1
|
Lee GY, Schaunaman N, Nouri HR, Kraft M, Chu HW. Comprehensive single-cell RNA-sequencing study of Tollip deficiency effect in IL-13-stimulated human airway epithelial cells. BMC Res Notes 2025; 18:194. [PMID: 40269942 PMCID: PMC12020103 DOI: 10.1186/s13104-025-07255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVE Toll-interacting protein (Tollip) suppresses excessive pro-inflammatory signaling, but its function in airway epithelial responses to IL-13, a key mediator in allergic diseases, remains unclear. This study investigates Tollip knockdown (TKD) effects in primary human airway epithelial cells using single-cell RNA sequencing, providing the first single-cell analysis of TKD and the first exploring its interaction with IL-13. RESULTS IL-13 treatment upregulated key genes, including SPDEF, MUC5AC, POSTN, ALOX15, and CCL26, confirming IL-13's effects and validating our methods. IL-13 reduced TNF-α signaling and epithelial-mesenchymal transition in certain cell types, suggesting a dual role in promoting type 2 inflammation while suppressing Th1-driven inflammation. Tollip deficiency alone significantly amplified TNF-α signaling and inflammatory pathways in goblet, club, and suprabasal cells. Comparisons between TKDIL13 vs IL13 and TKD vs CTR revealed that IL-13 does not substantially alter Tollip deficiency response in most cell types, reinforcing findings in TKD vs CTR. Tollip deficiency alters the response to IL-13 in a cell-type-specific manner, strongly downregulating TNF-α signaling in goblet cells but only weakly in basal and club cells. Tollip deficiency enhances IL-13's suppression of Th1 inflammatory responses in goblet cells. These novel insights in Tollip-IL-13 interactions offer potential therapeutic targets for asthma and related diseases.
Collapse
Affiliation(s)
| | | | | | - Monica Kraft
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
2
|
Lu W, Teoh A, Waters M, Haug G, Shakeel I, Hassan I, Shahzad AM, Callerfelt AKL, Piccari L, Sohal SS. Pathology of idiopathic pulmonary fibrosis with particular focus on vascular endothelium and epithelial injury and their therapeutic potential. Pharmacol Ther 2025; 265:108757. [PMID: 39586361 DOI: 10.1016/j.pharmthera.2024.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/15/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) remains a challenging disease with no drugs available to change the trajectory. It is a condition associated with excessive and highly progressive scarring of the lungs with remodelling and extracellular matrix deposition. It is a highly "destructive" disease of the lungs. The diagnosis of IPF is challenging due to continuous evolution of the disease, which also makes early interventions very difficult. The role of vascular endothelial cells has not been explored in IPF in great detail. We do not know much about their contribution to arterial or vascular remodelling, extracellular matrix changes and contribution to pulmonary hypertension and lung fibrosis in general. Endothelial to mesenchymal transition appears to be central to such changes in IPF. Similarly, for epithelial changes, the process of epithelial to mesenchymal transition seem to be the key both for airway epithelial cells and type-2 pneumocytes. We focus here on endothelial and epithelial cell changes and its contributions to IPF. In this review we revisit the pathology of IPF, mechanistic signalling pathways, clinical definition, update on diagnosis and new advances made in treatment of this disease. We discuss ongoing clinical trials with mode of action. A multidisciplinary collaborative approach is needed to understand this treacherous disease for new therapeutic targets.
Collapse
Affiliation(s)
- Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Alan Teoh
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Maddison Waters
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 7250, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 7250, Australia
| | - Ilma Shakeel
- Centre For Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Imtaiyaz Hassan
- Centre For Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Affan Mahmood Shahzad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Medical School, Oceania University of Medicine, Apia, Samoa
| | | | - Lucilla Piccari
- Department of Pulmonology, Hospital del Mar, Barcelona, Spain
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.
