li X, Huang L, Zhang X, Chen M, Qin X, Xie L. Identification of Hub Genes Associated With Immune Infiltration and Predict Prognosis in Hepatocellular Carcinoma via Bioinformatics Approaches. Front Genet 2021; 11:575762. [PMID: 33505422 PMCID: PMC7831279 DOI: 10.3389/fgene.2020.575762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Aims In the cancer-related research field, there is currently a major need for a greater number of valuable biomarkers to predict the prognosis of hepatocellular carcinoma (HCC). In this study, we aimed to screen hub genes related to immune cell infiltration and explore their prognostic value for HCC. Methods We analyzed five datasets (GSE46408, GSE57957, GSE74656, GSE76427, and GSE87630) from the Gene Expression Omnibus database to screen the differentially expressed genes (DEGs). A protein-protein interaction network of the DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes; then, the hub genes were identified. Functional enrichment of the genes was performed on the Metascape website. Next, the expression of these hub genes was validated in several databases, including Oncomine, Gene Expression Profiling Interactive Analysis 2 (GEPIA2), and Human Protein Atlas. We explored the correlations between the hub genes and infiltrated immune cells in the TIMER2.0 database. The survival curves were generated in GEPIA2, and the univariate and multivariate Cox regression analyses were performed using TIMER2.0. Results The top ten hub genes [DNA topoisomerase II alpha (TOP2A), cyclin B2 (CCNB2), protein regulator of cytokinesis 1 (PRC1), Rac GTPase-activating protein 1 (RACGAP1), aurora kinase A (AURKA), cyclin-dependent kinase inhibitor 3 (CDKN3), nucleolar and spindle-associated protein 1 (NUSAP1), cell division cycle-associated 5 (CDCA5), abnormal spindle microtubule assembly (ASPM), and non-SMC condensin I complex subunit G (NCAPG)] were identified in subsequent analysis. These genes are most markedly enriched in cell division, suggesting their close association with tumorigenesis. Multi-database analyses validated that the hub genes were upregulated in HCC tissues. All hub genes positively correlated with several types of immune infiltration, including B cells, CD4+ T cells, macrophages, and dendritic cells. Furthermore, these hub genes served as independent prognostic factors, and the expression of these hub genes combing with the macrophage levels could help predict an unfavorable prognosis of HCC. Conclusion In sum, these hub genes (TOP2A, CCNB2, PRC1, RACGAP1, AURKA, CDKN3, NUSAP1, CDCA5, ASPM, and NCAPG) may be pivotal markers for prognostic prediction as well as potentially work as targets for immune-based intervention strategies in HCC.
Collapse
Affiliation(s)
- Huaping Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junrong Wu
- Department of Clinical Laboratory, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Liuyi Lu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zuojian Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xi Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaolian Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingxing Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Xie
- Department of Clinical Laboratory, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
37
|
Zhou Y, Jin X, Ma J, Ding D, Huang Z, Sheng H, Yan Y, Pan Y, Wei T, Wang L, Wu H, Huang H. HDAC5 Loss Impairs RB Repression of Pro-Oncogenic Genes and Confers CDK4/6 Inhibitor Resistance in Cancer. Cancer Res 2021; 81:1486-1499. [PMID: 33419772 DOI: 10.1158/0008-5472.can-20-2828] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022]
Abstract
The tumor-suppressor protein RB acts as a transcription repressor via interaction of its pocket domain with an LXCXE motif in histone deacetylase (HDAC) proteins such as HDAC1. Here, we demonstrate that HDAC5 deficient for the LXCXE motif interacts with both RB-N (via an FXXXV motif) and RB-C segments, and such interactions are diminished by phosphorylation of RB serine-249/threonine-252 and threonine-821. HDAC5 was frequently downregulated or deleted in human cancers such as prostate cancer. Loss of HDAC5 increased histone H3 lysine 27 acetylation (H3K27-ac) and circumvented RB-mediated repression of cell-cycle-related pro-oncogenic genes. HDAC5 loss also conferred resistance to CDK4/6 inhibitors such as palbociclib in prostate and breast cancer cells in vitro and prostate tumors in vivo, but this effect was overcome by the BET-CBP/p300 dual inhibitor NEO2734. Our findings reveal an unknown role of HDAC5 in RB-mediated histone deacetylation and gene repression and define a new mechanism modulating CDK4/6 inhibitor therapeutic sensitivity in cancer cells. SIGNIFICANCE: This study defines a previously uncharacterized role of HDAC5 in tumor suppression and provides a viable strategy to overcome CDK4/6 inhibitor resistance in HDAC5-deficent cancer.
