1
|
Peter RM, Sarwar MS, Wang L, Chou P, Wang C, Wang Y, Su X, Kong AN. Dietary phytochemical indole-3-carbinol regulates metabolic reprogramming in mouse prostate tissue. Pharm Res 2025; 42:237-247. [PMID: 39904853 PMCID: PMC11880055 DOI: 10.1007/s11095-025-03820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE Indole-3-carbinol (I3C) is shown to possess multiple pharmacological activities such as anti-inflammatory, antimicrobial, antioxidant, antiviral, and anti-cancer activities. It is widely accepted as modulator of multiple signaling pathways particularly those related to cell cycle, cell growth and division, angiogenesis, apoptosis and immunity. We explored the metabolic reprogramming based on treatment with I3C in mice prostate tissue. METHODS In this study we utilized Pten knockout (KO)-induced prostate tumorigenesis mouse model to examine mechanism of action of I3C via metabolic rewiring. Phosphatase and tensin homolog deleted on chromosome 10 (Pten), a tumor suppressor gene is frequently found to be mutated or deleted in prostate cancer. Untargeted metabolomics was performed using liquid-chromatography mass-spectrometry (LC-MS) based platform to investigate Pten-dependent and Pten-independent metabolic targets of I3C. RESULTS The most impacted pathways by I3C included pyrimidine metabolism, arginine and proline metabolism, porphyrin metabolism, citrate cycle and lipoic acid metabolism. CONCLUSION These pathways taken together help in understanding the overall health beneficial effects of I3C.
Collapse
Affiliation(s)
- Rebecca Mary Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA
| | - Pochung Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA
| | - Chao Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA.
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Jordan Chou P, Mary Peter R, Shannar A, Pan Y, Dushyant Dave P, Xu J, Shahid Sarwar M, Kong AN. Epigenetics of Dietary Phytochemicals in Cancer Prevention: Fact or Fiction. Cancer J 2024; 30:320-328. [PMID: 39312452 PMCID: PMC11573353 DOI: 10.1097/ppo.0000000000000742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ABSTRACT Cancer development takes 10 to 50 years, and epigenetics plays an important role. Recent evidence suggests that ~80% of human cancers are linked to environmental factors impinging upon genetics/epigenetics. Because advanced metastasized cancers are resistant to radiation/chemotherapeutic drugs, cancer prevention by relatively nontoxic "epigenetic modifiers" will be logical. Many dietary phytochemicals possess powerful antioxidant and anti-inflammatory properties that are hallmarks of cancer prevention. Dietary phytochemicals can regulate gene expression of the cellular genome via epigenetic mechanisms. In this review, we will summarize preclinical studies that demonstrate epigenetic mechanisms of dietary phytochemicals in skin, colorectal, and prostate cancer prevention. Key examples of the importance of epigenetic regulation in carcinogenesis include hypermethylation of the NRF2 promoter region in cancer cells, resulting in inhibition of NRF2-ARE signaling. Many dietary phytochemicals demethylate NRF2 promoter region and restore NRF2 signaling. Phytochemicals can also inhibit inflammatory responses via hypermethylation of inflammation-relevant genes to block gene expression. Altogether, dietary phytochemicals are excellent candidates for cancer prevention due to their low toxicity, potent antioxidant and anti-inflammatory properties, and powerful epigenetic effects in reversing procarcinogenic events.