| |
Collapse
|
3
|
Whalen W, Berger K, Kim JS, Simmons W, Ma SF, Kaner RJ, Martinez FJ, Anstrom KJ, Parfrey H, Maher TM, Hammond M, Clark AB, Thickett D, Jenkins RG, Wilson AM, Noth I. TOLLIP SNP and Antimicrobial Treatment Effect in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2024; 210:508-511. [PMID: 38762791 PMCID: PMC11351790 DOI: 10.1164/rccm.202312-2224le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 05/20/2024] Open
Affiliation(s)
- William Whalen
- Division of Pulmonary and Critical Care, Department of Medicine
| | - Kristin Berger
- Division of Pulmonary and Critical Care, Department of Medicine
| | - John S. Kim
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Will Simmons
- Division of Biostatistics, Department of Population Health Sciences, and
| | - Shwu-Fan Ma
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Robert J. Kaner
- Division of Pulmonary and Critical Care, Department of Medicine
- Department of Genetic Medicine, New York Presbyterian–Weill Cornell Medicine, New York, New York
| | | | - Kevin J. Anstrom
- University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Helen Parfrey
- University of Cambridge and Royal Papworth Hospital National Health Service Foundation Trust, Cambridge, United Kingdom
| | - Toby M. Maher
- University of Southern California, Los Angeles, California
- National Heart and Lung Institute, Imperial Biomedical Research Centre, and National Institute for Health and Care Research Margaret Turner Warwick Centre for Fibrosing Lung Disease, Imperial College London, London, United Kingdom
| | | | | | - David Thickett
- Institute of Inflammation and Aging, University of Birmingham, Birmingham, United Kingdom
| | - R. Gisli Jenkins
- National Heart and Lung Institute, Imperial Biomedical Research Centre, and National Institute for Health and Care Research Margaret Turner Warwick Centre for Fibrosing Lung Disease, Imperial College London, London, United Kingdom
| | - Andrew M. Wilson
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; and
| | - Imre Noth
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
4
|
Li D, Zhang X, Song Z, Zhao S, Huang Y, Qian W, Cai X. Advances in common in vitro cellular models of pulmonary fibrosis. Immunol Cell Biol 2024; 102:557-569. [PMID: 38714318 DOI: 10.1111/imcb.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/24/2023] [Accepted: 04/09/2024] [Indexed: 05/09/2024]
Abstract
The development of in vitro models is essential for a comprehensive understanding and investigation of pulmonary fibrosis (PF) at both cellular and molecular levels. This study presents a literature review and an analysis of various cellular models used in scientific studies, specifically focusing on their applications in elucidating the pathogenesis of PF. Our study highlights the importance of taking a comprehensive approach to studing PF, emphasizing the necessity of considering multiple cell types and organs and integrating diverse analytical perspectives. Notably, primary cells demonstrate remarkable cell growth characteristics and gene expression profiles; however, their limited availability, maintenance challenges, inability for continuous propagation and susceptibility to phenotypic changes over time significantly limit their utility in scientific investigation. By contrast, immortalized cell lines are easily accessible, cultured and continuously propagated, although they may have some phenotypic differences from primary cells. Furthermore, in vitro coculture models offer a more practical and precise method to explore complex interactions among cells, tissues and organs. Consequently, when developing models of PF, researchers should thoroughly assess the advantages, limitations and relevant mechanisms of different cell models to ensure their selection is consistent with the research objectives.
Collapse
Affiliation(s)
- Die Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinyue Zhang
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ziqiong Song
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Shan Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuan Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Weibin Qian
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinrui Cai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
5
|
Sakamachi Y, Wiley E, Solis A, Johnson CG, Meng X, Hussain S, Lipinski JH, O'Dwyer DN, Randall T, Malphurs J, Papas B, Wu BG, Li Y, Kugler M, Mehta S, Trempus CS, Thomas SY, Li JL, Zhou L, Karmaus PW, Fessler MB, McGrath JA, Gibson K, Kass DJ, Gleiberman A, Walts A, Invernizzi R, Molyneaux PL, Yang IV, Zhang Y, Kaminski N, Segal LN, Schwartz DA, Gudkov AV, Garantziotis S. Toll-Like-Receptor 5 protects against pulmonary fibrosis by reducing lung dysbiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591719. [PMID: 39605370 PMCID: PMC11601505 DOI: 10.1101/2024.04.30.591719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating pulmonary disease with no curative treatment other than lung transplantation. IPF results from maladaptive responses to lung epithelial injury, but the underlying mechanisms remain unclear. Here, we show that deficiency in the innate immune receptor, toll-like receptor 5 (TLR5), is associated with IPF in humans and with increased susceptibility to epithelial injury and experimental fibrosis in mice, while activation of lung epithelial TLR5 through a synthetic flagellin analogue protects from experimental fibrosis. Mechanistically, epithelial TLR5 activation induces antimicrobial gene expression and ameliorates dysbiosis after lung injury. In contrast, TLR5 deficiency in mice and IPF patients is associated with lung dysbiosis. Elimination of the microbiome in mice through antibiotics abolishes the protective effect of TLR5 and reconstitution of the microbiome rescues the observed phenotype. In aggregate, TLR5 deficiency is associated with IPF and dysbiosis in humans and in the murine model of pulmonary fibrosis. Furthermore, TLR5 protects against pulmonary fibrosis in mice and this protection is mediated by effects on the microbiome. One-sentence summary Deficiency in the innate immune receptor TLR5 is a risk factor for pulmonary fibrosis, because TLR5 prevents microbial dysbiosis after lung injury.
Collapse
|
6
|
Chu L, Zhuo J, Huang H, Chen W, Zhong W, Zhang J, Meng X, Zou F, Cai S, Zou M, Dong H. Tetrandrine alleviates pulmonary fibrosis by inhibiting alveolar epithelial cell senescence through PINK1/Parkin-mediated mitophagy. Eur J Pharmacol 2024; 969:176459. [PMID: 38438063 DOI: 10.1016/j.ejphar.2024.176459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal and insidious interstitial lung disease. So far, there are no effective drugs for preventing the disease process. Cellular senescence plays a critical role in the development of IPF, with the senescence and insufficient mitophagy of alveolar epithelial cells being implicated in its pathogenesis. Tetrandrine is a natural alkaloid which is now produced synthetically. It was known that the tetrandrine has anti-fibrotic effects, but the efficacy and mechanisms are still not well evaluated. Here, we reveal the roles of tetrandrine on AECs senescence and the antifibrotic effects by using a bleomycin challenged mouse model of pulmonary fibrosis and a bleomycin-stimulated mouse alveolar epithelial cell line (MLE-12). We performed the β-galactosidase staining, immunohistochemistry and fluorescence to assess senescence in MLE-12 cells. The mitophagy levels were detected by co-localization of LC3 and COVIX. Our findings indicate that tetrandrine suppressed bleomycin-induced fibroblast activation and ultimately blocked the increase of collagen deposition in mouse model lung tissue. It has significantly inhibited the bleomycin-induced senescence and senescence-associated secretory phenotype (SASP) in alveolar epithelial cells (AECs). Mechanistically, tetrandrine suppressed the decrease of mitochondrial autophagy-related protein expression to rescue the bleomycin-stimulated impaired mitophagy in MLE-12 cells. We revealed that knockdown the putative kinase 1 (PINK1) gene by a short interfering RNA (siRNA) could abolish the ability of tetrandrine and reverse the MLE-12 cells senescence, which indicated the mitophagy of MLE-12 cells is PINK1 dependent. Our data suggest the tetrandrine could be a novel and effective drug candidate for lung fibrosis and senescence-related fibrotic diseases.