Collapse
Affiliation(s)
- Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Xin Jin
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Zhenlin Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Haoyue Sheng
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Ting Wei
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota. .,Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
38
|
Jiang X, Jiang Y, Luo S, Sekar K, Koh CKT, Deivasigamani A, Dong Q, Zhang N, Li S, Hao F, Goh BKP, Ooi LL, Wang Y, Hui KM. Correlation of NUF2 Over-expression with Poorer Patient Survival in Multiple Cancers. Cancer Res Treat 2021; 53:944-961. [PMID: 33421974 PMCID: PMC8524009 DOI: 10.4143/crt.2020.466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose NUF2 has been implicated in multiple cancers recently, suggesting NUF2 may play a role in the common tumorigenesis process. In this study, we aim to perform comprehensive meta-analysis of NUF2 expression in the cancer types included in the Cancer Genome Atlas (TCGA). Materials and Methods RNA-sequencing data in 31 cancer types in the TCGA data and 11 independent datasets were used to examine NUF2 expression. Silencing NUF2 using targeting shRNAs in hepatocellular carcinoma (HCC) cell lines was used to evaluate NUF2’s role in HCC in vitro and in vivo. Results NUF2 up-regulation is significantly observed in 23 out of the 31 cancer types in the TCGA datasets and validated in 13 major cancer types using 11 independent datasets. NUF2 overexpression was clinically important as high NUF2 was significantly associated with tumor stages in eight different cancers. High NUF2 was also associated with significantly poorer patient overall survival and disease-free survival in eight and six cancers, respectively. We proceeded to validate NUF2 overexpression and its negative association with overall survival at the protein level in an independent cohort of 40 HCC patients. Compared to the non-targeting controls, NUF2 knockdown cells showed significantly reduced ability to grow, migrate into a scratch wound and invade the 8 μm porous membrane in vitro. Moreover, NUF2 knockdown cells also formed significantly smaller tumors than control cells in mouse xenograft assays in vivo. Conclusion NUF2 up-regulation is a common feature of many cancers. The prognostic potential and functional impact of NUF2 up-regulation warrant further studies.