Collapse
Affiliation(s)
- PoChung Jordan Chou
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rebecca Mary Peter
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuxin Pan
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Parv Dushyant Dave
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jiawei Xu
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Kafle A, Suttiprapa S, Muhammad M, Tenorio JCB, Mahato RK, Sahimin N, Loong SK. Epigenetic Biomarkers and the Wnt/β-Catenin Pathway in Opisthorchis viverrini-associated Cholangiocarcinoma: A Scoping Review on Therapeutic Opportunities. PLoS Negl Trop Dis 2024; 18:e0012477. [PMID: 39236081 PMCID: PMC11407677 DOI: 10.1371/journal.pntd.0012477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/17/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Epigenetic modifications, such as DNA methylation and histone modifications, are pivotal in regulating gene expression pathways related to inflammation and cancer. While there is substantial research on epigenetic markers in cholangiocarcinoma (CCA), Opisthorchis viverrini-induced cholangiocarcinoma (Ov-CCA) is overlooked as a neglected tropical disease (NTD) with limited representation in the literature. Considering the distinct etiological agent, pathogenic mechanisms, and pathological manifestations, epigenetic research plays a pivotal role in uncovering markers and potential targets related to the cancer-promoting and morbidity-inducing liver fluke parasite prevalent in the Great Mekong Subregion (GMS). Emerging studies highlight a predominant hypermethylation phenotype in Opisthorchis viverrini (O. viverrini) tumor tissues, underscoring the significance of abnormal DNA methylation and histone modifications in genes and their promoters as reliable targets for Ov-CCA. PRINCIPAL FINDINGS Relevant published literature was identified by searching major electronic databases using targeted search queries. This process retrieved a total of 81 peer-reviewed research articles deemed eligible for inclusion, as they partially or fully met the pre-defined selection criteria. These eligible articles underwent a qualitative synthesis and were included in the scoping review. Within these, 11 studies specifically explored Ov-CCA tissues to investigate potential epigenetic biomarkers and therapeutic targets. This subset of 11 articles provided a foundation for exploring the applications of epigenetics-based therapies and biomarkers for Ov-CCA. These articles delved into various epigenetic modifications, including DNA methylation and histone modifications, and examined genes with aberrant epigenetic changes linked to deregulated signalling pathways in Ov-CCA progression. CONCLUSIONS This review identified epigenetic changes and Wnt/β-catenin pathway deregulation as key drivers in Ov-CCA pathogenesis. Promoter hypermethylation of specific genes suggests potential diagnostic biomarkers and dysregulation of Wnt/β-catenin-modulating genes contributes to pathway activation in Ov-CCA progression. Reversible epigenetic changes offer opportunities for dynamic disease monitoring and targeted interventions. Therefore, this study underscores the importance of these epigenetic modifications in Ov-CCA development, suggesting novel therapeutic targets within disrupted signalling networks. However, additional validation is crucial for translating these novel insights into clinically applicable strategies, enhancing personalised Ov-CCA management approaches.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Mubarak Muhammad
- Department of Physiology and Graduate School, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jan Clyden B. Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | | | - Norhidayu Sahimin
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Ullah A, Jiao W, Shen B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: insights on their therapeutic management. Cell Mol Biol Lett 2024; 29:73. [PMID: 38745115 PMCID: PMC11094955 DOI: 10.1186/s11658-024-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-β, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Jiao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Shah MA, Abuzar SM, Ilyas K, Qadees I, Bilal M, Yousaf R, Kassim RMT, Rasul A, Saleem U, Alves MS, Khan H, Blundell R, Jeandet P. Ginsenosides in cancer: Targeting cell cycle arrest and apoptosis. Chem Biol Interact 2023; 382:110634. [PMID: 37451663 DOI: 10.1016/j.cbi.2023.110634] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Despite the existence of extensive clinical research and novel therapeutic treatments, cancer remains undefeated and the significant cause of death worldwide. Cancer is a disease in which growth of cells goes out of control, being also able to invade other parts of the body. Cellular division is strictly controlled by multiple checkpoints like G1/S and G2/M which, when dysregulated, lead to uncontrollable cell division. The current remedies which are being utilized to combat cancer are monoclonal antibodies, chemotherapy, cryoablation, and bone marrow transplant etc. and these have also been greatly disheartening because of their serious adverse effects like hypotension, neuropathy, necrosis, leukemia relapse and many more. Bioactive compounds derived from natural products have marked the history of the development of novel drug therapies against cancer among which ginsenosides have no peer as they target several signaling pathways, which when abnormally regulated, lead to cancer. Substantial research has reported that ginsenosides like Rb1, Rb2, Rb3, Rc, Rd, Rg3, Rh2 etc. can prevent and treat cancer by targeting different pathways and molecules by induction of autophagy, neutralizing ROS, induction of cancerous cell death by controlling the p53 pathway, modulation of miRNAs by decreasing Smad2 expression, regulating Bcl-2 expression by normalizing the NF-Kb pathway, inhibition of inflammatory pathways by decreasing the production of cytokines like IL-8, causing cell cycle arrest by restricting cyclin E1 and CDC2, and induction of apoptosis during malignancy by decreasing β-catenin levels etc. In this review, we have analyzed the anti-cancer therapeutic potential of various ginsenoside compounds in order to consider their possible use in new strategies in the fight against cancer.