Collapse
Affiliation(s)
- Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinzhong Zhuo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimou Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenshan Zhong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Li Y, Jiang C, Zhu W, Lu S, Yu H, Meng L. Exploring therapeutic targets for molecular therapy of idiopathic pulmonary fibrosis. Sci Prog 2024; 107:368504241247402. [PMID: 38651330 PMCID: PMC11036936 DOI: 10.1177/00368504241247402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Idiopathic pulmonary fibrosis is a chronic and progressive interstitial lung disease with a poor prognosis. Idiopathic pulmonary fibrosis is characterized by repeated alveolar epithelial damage leading to abnormal repair. The intercellular microenvironment is disturbed, leading to continuous activation of fibroblasts and myofibroblasts, deposition of extracellular matrix, and ultimately fibrosis. Moreover, pulmonary fibrosis was also found as a COVID-19 complication. Currently, two drugs, pirfenidone and nintedanib, are approved for clinical therapy worldwide. However, they can merely slow the disease's progression rather than rescue it. These two drugs have other limitations, such as lack of efficacy, adverse effects, and poor pharmacokinetics. Consequently, a growing number of molecular therapies have been actively developed. Treatment options for IPF are becoming increasingly available. This article reviews the research platform, including cell and animal models involved in molecular therapy studies of idiopathic pulmonary fibrosis as well as the promising therapeutic targets and their development progress during clinical trials. The former includes patient case/control studies, cell models, and animal models. The latter includes transforming growth factor-beta, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factor, lysophosphatidic acid, interleukin-13, Rho-associated coiled-coil forming protein kinase family, and Janus kinases/signal transducers and activators of transcription pathway. We mainly focused on the therapeutic targets that have not only entered clinical trials but were publicly published with their clinical outcomes. Moreover, this work provides an outlook on some promising targets for further validation of their possibilities to cure the disease.
Collapse
Affiliation(s)
- Yue Li
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- First Department of Respiratory Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Congshan Jiang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - Shemin Lu
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - Hongchuan Yu
- First Department of Respiratory Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Liesu Meng
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
8
|
Wu W, Wang Z, Zhang H, Zhang X, Tian H. circGRHPR inhibits aberrant epithelial-mesenchymal transformation progression of lung epithelial cells associated with idiopathic pulmonary fibrosis. Cell Biol Toxicol 2024; 40:7. [PMID: 38267743 PMCID: PMC10808371 DOI: 10.1007/s10565-024-09839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Air pollution has greatly increased the risk of idiopathic pulmonary fibrosis (IPF). Circular RNAs (circRNAs) have been found to play a significant role in the advancement of IPF, but there is limited evidence of correlation between circRNAs and lung epithelial cells (LECs) in IPF. This research aimed to explore the influence of circRNAs on the regulation of EMT progression in LECs, with the objective of elucidating its mechanism and establishing its association with IPF. Our results suggested that the downregulation of circGRHPR in peripheral blood of clinical cases was associated with the diagnosis of IPF. Meanwhile, we found that circGRHPR was downregulated in transforming growth factor-beta1 (TGF-β1)-induced A549 and Beas-2b cells. It is a valid model to study the abnormal EMT progression of IPF-associated LECs in vitro. The overexpression of circGRHPR inhibited the abnormal EMT progression of TGF-β1-induced LECs. Furthermore, as the sponge of miR-665, circGRHPR released the expression of E3 ubiquitin-protein ligase NEDD4-like (NEDD4L), thus promoting its downstream transforming growth factor beta receptor 2 (TGFBR2) ubiquitination. It is helpful to reduce the response of LECs to TGF-β1 signaling. In summary, circGRHPR/miR-665/NEDD4L axis inhibited the abnormal EMT progression of TGF-β1-induced LECs by promoting TGFBR2 ubiquitination, which provides new ideas and potential targets for the treatment of IPF.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Huiying Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China
| | - Xiaojun Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China.