Collapse
Affiliation(s)
- Xiaodan Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Senbiao Luo
- Department of Oncological Surgery, Zhejiang Shangyu People's Hospital, Shaoxing, China
| | - Karthik Sekar
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Clara Kai Ting Koh
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Amudha Deivasigamani
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Qingzhe Dong
- Department of Biological Specimen Bank, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Niankai Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shenling Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengyun Hao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Brian Kim Poh Goh
- Department of Hepato-Pancreato-Biliary Surgery, Singapore General Hospital, Singapore
| | - London Lucien Ooi
- Department of Hepato-Pancreato-Biliary Surgery, Singapore General Hospital, Singapore
| | - Yu Wang
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Kam Man Hui
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore.,Duke-NUS Medical School, Singapore.,School of Medicine, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
39
|
Shi M, Dai WQ, Jia RR, Zhang QH, Wei J, Wang YG, Xiang SH, Liu B, Xu L. APC CDC20-mediated degradation of PHD3 stabilizes HIF-1a and promotes tumorigenesis in hepatocellular carcinoma. Cancer Lett 2021; 496:144-155. [PMID: 33039559 DOI: 10.1016/j.canlet.2020.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/10/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023]
Abstract
CDC20 regulates cell cycle progression by targeting key substrates for destruction, but its role in hepatocellular carcinoma (HCC) tumorigenesis remains to be explored. Here, by using weighted gene co-expression network analysis (WGCNA), we identified CDC20 as a hub gene in HCC. We demonstrated that CDC20 expression is correlated with HIF-1 activity and overall survival (OS) of clinic HCC patients. The activity of HIF-1 is regulated by the stability of HIF-1a subunit, which is hydroxylated by oxygen-dependent prolyl hydroxylase enzymes, the PHDs. In addition, we show that genetic ablation or pharmacological inhibition of CDC20 can accelerate the degradation of HIF-1a and impair VEGF secretion in HCC cells. Mechanistically, we found that CDC20 binds to the destruction-box (D-box) motif present in the PHD3 protein to promote its polyubiquitination and degradation. The depletion of endogenous PHD3 in CDC20 knockdown HCC cells greatly attenuated the decline of HIF-1a protein and restored the secretion of VEGF. In contrast, overexpression of a non-degradable PHD3 mutant significantly inhibited the proliferation of HCC cells both in vitro and in vivo. Collectively, our findings indicate that CDC20 plays a crucial role in the development of HCC by governing PHD3 protein.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cdc20 Proteins/genetics
- Cdc20 Proteins/metabolism
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/chemistry
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor-Proline Dioxygenases/genetics
- Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Prognosis
- Protein Stability
- Proteolysis
- Survival Rate
- Tumor Cells, Cultured
- Ubiquitination
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Wei-Qi Dai
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Rong-Rong Jia
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Qing-Hui Zhang
- Department of Clinical Laboratory, Kunshan First People's Hospital, Jiangsu University, Kunshan, 215300, China
| | - Jue Wei
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Yu-Gang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Shi-Hao Xiang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Ling Xu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China.
| |
Collapse
|
40
|
Hazafa A, Mumtaz M, Farooq MF, Bilal S, Chaudhry SN, Firdous M, Naeem H, Ullah MO, Yameen M, Mukhtiar MS, Zafar F. CRISPR/Cas9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci 2020; 263:118525. [PMID: 33031826 PMCID: PMC7533657 DOI: 10.1016/j.lfs.2020.118525] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most leading causes of death and a major public health problem, universally. According to accumulated data, annually, approximately 8.5 million people died because of the lethality of cancer. Recently, a novel RNA domain-containing endonuclease-based genome engineering technology, namely the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein-9 (Cas9) have been proved as a powerful technique in the treatment of cancer cells due to its multifunctional properties including high specificity, accuracy, time reducing and cost-effective strategies with minimum off-target effects. The present review investigates the overview of recent studies on the newly developed genome-editing strategy, CRISPR/Cas9, as an excellent pre-clinical therapeutic option in the reduction and identification of new tumor target genes in the solid tumors. Based on accumulated data, we revealed that CRISPR/Cas9 significantly inhibited the robust tumor cell growth (breast, lung, liver, colorectal, and prostate) by targeting the oncogenes, tumor-suppressive genes, genes associated to therapies by inhibitors, genes associated to chemotherapies drug resistance, and suggested that CRISPR/Cas9 could be a potential therapeutic target in inhibiting the tumor cell growth by suppressing the cell-proliferation, metastasis, invasion and inducing the apoptosis during the treatment of malignancies in the near future. The present review also discussed the current challenges and barriers, and proposed future recommendations for a better understanding.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Mumtaz