Collapse
Affiliation(s)
| | - Syed Muhammad Abuzar
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kainat Ilyas
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Irtaza Qadees
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Momna Bilal
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | | | - Azhar Rasul
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Maria Silvana Alves
- Laboratory of Cellular and Molecular Bioactivity, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine, University of Malta, Msida, MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Imsida, Malta
| | - Philippe Jeandet
- University of Reims, Research Unit Induced Resistance and Plant Bioprotection USC INRAe 1488 Department of Biology and Biochemistry, Faculty of Sciences, 51100, Reims, France.
| |
Collapse
|
6
|
Sarwar MS, Cheng D, Peter RM, Shannar A, Chou P, Wang L, Wu R, Sargsyan D, Goedken M, Wang Y, Su X, Hart RP, Kong AN. Metabolic rewiring and epigenetic reprogramming in leptin receptor-deficient db/db diabetic nephropathy mice. Eur J Pharmacol 2023:175866. [PMID: 37331680 DOI: 10.1016/j.ejphar.2023.175866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in the United States. Emerging evidence suggests that mitochondrial metabolism and epigenetics play an important role in the development and progression of DN and its complications. For the first time, we investigated the regulation of cellular metabolism, DNA methylation, and transcriptome status by high glucose (HG) in the kidney of leptin receptor-deficient db/db mice using multi-omics approaches. METHODS The metabolomics was performed by liquid-chromatography-mass spectrometry (LC-MS), while epigenomic CpG methylation coupled with transcriptomic gene expression was analyzed by next-generation sequencing. RESULTS LC-MS analysis of glomerular and cortex tissue samples of db/db mice showed that HG regulated several cellular metabolites and metabolism-related signaling pathways, including S-adenosylmethionine, S-adenosylhomocysteine, methionine, glutamine, and glutamate. Gene expression study by RNA-seq analysis suggests transforming growth factor beta 1 (TGFβ1) and pro-inflammatory pathways play important roles in early DN. Epigenomic CpG methyl-seq showed HG revoked a list of differentially methylated regions in the promoter region of the genes. Integrated analysis of DNA methylation in the promoter regions of genes and gene expression changes across time points identified several genes persistently altered in DNA methylation and gene expression. Cyp2d22, Slc1a4, and Ddah1 are some identified genes that could reflect dysregulated genes involved in renal function and DN. CONCLUSION Our results suggest that leptin receptor deficiency leading to HG regulates metabolic rewiring, including SAM potentially driving DNA methylation and transcriptomic signaling that could be involved in the progression of DN.
Collapse
Affiliation(s)
- Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David Cheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rebecca Mary Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Pochung Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Michael Goedken
- Office of Translational Science, Research Pathology Services, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
7
|
Wang L, Wang C, Sarwar MS, Chou P, Wang Y, Su X, Kong AN. PTEN-knockout regulates metabolic rewiring and epigenetic reprogramming in prostate cancer and chemoprevention by triterpenoid ursolic acid. FASEB J 2022; 36:e22626. [PMID: 36305462 PMCID: PMC9703918 DOI: 10.1096/fj.202201195r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 07/23/2023]
Abstract
PTEN (phosphatase and tensin homolog deleted on chromosome 10) is one of the most frequently mutated/deleted tumor suppressor genes in many human cancers. Ursolic acid (UA) is a natural triterpenoid possessing antioxidant, anti-inflammatory, and anticancer effects. However, how PTEN impacts metabolic rewiring and how UA modifies PTEN-driven metabolic and epigenetic reprogramming in prostate cancer (PCa) remains unknown. In the current study, we found that UA protects against PTEN knockout (KO)-induced tumorigenesis at different stages of PCa. Epigenomic CpG methyl-seq revealed UA attenuated PTEN KO-induced differentially methylated regions (DMRs) profiles. Transcriptomic RNA-seq showed UA abrogated PTEN KO-induced differentially expressed genes (DEGs) of PCa-related oncogenes' Has3, Cfh, and Msx1 overexpression, indicating UA plays a crucial role in PTEN KO-mediated gene regulation and its potential consequences on cancer interception. Association analysis of DEGs and DMRs identified that the mRNA expression of tumor suppressor gene BDH2, and oncogenes Ephas, Isg15, and Nos2 were correlated with the promoter CpG methylation status in the early-stage comparison groups indicating UA could regulate the oncogenes or tumor suppressor genes by modulating their promoter methylation at an early stage of prostate tumorigenesis. The metabolomic study showed UA attenuated PTEN KO-regulated cancer-associated metabolisms like purine metabolism/metabolites correlating with RNAseq findings, glycolysis/gluconeogenesis metabolism, as well as epigenetic-related metabolites pyruvate and lactate indicating UA plays a critical role in PTEN KO-mediated metabolic and epigenetic reprogramming and its consequences on cancer development. In this context, UA impacts metabolic rewiring causing epigenetic and transcriptomic reprogramming potentially contributing to the overall protection against prostate-specific PTEN KO-mediated PCa.