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China.
| |
Collapse
|
9
|
Zhu W, Liu C, Tan C, Zhang J. Predictive biomarkers of disease progression in idiopathic pulmonary fibrosis. Heliyon 2024; 10:e23543. [PMID: 38173501 PMCID: PMC10761784 DOI: 10.1016/j.heliyon.2023.e23543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial disease that cannot be cured, and treatment options for IPF are very limited. Early diagnosis, close monitoring of disease progression, and timely treatment are therefore the best options for patients due to the irreversibility of IPF. Effective markers help doctors judge the development and prognosis of disease. Recent research on traditional biomarkers (KL-6, SP-D, MMP-7, TIMPs, CCL18) has provided novel ideas for predicting disease progression and prognosis. Some emerging biomarkers (HE4, GDF15, PRDX4, inflammatory cells, G-CSF) also provide more possibilities for disease prediction. In addition to markers in serum and bronchoalveolar lavage fluid (BALF), some improvements related to the GAP model and chest HRCT also show good predictive ability for disease prognosis.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, China
| | - Chunquan Liu
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, China
| | - Chunting Tan
- Department of Pulmonary and Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, China
| | - Jie Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, China
| |
Collapse
|
10
|
Chow Y, López‐Martínez C, Liles WC, Altemeier WA, Gharib SA, Hung CF. Toll-interacting protein inhibits transforming growth factor beta signaling in mouse lung fibroblasts. FASEB Bioadv 2024; 6:12-25. [PMID: 38223200 PMCID: PMC10782472 DOI: 10.1096/fba.2023-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024] Open
Abstract
Variations in the Toll-interacting protein (TOLLIP) gene have been identified in genome-wide association studies to correlate with risk of disease, mortality, and response to N-acetylcysteine therapy in idiopathic pulmonary fibrosis. Although TOLLIP is known to modulate innate immune responses, its relevance in organ fibrogenesis remains unknown. Prior work in the literature suggests TOLLIP dampens transforming growth factor beta (TGFβ) signaling in human cell lines. In this study, we examined the role of TOLLIP in mouse lung fibroblast (MLF) responses to TGFβ and in the bleomycin model of experimental lung fibrosis using Tollip-/- mice. We hypothesize that if TOLLIP negatively regulates TGFβ signaling, then Tollip-/- mouse lung fibroblasts (MLFs) would have enhanced response to TGFβ treatment, and Tollip-/- mice would develop increased fibrosis following bleomycin challenge. Primary MLFs were stimulated with TGFβ (1 ng/mL) for 24 h. RNA was obtained to assess global transcriptional responses by RNA-seq and markers of myofibroblast transition by qPCR. Functional assessment of TGFβ-stimulated MLFs included cell migration by scratch assay, cell proliferation, and matrix invasion through Matrigel. In the in vivo model of lung fibrosis, Tollip-/- mice and wild-type (WT) littermates were administered bleomycin intratracheally and assessed for fibrosis. We further examined TGFβ signaling in vivo after bleomycin injury by SMAD2, ERK1/2, and TGFβR1 Western blot. In response to TGFβ treatment, both WT and Tollip-/- MLFs exhibited global transcriptional changes consistent with myofibroblast differentiation. However, Tollip-/- MLFs showed greater number of differentially expressed genes compared to WT MLFs and greater upregulation of Acta2 by qPCR. Functionally, Tollip-/- MLFs also exhibited increased migration and Matrigel invasiveness compared to WT. We found evidence of enhanced TGFβ signaling in Tollip-/- through SMAD2 in vitro and in vivo. Tollip-/- mice experienced lower survival using a standard weight-adjusted dosing without evidence of differences in fibrosis at Day 21. With adjustment of dosing for sex, no differences were observed in fibrosis at Day 21. However, Tollip-/- mice had greater weight loss and increased bronchoalveolar lavage fluid total protein during early resolution at Day 14 compared to WT without evidence of differences in acute lung injury at Day 7, suggesting impaired resolution of lung injury.
Collapse
Affiliation(s)
- Yu‐Hua Chow
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Center for Lung BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Cecilia López‐Martínez
- Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain
- Centro de Investigación Biomédica en Red (CIBER)‐Enfermedades respiratoriasMadridSpain
- Instituto Universitario de Oncología del Principado de AsturiasOviedoSpain
| | - W. Conrad Liles
- Center for Lung BiologyUniversity of WashingtonSeattleWashingtonUSA
- Division of Allergy and Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - William A. Altemeier
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Center for Lung BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Center for Lung BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Chi F. Hung
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Center for Lung BiologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
11
|
Nouri HR, Schaunaman N, Kraft M, Li L, Numata M, Chu HW. Tollip deficiency exaggerates airway type 2 inflammation in mice exposed to allergen and influenza A virus: role of the ATP/IL-33 signaling axis. Front Immunol 2023; 14:1304758. [PMID: 38124753 PMCID: PMC10731025 DOI: 10.3389/fimmu.2023.1304758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Toll-interacting protein (Tollip) is a negative regulator of the pro-inflammatory response to viruses, including influenza A virus (IAV). Genetic variation of Tollip has been associated with reduced airway epithelial Tollip expression and poor lung function in patients with asthma. Whether Tollip deficiency exaggerates type 2 inflammation (e.g., eosinophils) and viral infection in asthma remains unclear. We sought to address this critical, but unanswered question by using a Tollip deficient mouse asthma model with IAV infection. Further, we determined the underlying mechanisms by focusing on the role of the ATP/IL-33 signaling axis. Wild-type and Tollip KO mice were intranasally exposed to house dust mite (HDM) and IAV with or without inhibitors for IL-33 (i.e., soluble ST2, an IL-33 decoy receptor) and ATP signaling (i.e., an antagonist of the ATP receptor P2Y13). Tollip deficiency amplified airway type 2 inflammation (eosinophils, IL-5, IL-13 and mucins), and the release of ATP and IL-33. Blocking ATP receptor P2Y13 decreased IL-33 release during IAV infection in HDM-challenged Tollip KO mice. Furthermore, soluble ST2 attenuated airway eosinophilic inflammation in Tollip KO mice treated with HDM and IAV. HDM challenges decreased lung viral load in wild-type mice, but Tollip deficiency reduced the protective effects of HDM challenges on viral load. Our data suggests that during IAV infection, Tollip deficiency amplified type 2 inflammation and delayed viral clearance, in part by promoting ATP signaling and subsequent IL-33 release. Our findings may provide several therapeutic targets, including ATP and IL-33 signaling inhibition for attenuating excessive airway type 2 inflammation in human subjects with Tollip deficiency and IAV infection.