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Fras Farooq
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shahid Bilal
- Department of Agronomy, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sundas Nasir Chaudhry
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Musfira Firdous
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Huma Naeem
- Department of Computer Science, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Obaid Ullah
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Yameen
- Department of Biochemistry, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Shahid Mukhtiar
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fatima Zafar
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
41
|
Zhang X, Wang H, Han Y, Zhu M, Song Z, Zhan D, Jia J. NCAPG Induces Cell Proliferation in Cardia Adenocarcinoma via PI3K/AKT Signaling Pathway. Onco Targets Ther 2020; 13:11315-11326. [PMID: 33177839 PMCID: PMC7649252 DOI: 10.2147/ott.s276868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Previous studies have shown that non-SMC condensin I complex subunit G (NCAPG) overexpression is correlated to poor prognosis of multiple cancer types. Herein, we explored the underlying mechanism of NCAPG-mediated cardia adenocarcinoma (CA) proliferation and cell cycle regulation. Methods The protein profiling technology was used to analyze the gene expression in 20 CA and adjacent tissue samples. Differential genes were identified by bioinformatic analysis. Western blot and qRT-PCR-based analysis assessed the NCAPG expression levels in multiple CA cell lines. CA cell lines, SGC-7901 and AGS, were transfected with Lip 2000, and stably transfected cell lines were screened for NCAPG overexpression and downregulation. MTT and clone formation assays were employed to detect cell proliferation, and cell cycle phases were analyzed using flow cytometry. Western blot was performed to determine the NCAPG gene expression levels. Finally, we studied the tumorigenic effects of NCAPG in the mouse model and validated the cell experiment results using immunohistochemistry. Results A significant overexpression of NCAPG was found in CA tissues and CA cell lines. The outcomes of MTT and clone formation assays showed that NCAPG upregulation promoted cell proliferation. The outcomes of these analyses were further validated using nude mice as an in vivo tumor model. As per the outcome of Western blot and flow cytometry analysis, NCAPG regulated the G1 phase through the cyclins (CDK4, CDK6, and cyclin D1) overexpression and cell cycle inhibitors (P21 and P27) downregulation. Overexpressed NCAPG and silenced NCAPG, both in vitro and in vivo, resulted in abnormal activation of the PI3K/AKT signaling pathway in CA cells. We observed that NCAPG overexpression increased the levels of phosphorylated PI3K, AKT, and GSK3β; however, their total protein levels remained unchanged in CA cells. Conclusion As a CA oncogene, NCAPG promoted cell proliferation and regulated cell cycle through PI3K/AKT signaling pathway activation.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, People's Republic of China
| | - Hui Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, People's Republic of China
| | - Yajuan Han
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, People's Republic of China
| | - Mengqi Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, People's Republic of China
| | - Zaozhi Song
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, People's Republic of China
| | - Dankai Zhan
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, People's Republic of China
| | - Jianguang Jia
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, People's Republic of China
| |
Collapse
|
42
|
Dai Y, Qiang W, Lin K, Gui Y, Lan X, Wang D. An immune-related gene signature for predicting survival and immunotherapy efficacy in hepatocellular carcinoma. Cancer Immunol Immunother 2020; 70:967-979. [PMID: 33089373 DOI: 10.1007/s00262-020-02743-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks the fourth in terms of cancer-related mortality globally. Herein, in this research, we attempted to develop a novel immune-related gene signature that could predict survival and efficacy of immunotherapy for HCC patients. METHODS The transcriptomic and clinical data of HCC samples were downloaded from The Cancer Genome Atlas (TCGA) and GSE14520 datasets, followed by acquiring immune-related genes from the ImmPort database. Afterwards, an immune-related gene-based prognostic index (IRGPI) was constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) regression model. Kaplan-Meier survival curves as well as time-dependent receiver operating characteristic (ROC) curve were performed to evaluate its predictive capability. Besides, both univariate and multivariate analyses on overall survival for the IRGPI and multiple clinicopathologic factors were carried out, followed by the construction of a nomogram. Finally, we explored the possible correlation of IRGPI with immune cell infiltration or immunotherapy efficacy. RESULTS Analysis of 365 HCC samples identified 11 differentially expressed immune-related genes, which were selected to establish the IRGPI. Notably, it can predict the survival of HCC patients more accurately than published biomarkers. Furthermore, IRGPI can predict the infiltration of immune cells in the tumor microenvironment of HCC, as well as the response of immunotherapy. CONCLUSION Collectively, the currently established IRGPI can accurately predict survival, reflect the immune microenvironment, and predict the efficacy of immunotherapy among HCC patients.