Collapse
Affiliation(s)
- Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chao Wang
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Pochung Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Al-khfajy WS, Arif IS, Al-sudani BT. Synergistic effect of obeticholic acid and fasting-mimicking on proliferative, migration, and survival signaling in prostate cancer. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e81452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The systemic and resistant nature of the androgen-independent stage of prostate cancers makes it largely incurable even after intensive multimodal therapy. Apoptosis and epithelial-mesenchymal transition (EMT) are two fundamental events that are deeply linked to carcinogenesis. Hence, it is necessary to find a new combination of several therapies targeting apoptosis and EMT without causing side effects. Several recent studies have indicated that the Farnesoid X receptor is extensively associated with human tumorigenesis. The FXR agonist obeticholic acid (INT 747) has preliminarily exhibited a tumor suppressor potential. In this present study, we assess the potential synergism of FXR activation under nutrient deprivation in prostate cancer cell lines to investigate whether FXR activation enhances starvation-induced apoptosis in PC3 cells. In this study, PC-3 treatment with INT 747 significantly repressed cell proliferation and clonogenic potential. In addition, it significantly induced apoptosis of PC-3 cells and decreased their cancerogenic potential, as evaluated by annexin v apoptosis and transwell migration assay, respectively. The decreased expression of pro-caspase 3 by western blot analysis further confirmed INT 747-induced apoptosis. Furthermore, the fasting-mimicking diet (FMD) potentiated the antiproliferative, pro-apoptotic, and antimetastatic effects of INT 747. Mechanistically, these effects were mediated through the downregulation of cyclin D1 and upregulation of PTEN. In conclusion, INT 747 alone markedly decreases, and when combined with FMD abrogates the growth and migration of PC-3 cells.
Collapse
|
9
|
Peng Y, Wang Y, Zhou C, Mei W, Zeng C. PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Front Oncol 2022; 12:819128. [PMID: 35402264 PMCID: PMC8987494 DOI: 10.3389/fonc.2022.819128] [Citation(s) in RCA: 309] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is a severe public health issue that is a leading cause of mortality globally. It is also an impediment to improving life expectancy worldwide. Furthermore, the global burden of cancer incidence and death is continuously growing. Current therapeutic options are insufficient for patients, and tumor complexity and heterogeneity necessitate customized medicine or targeted therapy. It is critical to identify potential cancer therapeutic targets. Aberrant activation of the PI3K/AKT/mTOR pathway has a significant role in carcinogenesis. This review summarized oncogenic PI3K/Akt/mTOR pathway alterations in cancer and various cancer hallmarks associated with the PI3K/AKT/mTOR pathway, such as cell proliferation, autophagy, apoptosis, angiogenesis, epithelial-to-mesenchymal transition (EMT), and chemoresistance. Importantly, this review provided recent advances in PI3K/AKT/mTOR inhibitor research. Overall, an in-depth understanding of the association between the PI3K/AKT/mTOR pathway and tumorigenesis and the development of therapies targeting the PI3K/AKT/mTOR pathway will help make clinical decisions.
Collapse
Affiliation(s)
- Yan Peng
- Department of Obstetrics, Longhua District Central Hospital, Shenzhen, China
| | - Yuanyuan Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Cheng Zhou
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
10
|
Wang S, Han L, Li J, Liu Y, Wang S. Inflammatory molecules facilitate the development of docetaxel-resistant prostate cancer cells in vitro and in vivo. Fundam Clin Pharmacol 2022; 36:837-849. [PMID: 35255161 DOI: 10.1111/fcp.12773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 01/04/2023]
Abstract
Numerous molecular mechanisms have been found to contribute to docetaxel-induced resistance in prostate cancer (PCa). In this study, the changes in gene expression profiles of multidrug resistant PCa cells that were established in response to docetaxel were determined using microarray analysis. In addition to alterations in the expression of multidrug resistance-associated genes, the expression levels of multiple inflammatory molecules, in particular IL-6, significantly increased in resistant cells in vitro and in vivo, which further increased with the development of drug resistance following microarray, qRT-PCR and ELISA analysis. Compared with parental cells, resistant cells also presented with stronger activation of multiple IL-6-associated signaling pathways STAT1/3, NF-κB, and PI3K/AKT. Inactivation of IL-6 using a neutralizing antibody resulted in a slight effect on the sensitivity of resistant cells to docetaxel, while blockade of of STAT1/3, NF-κB, or PI3K/AKT signaling significantly resensitized resistant cells to docetaxel. Of note, simultaneous inactivation of IL-6 and STAT1/3, PI3K/AKT or NF-κB further enhanced the sensitivity of the resistant cells to docetaxel. Thus, inflammatory molecules, in particular IL-6, and IL-6-associated signaling pathways NF-κB, STAT1/3, and PI3K/AKT, are crucial mediators of the development of docetaxel-resistance in PCa. Targeting inflammatory molecules and signaling pathways could be a potential therapeutic option for the intervention of drug resistance in PCa.