Collapse
Affiliation(s)
- Hamid Reza Nouri
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | | | - Monica Kraft
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Liwu Li
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States
| | - Mari Numata
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
12
|
Li S, Zhao P, Wang C, Xia Y, Wang H, Qi W. Hotspots and Frontiers of Host Immune Response in Idiopathic Pulmonary Fibrosis: A Bibliometric and Scientific Visual Research from 2000 to 2022. J Immunol Res 2023; 2023:4835710. [PMID: 37124548 PMCID: PMC10132898 DOI: 10.1155/2023/4835710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/02/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a disease with significant morbidity, progressive deterioration of lung function till death, and lack of effective treatment options. This study aims to explore the global research trends in IPF and immune response to predict the research hotspot in the future. Materials and methods. All related publications on IPF and immune response since the establishment of diagnostic criteria for IPF were retrieved using the Web of Science (WOS) database. VOSviewer, GraphPad Prism 6, CiteSpace version 5.6. R5 64-bit, and a bibliometrics online platform were used to extract and analyze the trends in relevant fields. Results From March 1, 2000, to September 30, 2022, a total of 658 articles with 25,126 citations met the inclusion criteria. The United States ranked first in number of publications (n = 217), number of citations (n = 14,745), and H-index (62). China ranked second in publications (n = 124) and seventh and fifth for citation frequency and H-index, respectively. The American Journal of Respiratory and Critical Care Medicine (impact factor = 30.528) published the most articles in the field. The author Kaminski N. from the United States was the most influential author with 26 publications and an H-index of 24. Among the 52 keywords that co-occurred at least 20 times, the main keywords were concentrated in "Inflammation related" and "Biomarker related" clusters. "biomarker" (AAY 2018.64, 25 times) was a newly emerged keyword. Conclusions The United States has an unequivocal advantage in IPF and immunization, but China shows a faster developing trend. The American Journal of Respiratory and Critical Care Medicine should be prioritized for leading articles. This study indicates that exploration of ideal immune-related biomarkers to provide evidence for the clinical work of IPF might be a hotspot in the near future.
Collapse
Affiliation(s)
- Shirong Li
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Pengyue Zhao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Chao Wang
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yun Xia
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Haoyan Wang
- Department of Respiratory, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wenjie Qi
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
13
|
Tirelli C, Pesenti C, Miozzo M, Mondoni M, Fontana L, Centanni S. The Genetic and Epigenetic Footprint in Idiopathic Pulmonary Fibrosis and Familial Pulmonary Fibrosis: A State-of-the-Art Review. Diagnostics (Basel) 2022; 12:diagnostics12123107. [PMID: 36553114 PMCID: PMC9777399 DOI: 10.3390/diagnostics12123107] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare disease of the lung with a largely unknown etiology and a poor prognosis. Intriguingly, forms of familial pulmonary fibrosis (FPF) have long been known and linked to specific genetic mutations. There is little evidence of the possible role of genetics in the etiology of sporadic IPF. We carried out a non-systematic, narrative literature review aimed at describing the main known genetic and epigenetic mechanisms that are involved in the pathogenesis and prognosis of IPF and FPF. In this review, we highlighted the mutations in classical genes associated with FPF, including those encoding for telomerases (TERT, TERC, PARN, RTEL1), which are also found in about 10-20% of cases of sporadic IPF. In addition to the Mendelian forms, mutations in the genes encoding for the surfactant proteins (SFTPC, SFTPA1, SFTPA2, ABCA3) and polymorphisms of genes for the mucin MUC5B and the Toll-interacting protein TOLLIP are other pathways favoring the fibrogenesis that have been thoroughly explored. Moreover, great attention has been paid to the main epigenetic alterations (DNA methylation, histone modification and non-coding RNA gene silencing) that are emerging to play a role in fibrogenesis. Finally, a gaze on the shared mechanisms between cancer and fibrogenesis, and future perspectives on the genetics of pulmonary fibrosis have been analyzed.