Collapse
Affiliation(s)
- Yifei Dai
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Weijie Qiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Kequan Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yu Gui
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xun Lan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
43
|
Zhang X, Zhu M, Wang H, Song Z, Zhan D, Cao W, Han Y, Jia J. Overexpression of NCAPG inhibits cardia adenocarcinoma apoptosis and promotes epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway. Gene 2020; 766:145163. [PMID: 32980450 DOI: 10.1016/j.gene.2020.145163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/29/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cardia adenocarcinoma (CA) is a distinct form of gastric cancer, and the optimal means of treating it remains controversial. At present, the role of the condensation complex gene non-SMC condensin I complex subunit G (NCAPG) in CA is uncertain, and as such the present study was designed to elucidate its importance in this oncogenic context. METHODS We first used bioinformatics approaches to assess NCAPG expression profiles in CA using public databases. Protein profiling was also used to examine the expression of this protein in CA tumors and adjacent tissues from 20 patients. Then the expression of NCAPG in CA samples was quantified via qRT-PCR and Western blotting. NCAPG knockdown and overexpression in the SGC-7901 and AGS cell lines were subsequently performed, after which the expression of key proteins associated with epithelial-mesenchymal transition (EMT; E-cadherin, vimentin, N-cadherin, Snail, Slug) and the regulation of apoptotic responses (caspase-3, Bax, Bcl-2) was measured. The mechanistic role of NCAPG in CA was additionally studied by analyzing proteins associated with Wnt/β-catenin signaling including Wnt1, phosphorylated GSK3β, β-catenin, and phosphorylated β- catenin. The impact of NCAPG on the migration, survival, and invasion of CA cells was further examined. RESULTS CA samples exhibited high NCAPG expression. When this gene was overexpressed in cell lines, it reduced caspase-3, Bax, and E-cadherin levels whereas it elevated Bcl-2, vimentin, N-cadherin, Snail, and Slug levels. NCAPG overexpression also resulted in the enhanced expression of Wnt1, phosphorylated GSK3β, and total β-catenin and the reduced expression of phosphorylated β-catenin. The knockdown of NCAPG, in contrast, yielded the opposite phenotype. At a functional level, the overexpression of NCAPG improved the apoptotic resistance of CA cells while driving them to undergo EMT and to become more invasive and migratory. CONCLUSIONS NCAPG overexpression can promote EMT and suppress tumor cell apoptosis via the activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mengqi Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hui Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zaozhi Song
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Danka Zhan
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenjing Cao
- Department of Infection Disease, Bengbu Medical College, Bengbu, China
| | - Yajuan Han
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jianguang Jia
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
44
|
Liu B, Xiao Y, Li H, Zhang AL, Meng LB, Feng L, Zhao ZH, Ni XC, Fan B, Zhang XY, Zhao SB, Liu YB. Identification and Verification of Biomarker in Clear Cell Renal Cell Carcinoma via Bioinformatics and Neural Network Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6954793. [PMID: 32626756 PMCID: PMC7317307 DOI: 10.1155/2020/6954793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/10/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, which represents the 9th most frequently diagnosed cancer. However, the molecular mechanism of occurrence and development of ccRCC is indistinct. Therefore, the research aims to identify the hub biomarkers of ccRCC using numerous bioinformatics tools and functional experiments. METHODS The public data was downloaded from the Gene Expression Omnibus (GEO) database, and the differently expressed genes (DEGs) between ccRCC and normal