Collapse
Affiliation(s)
- Shikang Wang
- Department of Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Leiqiang Han
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongqing Liu
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shaoyong Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
BMPR2 promoter methylation and its expression in valvular heart disease complicated with pulmonary artery hypertension. Aging (Albany NY) 2021; 13:24580-24604. [PMID: 34793329 PMCID: PMC8660616 DOI: 10.18632/aging.203690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022]
Abstract
Valvular heart disease (VHD) is a common heart disease that affects blood flow. It usually requires heart surgery. Valvular heart disease complicated with pulmonary artery hypertension (VHD-PAH) may be lethal due to heart failure that results from increased heart burden. It is important for these patients to seek early treatment in order to minimize the heart damage. However, there is no reliable diagnosis method in VHD. In this study, we found DNA methylation was increased at the promoter of BMPR2 gene in the VHD patients compared with the healthy controls. This finding was confirmed by an independent cohort study of VHD patients and healthy controls. In addition, BMPR2 mRNA levels were reduced in the plasma of the VHD patients. There is strong correlation between BMPR2 promoter DNA methylation and the severity of VHD. Indeed, we found that both BMPR2 promoter DNA methylation and BMPR2 mRNA levels in the plasma are good biomarkers of VHD by themselves, with the respective AUC value of 0.879 and 0.725, respectively. When they were used in combination, the diagnostic value was even better, with the AUC value of 0.93. Consistent with the results in the VHD patients, we observed decreased BMPR2 and increased fibrosis in the lung of a PAH model mouse. BMPR2 was also decreased in the hearts of the PAH mice, whereas BMP4 was increased. Furthermore, BMPR2 was reduced in the heart valve tissue samples of human VHD patients after valve replacement with moderate/severe PAH compared with those with mild PAH. There was also increased apoptosis in the hearts of the PAH mice. BMPR2 promoter DNA methylation and its expression appear to be good biomarkers for VHD. Our results also suggest that DNA methylation may cause PAH through deregulation of BMP signaling and increased apoptosis.
Collapse
|
12
|
Melo CM, Vidotto T, Chaves LP, Lautert-Dutra W, dos Reis RB, Squire JA. The Role of Somatic Mutations on the Immune Response of the Tumor Microenvironment in Prostate Cancer. Int J Mol Sci 2021; 22:9550. [PMID: 34502458 PMCID: PMC8431051 DOI: 10.3390/ijms22179550] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has improved patient survival in many types of cancer, but for prostate cancer, initial results with immunotherapy have been disappointing. Prostate cancer is considered an immunologically excluded or cold tumor, unable to generate an effective T-cell response against cancer cells. However, a small but significant percentage of patients do respond to immunotherapy, suggesting that some specific molecular subtypes of this tumor may have a better response to checkpoint inhibitors. Recent findings suggest that, in addition to their function as cancer genes, somatic mutations of PTEN, TP53, RB1, CDK12, and DNA repair, or specific activation of regulatory pathways, such as ETS or MYC, may also facilitate immune evasion of the host response against cancer. This review presents an update of recent discoveries about the role that the common somatic mutations can play in changing the tumor microenvironment and immune response against prostate cancer. We describe how detailed molecular genetic analyses of the tumor microenvironment of prostate cancer using mouse models and human tumors are providing new insights into the cell types and pathways mediating immune responses. These analyses are helping researchers to design drug combinations that are more likely to target the molecular and immunological pathways that underlie treatment failure.