Collapse
Affiliation(s)
- Claudio Tirelli
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Chiara Pesenti
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Monica Miozzo
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Laura Fontana
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Stefano Centanni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
14
|
Zhan P, Lu X, Li Z, Wang WJ, Peng K, Liang NN, Wang Y, Li J, Fu L, Zhao H, Xu DX, Tan ZX. Mitoquinone alleviates bleomycin-induced acute lung injury via inhibiting mitochondrial ROS-dependent pulmonary epithelial ferroptosis. Int Immunopharmacol 2022; 113:109359. [DOI: 10.1016/j.intimp.2022.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
15
|
Pei Z, Qin Y, Fu X, Yang F, Huo F, Liang X, Wang S, Cui H, Lin P, Zhou G, Yan J, Wu J, Chen ZN, Zhu P. Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model. Redox Biol 2022; 57:102509. [PMID: 36302319 PMCID: PMC9614651 DOI: 10.1016/j.redox.2022.102509] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease characterized by excessive proliferation of fibroblasts and excessive accumulation of extracellular matrix (ECM). Ferroptosis is a novel form of cell death characterized by the lethal accumulation of iron and lipid peroxidation, which is associated with many diseases. Our study addressed the potential role played by ferroptosis and iron accumulation in the progression of pulmonary fibrosis. We found that the inducers of pulmonary fibrosis and injury, namely, bleomycin (BLM) and lipopolysaccharide (LPS), induced ferroptosis of lung epithelial cells. Both the ferroptosis inhibitor liproxstatin-1 (Lip-1) and the iron chelator deferoxamine (DFO) alleviated the symptoms of pulmonary fibrosis induced by bleomycin or LPS. TGF-β stimulation upregulated the expression of transferrin receptor protein 1 (TFRC) in the human lung fibroblast cell line (MRC-5) and mouse primary lung fibroblasts, resulting in increased intracellular Fe2+, which promoted the transformation of fibroblasts into myofibroblasts. Mechanistically, TGF-β enhanced the expression and nuclear localization of the transcriptional coactivator tafazzin (TAZ), which combined with the transcription factor TEA domain protein (TEAD)-4 to promote the transcription of TFRC. In addition, elevated Fe2+ failed to induce the ferroptosis of fibroblasts, which might be related to the regulation of iron export and lipid metabolism. Finally, we specifically knocked out TFRC expression in fibroblasts in mice, and compared with those in the control mice, the symptoms of pulmonary fibrosis were reduced in the knockout mice after bleomycin induction. Collectively, these findings suggest the therapeutic potential of ferroptosis inhibitors and iron chelators in treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhuo Pei
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yifei Qin
- Guangzhou (Jinan) Biomedical Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xianghui Fu
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fengfan Yang
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fei Huo
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xue Liang
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shijie Wang
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongyong Cui
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Gang Zhou
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiangna Yan
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiao Wu
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ping Zhu
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
16
|
Holani R, Rathnayaka C, Blyth GA, Babbar A, Lahiri P, Young D, Dufour A, Hollenberg MD, McKay DM, Cobo ER. Cathelicidins Induce Toll-Interacting Protein Synthesis to Prevent Apoptosis in Colonic Epithelium. J Innate Immun 2022; 15:204-221. [PMID: 36116427 PMCID: PMC10643900 DOI: 10.1159/000526121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/27/2022] [Indexed: 11/17/2023] Open
Abstract
Cathelicidin peptides secreted by leukocytes and epithelial cells are microbicidal but also regulate pathogen sensing via toll-like receptors (TLRs) in the colon by mechanisms that are not fully understood. Herein, analyses with the attaching/effacing pathogen Citrobacter rodentium model of colitis in cathelicidin-deficient (Camp-/-) mice, and colonic epithelia demonstrate that cathelicidins prevent apoptosis by sustaining post-transcriptional synthesis of a TLR adapter, toll-interacting protein (TOLLIP). Cathelicidins induced phosphorylation-activation of epidermal growth factor receptor (EGFR)-kinase, which phosphorylated-inactivated miRNA-activating enzyme Argonaute 2 (AGO2), thus reducing availability of the TOLLIP repressor miRNA-31. Cathelicidins promoted stability of TOLLIP protein via a proteosome-dependent pathway. This cathelicidin-induced TOLLIP upregulation prevented apoptosis in the colonic epithelium by reducing levels of caspase-3 and poly (ADP-ribose) polymerase (PARP)-1 in response to the proinflammatory cytokines, interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα). Further, Camp-/- colonic epithelial cells were more susceptible to apoptosis during C. rodentium infection than wild-type cells. This antiapoptotic effect of cathelicidins, maintaining epithelial TOLLIP protein in the gut, provides insight into cathelicidin's ability to regulate TLR signaling and prevent exacerbated inflammation.