renal tissues were identified with GEO2R. Protein-protein interaction (PPI) network of the DEGs was constructed, and hub genes were screened with cytoHubba. Then, ten ccRCC tumor samples and ten normal kidney tissues were obtained to verify the expression of hub genes with the RT-qPCR. Finally, the neural network model was constructed to verify the relationship among the genes. RESULTS A total of 251 DEGs and ten hub genes were identified. AURKB, CCNA2, TPX2, and NCAPG were highly expressed in ccRCC compared with renal tissue. With the increasing expression of AURKB, CCNA2, TPX2, and NCAPG, the pathological stage of ccRCC increased gradually (P < 0.05). Patients with high expression of AURKB, CCNA2, TPX2, and NCAPG have a poor overall survival. After the verification of RT-qPCR, the expression of hub genes was same as the public data. And there were strong correlations between the AURKB, CCNA2, TPX2, and NCAPG with the verification of the neural network model. CONCLUSION After the identification and verification, AURKB, CCNA2, TPX2, and NCAPG might be related to the occurrence and malignant progression of ccRCC.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| | - Yu Xiao
- School of Basic Medicine, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hao Li
- Department of Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ai-li Zhang
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| | - Ling-bing Meng
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lu Feng
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Zhi-hong Zhao
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| | - Xiao-chen Ni
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| | - Bo Fan
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| | - Xiao-yu Zhang
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| | - Shi-bin Zhao
- Department of Reproductive Medicine, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| | - Yi-bo Liu
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| |
Collapse
|
45
|
Xiao C, Gong J, Jie Y, Cao J, Chen Z, Li R, Chong Y, Hu B, Zhang Q. NCAPG Is a Promising Therapeutic Target Across Different Tumor Types. Front Pharmacol 2020; 11:387. [PMID: 32300299 PMCID: PMC7142249 DOI: 10.3389/fphar.2020.00387] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Background With the advent of CRISPR-Cas9 genome editing tool in gene therapy, identification of aberrantly expressed genes is of great value across various cancer types. Since a large number of patients may benefit from molecular targeted gene therapy. The purpose of this study was to identify aberrantly expressed genes across various cancer types, analyze prospective mechanisms and their correlation with survival outcomes. Results NCAPG was highly expressed in The Cancer Genome Atlas (TCGA) database, which includes the transcriptomes of 6,647 cancer and 647 normal tissue samples from 16 cancer types. Furthermore, a predicted NCAPG overexpression rate was also observed at the protein level in 16 tumor types. Importantly, high NCAPG level was significantly associated with unfavorable survival in various cancer types such as hepatocellular carcinoma (HCC), breast, lung or ovarian cancer. The multivariate analyses demonstrated that NCAPG, TNM, and Barcelona Clinic Liver Cancer (BCLC) staging were independent risk factors for mortality of patients with HCC. Moreover, functional and pathway enrichment analysis suggested that NCAPG was closely correlated with the pathways of cell cycle, cellular senescence, and mismatch repair. By weighted gene co-expression network analysis (WGCNA), we identified NCAPG as a hub gene in the turquoise module mostly related to the survival time of HCC samples. Conclusion To our knowledge, this study represents a comprehensive RNA-Seq analysis of several tumor types, revealing NCAPG as a promising molecular target. NCAPG overexpression may play important roles in carcinogenesis and progression of tumors via regulating tumor-related pathways, thereby broadening the understanding of the pathogenic mechanisms and highlighting the possibility of developing novel targeted therapeutics.