Collapse
Affiliation(s)
- Camila Morais Melo
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Thiago Vidotto
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Luiz Paulo Chaves
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - William Lautert-Dutra
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Rodolfo Borges dos Reis
- Division of Urology, Department of Surgery and Anatomy, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Jeremy Andrew Squire
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L3N6, Canada
| |
Collapse
|
13
|
Jiang CY, Xu X, Jian BL, Zhang X, Yue ZX, Guo W, Ma XL. Chromosome 10 abnormality predicts prognosis of neuroblastoma patients with bone marrow metastasis. Ital J Pediatr 2021; 47:134. [PMID: 34108028 PMCID: PMC8190999 DOI: 10.1186/s13052-021-01085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor in children. It is known for high heterogeneity and concealed onset. In recent years, the mechanism of its occurrence and development has been gradually revealed. The purpose of this study is to summarize the clinical characteristics of children with NB and abnormal chromosome 10, and to investigate the relationship between the number and structure of chromosome 10 abnormalities and NB prognosis. METHODS Chromosome G-banding was used at the time of diagnosis to evaluate the genetics of chromosomes in patients with NB and track their clinical characteristics and prognosis. All participants were diagnosed with NB in the Medical Oncology Department of the Beijing Children's Hospital from May 2015 to December 2018 and were followed up with for at least 1 year. RESULTS Of all 150 patients with bone marrow metastases, 42 were clearly diagnosed with chromosomal abnormalities. Thirteen patients showed abnormalities in chromosome 10, and chromosome 10 was the most commonly missing chromosome. These 13 patients had higher LDH and lower OS and EFS than children with chromosomal abnormalities who did not have an abnormality in chromosome 10. Eight patients had both MYCN amplification and 1p36 deletion. Two patients had optic nerve damage and no vision, and one patient had left supraorbital metastases 5 months after treatment. CONCLUSIONS The results indicated that chromosome 10 might be a new prognostic marker for NB. MYCN amplification and 1p36 deletion may be related to chromosome 10 abnormalities in NB. Additionally, NB patients with abnormal chromosome 10 were prone to orbital metastases.
Collapse
Affiliation(s)
- Chi-Yi Jiang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China
| | - Xiao Xu
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China
| | - Bing-Lin Jian
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China
| | - Xue Zhang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China
| | - Zhi-Xia Yue
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China
| | - Wei Guo
- MILS (Beijing) Medical Labortory, Beijing, China
| | - Xiao-Li Ma
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China.
| |
Collapse
|
14
|
Wu R, Li S, Sargsyan D, Yin R, Kuo HC, Peter R, Wang L, Hudlikar R, Liu X, Kong AN. DNA methylome, transcriptome, and prostate cancer prevention by phenethyl isothiocyanate in TRAMP mice. Mol Carcinog 2021; 60:391-402. [PMID: 33848375 PMCID: PMC8201649 DOI: 10.1002/mc.23299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/28/2022]
Abstract
Epigenetics/epigenomics has been shown to be involved in carcinogenesis. However, how the epigenome would be altered in the transgenic adenocarcinoma of the mouse prostate (TRAMP) cancer model and the effect of cancer chemopreventive phytochemical phenethyl isothiocyanate (PEITC) on the epigenome in TRAMP mice are not known. PEITC has been reported to reduce the risk of many cancers including prostate cancer (PCa). In this study, male TRAMP mice were fed a control diet or diet containing 0.05% PEITC from 8 weeks to 16 weeks. The tumor incidence was reduced in the PEITC diet (0/6) as compared with the control diet (6/7). RNA-sequencing (RNA-seq) analyses on nontumor and tumor prostatic tissues revealed several pathways like cell cycle/Cdc42 signaling, inflammation, and cancer-related signaling, were activated in prostate tissues of TRAMP mice but were reversed or attenuated in TRAMP mice fed with PEITC diet. DNA CpG methyl-seq analyses showed that global methylation patterns of prostate samples from TRAMP mice were hugely different from those of wild-type mice. Dietary PEITC partially reversed the global methylation changes during prostatic carcinogenesis. Integration of RNA-seq and DNA methyl-seq analyses identified a list of genes, including Adgrb1 and Ebf4, with an inverse regulatory relationship between their RNA expression and CpG methylation. In summary, our current study demonstrates that alteration of the global epigenome in TRAMP prostate tumor and PEITC administration suppresses PCa carcinogenesis, impacts global CpG epigenome and transcriptome, and attenuates carcinogenic pathways like cell cycle arrest and inflammation. These results may provide insights and epigenetic markers/targets for PCa prevention and treatment in human PCa patients.