Collapse
Affiliation(s)
- Ravi Holani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Chathurika Rathnayaka
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Graham A.D. Blyth
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anshu Babbar
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Priyoshi Lahiri
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Young
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Morley D. Hollenberg
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M. McKay
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eduardo R. Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Mota PC, Soares ML, Vasconcelos CD, Ferreira AC, Lima BA, Manduchi E, Moore JH, Melo N, Novais-Bastos H, Pereira JM, Guimarães S, Moura CS, Marques JA, Morais A. Predictive value of common genetic variants in idiopathic pulmonary fibrosis survival. J Mol Med (Berl) 2022; 100:1341-1353. [DOI: 10.1007/s00109-022-02242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/13/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
|
18
|
Lipinski JH, Erb-Downward JR, Huffnagle GB, Flaherty KR, Martinez FJ, Moore BB, Dickson RP, Noth I, O’Dwyer DN. Toll-Interacting Protein and Altered Lung Microbiota in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:224-227. [PMID: 35446241 PMCID: PMC9887421 DOI: 10.1164/rccm.202111-2590le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
| | | | | | | | | | | | | | - Imre Noth
- University of VirginiaCharlottesville, Virginia
| | | |
Collapse
|
19
|
Isorhapontigenin Modulates SOX9/TOLLIP Expression to Attenuate Cell Apoptosis and Oxidative Stress in Paraquat-Induced Acute Kidney Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3328623. [PMID: 35720190 PMCID: PMC9203234 DOI: 10.1155/2022/3328623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022]
Abstract
Paraquat (PQ) is a widely used herbicide but can be lethal to humans. The kidney is vital for PQ elimination; therefore, explorations for therapeutic approaches for PQ-induced acute kidney injury (AKI) are of great significance. Here, the effects of a natural bioactive polyphenol isorhapontigenin (ISO) on PQ-AKI were investigated. In vitro experiments carried out in PQ-intoxicated rat renal tubular epithelial cells (NRK-52E) showed that ISO treatment inhibited PQ-induced cell apoptosis and oxidative stress, which was evidenced by the decreased proapoptotic proteins [cleaved caspase 3/9 and poly (ADP-ribose) polymerase (PARP)], the reduced oxidative stress indicators [reactive oxygen species (ROS), malondialdehyde (MDA), and lactate dehydrogenase (LDH) leakage], and the increased antioxidants [superoxide dismutase (SOD), nuclear factor E2-related factor 2 (NRF2), and oxygenase-1 (HO-1)]. Furthermore, 50 mg/kg ISO pretreatment before PQ administration significantly attenuated PQ-AKI in rats, as manifested by the improved renal tubule damage, the reduced serum and urine markers of kidney injury, and the inhibited cell apoptosis and oxidative stress in the renal cortex. Furthermore, expression of sex-determining region Y box 9 (SOX9) and Toll-interacting protein (TOLLIP) in NRK-52E cells and the renal cortex was significantly upregulated after ISO treatment. Overexpression of SOX9 increased TOLLIP transcription and attenuated PQ-induced apoptosis and oxidative stress, whereas knockdown of SOX9 impaired the protective effects of ISO on NRK-52E cells against PQ toxicity. In conclusion, the present study demonstrated that ISO modulated SOX9/TOLLIP expression to attenuate cell apoptosis and oxidative stress in PQ-AKI, suggesting the potential of ISO in treating PQ-poisoned patients.
Collapse
|
20
|
Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11061050. [PMID: 35326501 PMCID: PMC8947093 DOI: 10.3390/cells11061050] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiology and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally involves an aberrant airway epithelial response, which contributes significantly to disease development and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell type composition in IPF. We furthermore give a comprehensive overview on the genetic and mechanistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms in this context. The collected evidence argues for the investigation of possible therapeutic avenues targeting these processes, which thus represent important future directions of research.
Collapse
|
21
|
Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci 2022; 291:120283. [PMID: 34998839 DOI: 10.1016/j.lfs.2021.120283] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiological factors that can progress to other dangerous diseases like lung cancer. Environmental and genetic predisposition are the two major etiological or risk factors involved in the pathology of the IPF. Among the environmental risk factors, smoking is one of the major causes for the development of IPF. Epigenetic pathways like nucleosomes remodeling, DNA methylation, histone modifications and miRNA mediated genes play a crucial role in development of IPF. Mutations in the genes make the epigenetic factors as important drug targets in IPF. Transcriptional changes due to environmental factors are also involved in the progression of IPF. The mutations in human telomerase reverse transcriptase (hTERT) have shown decreased life expectancy in IPF patients. The TERT-gene is highly expressed in chronic smokers and makes the role of epigenetics evident. Drug like nintedanib acts through vascular endothelial growth factor receptors (VEGFR), while drug pirfenidone acts through transforming growth factor (TGF), which is useful in IPF. Gefitinib, a tyrosine kinase inhibitor of EGFR, is useful as an anti-fibrosis agent in preclinical models. Newer drugs such as Celgene-CC90001 and FibroGen-FG-3019 are currently under investigations acts through the modulating epigenetic mechanisms. Thus, the study on epigenetics opens a wide window for the discovery of newer drugs. This study provides an elementary analysis of multiple regulators of epigenetics and their roles associated with the pathology of IPF. Further, this review also includes epigenetic drugs under development in preclinical and clinical stages.