Collapse
Affiliation(s)
- Cuicui Xiao
- Cell-Gene Therapy Translational Medicine Research Center, Key Laboratory of Liver Disease of Guangdong Province, Guangzhou, China
| | - Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yusheng Jie
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Cao
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongcheng Chen
- Department of Laboratory Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rong Li
- Cell-Gene Therapy Translational Medicine Research Center, Key Laboratory of Liver Disease of Guangdong Province, Guangzhou, China
| | - Yutian Chong
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Hu
- Department of Laboratory Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Cell-Gene Therapy Translational Medicine Research Center, Key Laboratory of Liver Disease of Guangdong Province, Guangzhou, China
| |
Collapse
|
46
|
Xiong Y, Yuan L, Xiong J, Xu H, Luo Y, Wang G, Ju L, Xiao Y, Wang X. An outcome model for human bladder cancer: A comprehensive study based on weighted gene co-expression network analysis. J Cell Mol Med 2019; 24:2342-2355. [PMID: 31883309 PMCID: PMC7011142 DOI: 10.1111/jcmm.14918] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 01/01/2023] Open
Abstract
The precision evaluation of prognosis is crucial for clinical treatment decision of bladder cancer (BCa). Therefore, establishing an effective prognostic model for BCa has significant clinical implications. We performed WGCNA and DEG screening to initially identify the candidate genes. The candidate genes were applied to construct a LASSO Cox regression analysis model. The effectiveness and accuracy of the prognostic model were tested by internal/external validation and pan‐cancer validation and time‐dependent ROC. Additionally, a nomogram based on the parameter selected from univariate and multivariate cox regression analysis was constructed. Eight genes were eventually screened out as progression‐related differentially expressed candidates in BCa. LASSO Cox regression analysis identified 3 genes to build up the outcome model in E‐MTAB‐4321 and the outcome model had good performance in predicting patient progress free survival of BCa patients in discovery and test set. Subsequently, another three datasets also have a good predictive value for BCa patients' OS and DFS. Time‐dependent ROC indicated an ideal predictive accuracy of the outcome model. Meanwhile, the nomogram showed a good performance and clinical utility. In addition, the prognostic model also exhibits good performance in pan‐cancer patients. Our outcome model was the first prognosis model for human bladder cancer progression prediction via integrative bioinformatics analysis, which may aid in clinical decision‐making.
Collapse
Affiliation(s)
- Yaoyi Xiong
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lushun Yuan
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jing Xiong
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Huimin Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
47
|
Zou H, Liao M, Xu W, Yao R, Liao W. Data mining of the expression and regulatory role of BCAT1 in hepatocellular carcinoma. Oncol Lett 2019; 18:5879-5888. [PMID: 31788061 PMCID: PMC6865021 DOI: 10.3892/ol.2019.10932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
Branched chain amino acid transaminase 1 (BCAT1) catalyzes the production of glutamates and branched-chain α-ketoacids from branched chain amino acids, and a normal BCAT1 expression is associated with tumorigenesis. Sequencing data from public databases, including The Cancer Genome Atlas, was used to analyze BCAT1 expression and regulation networks for hepatocellular carcinoma (HCC). Expression and methylation were assessed using UALCAN analysis, and data from multiple datasets concerning the BCAT1 expression level and associated survival rates were further analyzed using HCCDB; interaction networks of biological function were constructed using GeneMANIA. LinkedOmics was used to indicate correlations between BCAT1 and any identified differentially expressed genes. Gene enrichment analysis of BCAT-associated genes was conducted using the Web-based Gene SeT AnaLysis Toolkit. The expression levels of BCAT1 were increased in patients with HCC and in most cases, the level of BCAT1 promoter methylation was reduced. Interaction network analysis suggested that BCAT1 was involved in ‘metabolism’, ‘carcinogenesis’ and the ‘immune response’ via numerous cancer-associated pathways. The present study revealed the expression patterns and potential function networks of BCAT1 in HCC, providing insights for future research into the role of BCAT1 in hepatocarcinogenesis. In addition, the study provided researchers with a way to analyze the genes of interest so they can continue their research in the right direction.
Collapse
Affiliation(s)
- Haifan Zou
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China.,Scientific Experiment Center, Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Minjun Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China.,Clinical School of Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wentao Xu
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Renzhi Yao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|