Collapse
Affiliation(s)
- Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hsiao-Chen Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xia Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Tong D. Unravelling the molecular mechanisms of prostate cancer evolution from genotype to phenotype. Crit Rev Oncol Hematol 2021; 163:103370. [PMID: 34051300 DOI: 10.1016/j.critrevonc.2021.103370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PC) is the most frequently diagnosed cancer and the second leading cause of cancer-related death in men in the Western society. Unfortunately, although the vast majority of patients are initially responsive to androgen-deprivation therapy (ADT), most cases eventually develop from hormone-sensitive prostate cancer (HSPC) to castration-resistant prostate cancer (CRPC). The main reason is PC heterogeneity and evolution during therapy. PC evolution is a continuously progressive process with combination of genomic alterations including canonical AR, TMPRSS2-ERG fusion, SPOP/FOXA1, TP53/RB1/PTEN, BRCA2. Meanwhile, signaling pathways including PI3K, WNT/β-catenin, SRC, IL-6/STAT3 are activated, to promote epithelial mesenchymal transition (EMT), cancer stem cell (CSC)-like features/stemness and neuroendocrine differentiation (NED) of PC. These improve our understanding of the genotype-phenotype relationships. The identification of canonical genetic alterations and signaling pathway activation in PC has shed more insight into genetic background, molecular subtype and disease landscape of PC evolution, resulting in a more flexible role of individual therapies targeting diverse genotype and phenotype presentation.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| |
Collapse
|
16
|
Wang L, Gao J, Zhang Y, Kang S. Silencing miRNA-1297 suppresses the invasion and migration of prostate cancer cells via targeting modulation of PTEN and blocking of the AKT/ERK pathway. Exp Ther Med 2021; 22:768. [PMID: 34055067 PMCID: PMC8145438 DOI: 10.3892/etm.2021.10200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) loss is a major contributing factor of prostate cancer (PC). miRNA-1297 was reported to serve role in various cancer types; however, the potential roles of miRNA-1297 in PC had not been investigated. In the present study, tumor and adjacent tissues were collected from patients with PC. The gene expression level of miRNA-1297 was measured via polymerase chain reaction. Results indicated that the miRNA-1297 was overexpressed in tumor tissues from PC patients and in PC cell lines. miRNA-1297 also contributed toward the progression of PC. PTEN was confirmed as the direct target of miRNA-1297 and bound with miRNA-1297 via four binding sites. The miRNA-1297 level was negatively associated with the PTEN level. Silencing miRNA-1297 or overexpression of PTEN significantly inhibited the cell migration and invasion. In addition, the AKT/ERK pathway was also inhibited following silencing of miRNA-1297 or overexpression of PTEN. Taken together, the results indicated that silencing miRNA-1297 exerted inhibitory effects on the invasion and migration of PC cells via modulating PTEN and blocking of the AKT/ERK pathway. The results of the present study provided a novel strategy for treatment of prostate cancer cells.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jing Gao
- Department of Obstetrics and Gynecology, Tangshan Hongci Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yu Zhang
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| | - Shaosan Kang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
17
|
Lin Z, Huang L, Li SL, Gu J, Cui X, Zhou Y. PTEN loss correlates with T cell exclusion across human cancers. BMC Cancer 2021; 21:429. [PMID: 33874915 PMCID: PMC8054401 DOI: 10.1186/s12885-021-08114-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/29/2021] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Recent evidences had shown that loss in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was associated with immunotherapy resistance, which may be attributed to the non-T-cell-inflamed tumor microenvironment. The impact of PTEN loss on tumor microenvironment, especially regarding T cell infiltration across tumor types is not well understood. METHODS Utilizing The Cancer Genome Atlas (TCGA) and publicly available dataset of immunotherapy, we explored the correlation of PTEN expressing level or genomic loss with tumor immune microenvironment and response to immunotherapy. We further investigated the involvement of PI3K-AKT-mTOR pathway activation, which is known to be the subsequent effect of PTEN loss, in the immune microenvironment modulation. RESULTS We reveal that PTEN mRNA expression is significantly positively correlated with CD4/CD8A gene expression and T cells infiltration especially T helpers cells, central memory T cell and effector memory T cells in multiples tumor types. Genomic loss of PTEN is associated with reduced CD8+ T cells, type 1 T helper cells, and increased type 2 T helper cells, immunosuppressed genes (e.g. VEGFA) expression. Furthermore, T cell exclusive phenotype is also observed in tumor with PI3K pathway activation or genomic gain in PIK3CA or PIK3CB. PTEN loss and PI3K pathway activation correlate with immunosuppressive microenvironment, especially in terms of T cell exclusion. PTEN loss predict poor therapeutic response and worse survival outcome in patients receiving immunotherapy. CONCLUSION These data brings insight into the role of PTEN loss in T cell exclusion and immunotherapy resistance, and inspires further research on immune modulating strategy to augment immunotherapy.
Collapse
Affiliation(s)
- Ziying Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Lixia Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shao Li Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jincui Gu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoxian Cui
- Department of Respiratory Medicine, The 8th Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yanbin Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Pandareesh MD, Kameshwar VH, Byrappa K. Prostate Carcinogenesis: Insights in Relation to Epigenetics and Inflammation. Endocr Metab Immune Disord Drug Targets 2021; 21:253-267. [PMID: 32682386 DOI: 10.2174/1871530320666200719020709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer is a multifactorial disease that mainly occurs due to the accumulation of somatic, genetic, and epigenetic changes, resulting in the inactivation of tumor-suppressor genes and activation of oncogenes. Mutations in genes, specifically those that control cell growth and division or the repair of damaged DNA, make the cells grow and divide uncontrollably to form a tumor. The risk of developing prostate cancer depends upon the gene that has undergone the mutation. Identifying such genetic risk factors for prostate cancer poses a challenge for the researchers. Besides genetic mutations, many epigenetic alterations, including DNA methylation, histone modifications (methylation, acetylation, ubiquitylation, sumoylation, and phosphorylation) nucleosomal remodeling, and chromosomal looping, have significantly contributed to the onset of prostate cancer as well as the prognosis, diagnosis, and treatment of prostate cancer. Chronic inflammation also plays a major role in the onset and progression of human cancer, via modifications in the tumor microenvironment by initiating epithelialmesenchymal transition and remodeling the extracellular matrix. In this article, the authors present a brief history of the mechanisms and potential links between the genetic aberrations, epigenetic changes, inflammation, and inflammasomes that are known to contribute to the prognosis of prostate cancer. Furthermore, the authors examine and discuss the clinical potential of prostate carcinogenesis in relation to epigenetics and inflammation for its diagnosis and treatment..
Collapse
Affiliation(s)
- Mirazkar D Pandareesh
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Vivek H Kameshwar
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Kullaiah Byrappa
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| |
Collapse
|
19
|
Hudlikar R, Wang L, Wu R, Li S, Peter R, Shannar A, Chou PJ, Liu X, Liu Z, Kuo HCD, Kong AN. Epigenetics/Epigenomics and Prevention of Early Stages of Cancer by Isothiocyanates. Cancer Prev Res (Phila) 2020; 14:151-164. [PMID: 33055265 DOI: 10.1158/1940-6207.capr-20-0217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/26/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Cancer is a complex disease and cancer development takes 10-50 years involving epigenetics. Evidence suggests that approximately 80% of human cancers are linked to environmental factors impinging upon genetics/epigenetics. Because advanced metastasized cancers are resistant to radiotherapy/chemotherapeutic drugs, cancer prevention by relatively nontoxic chemopreventive "epigenetic modifiers" involving epigenetics/epigenomics is logical. Isothiocyanates are relatively nontoxic at low nutritional and even higher pharmacologic doses, with good oral bioavailability, potent antioxidative stress/antiinflammatory activities, possess epigenetic-modifying properties, great anticancer efficacy in many in vitro cell culture and in vivo animal models. This review summarizes the latest advances on the role of epigenetics/epigenomics by isothiocyanates in prevention of skin, colon, lung, breast, and prostate cancers. The exact molecular mechanism how isothiocyanates modify the epigenetic/epigenomic machinery is unclear. We postulate "redox" processes would play important roles. In addition, isothiocyanates sulforaphane and phenethyl isothiocyanate, possess multifaceted molecular mechanisms would be considered as "general" cancer preventive agents not unlike chemotherapeutic agents like platinum-based or taxane-based drugs. Analogous to chemotherapeutic agents, the isothiocyanates would need to be used in combination with other nontoxic chemopreventive phytochemicals or drugs such as NSAIDs, 5-α-reductase/aromatase inhibitors targeting different signaling pathways would be logical for the prevention of progression of tumors to late advanced metastatic states.
Collapse
Affiliation(s)
- Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Xia Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Zhigang Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Department of Food and Pharmaceutical Engineering, Guiyang University, Guiyang, China
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|