Collapse
|
22
|
Liu J, Zhao X, Duan X, Zhang W, Li C. CircRNA75 and CircRNA72 Function as the Sponge of MicroRNA-200 to Suppress Coelomocyte Apoptosis Via Targeting Tollip in Apostichopus japonicus. Front Immunol 2021; 12:770055. [PMID: 34868028 PMCID: PMC8635487 DOI: 10.3389/fimmu.2021.770055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) act as essential regulators in many biological processes, especially in mammalian immune response. Nonetheless, the functions and mechanisms of circRNAs in the invertebrate immune system are largely unclarified. In our previous work, 261 differentially expressed circRNAs potentially related to the development of Apostichopus japonicus skin ulceration syndrome (SUS), which is a major problem restricting the sea cucumber breeding industry, were identified by genome-wide screening. In this study, via miRanda analysis, both circRNA75 and circrRNA72 were shown to share the miR-200 binding site, a key microRNA in the SUS. The two circRNAs were verified to be increased significantly in LPS-exposed primary coelomocytes, similar to the results of circRNA-seq in sea cucumber under Vibrio splendidus-challenged conditions. A dual-luciferase assay indicated that both circRNA75 and circRNA72 could bind miR-200 in vivo, in which circRNA75 had four binding sites of miR-200 and only one for circRNA72. Furthermore, we found that miR-200 could bind the 3’-UTR of Toll interacting protein (Tollip) to negatively mediate the expression of Tollip. Silencing Tollip increased primary coelomocyte apoptosis. Consistently, inference of circRNA75 and circRNA72 could also downregulate Tollip expression, thereby increasing the apoptosis of primary coelomocytes, which could be blocked by miR-200 inhibitor treatment. Moreover, the rate of si-circRNA75-downregulated Tollip expression was higher than that of si-circRNA72 under an equivalent amount. CircRNA75 and circRNA72 suppressed coelomocyte apoptosis by sponging miR-200 to promote Tollip expression. The ability of circRNA to adsorb miRNA might be positively related to the number of binding sites for miRNA.
Collapse
Affiliation(s)
- Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Xuemei Duan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
23
|
Abstract
Autophagy is an evolutionarily conserved process where long-lived and damaged organelles are degraded. Autophagy has been widely associated with several ageing-process as well in diseases such as neurodegeneration, cancer and fibrosis, and is now being utilised as a target in these diseases. Idiopathic pulmonary fibrosis (IPF) is a progressive, interstitial lung disease with limited treatment options available. It is characterised by abnormal extracellular matrix (ECM) deposition by activated myofibroblasts. It is understood that repetitive micro-injuries to aged-alveolar epithelium combined with genetic factors drive the disease. Several groups have demonstrated that autophagy is altered in IPF although whether autophagy has a protective effect or not is yet to be determined. Autophagy has also been shown to influence many other processes including epithelial-mesenchymal transition (EMT) and endothelial-mesenchymal transition (EndMT) which are known to be key in the pathogenesis of IPF. In this review, we summarise the findings of evidence of altered autophagy in IPF lungs, as well as examine its roles within lung fibrosis. Given these findings, together with the growing use of autophagy manipulation in a clinical setting, this is an exciting area for further research in the study of lung fibrosis.
Collapse
|
24
|
Li X, Goobie GC, Gregory AD, Kass DJ, Zhang Y. Toll-Interacting Protein in Pulmonary Diseases. Abiding by the Goldilocks Principle. Am J Respir Cell Mol Biol 2021; 64:536-546. [PMID: 33233920 PMCID: PMC8086045 DOI: 10.1165/rcmb.2020-0470tr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
TOLLIP (Toll-interacting protein) is an intracellular adaptor protein with diverse actions throughout the body. In a context- and cell type–specific manner, TOLLIP can function as an inhibitor of inflammation and endoplasmic-reticulum stress, an activator of autophagy, or a critical regulator of intracellular vacuole trafficking. The distinct functions of this protein have been linked to innate immune responses and lung epithelial-cell apoptosis. TOLLIP genetic variants have been associated with a variety of chronic lung diseases, including idiopathic pulmonary fibrosis, asthma, and primary graft dysfunction after lung transplantation, and with infections, such as tuberculosis, Legionella pneumonia, and respiratory viruses. TOLLIP exists in a delicate homeostatic balance, with both positive and negative effects on the trajectory of pulmonary diseases. This translational review summarizes the genetic and molecular associations that link TOLLIP to the development and progression of noninfectious and infectious pulmonary diseases. We highlight current limitations of in vitro and in vivo models in assessing the role of TOLLIP in these conditions, and we describe future approaches that will enable a more nuanced exploration of the role of TOLLIP in pulmonary conditions. There has been a surge in recent research evaluating the role of this protein in human diseases, but critical mechanistic pathways require further exploration. By understanding its biologic functions in disease-specific contexts, we will be able to determine whether TOLLIP can be therapeutically modulated to treat pulmonary diseases.
Collapse
Affiliation(s)
- Xiaoyun Li
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Gillian C Goobie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; and.,Clinician Investigator Program, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alyssa D Gregory
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| |
Collapse
|
25
|
Overexpression of TOLLIP Protects against Acute Kidney Injury after Paraquat Intoxication through Inhibiting NLRP3 Inflammasome Activation Modulated by Toll-Like Receptor 2/4 Signaling. Mediators Inflamm 2021; 2021:5571272. [PMID: 34335089 PMCID: PMC8298172 DOI: 10.1155/2021/5571272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/10/2021] [Accepted: 06/09/2021] [Indexed: 01/22/2023] Open
Abstract
Paraquat (PQ) can cause multiorgan failure including acute kidney injury (AKI). Our prior study showed that Toll-interacting protein (TOLLIP) protected against PQ-induced acute lung injury. However, the role of TOLLIP in PQ-induced AKI remains undefined. This study was aimed at understanding the role and mechanism of TOLLIP in AKI. Six-eight-week-old male Wistar rats were intraperitoneally injected with 25 mg/kg PQ to induce AKI for 24 h in vivo. HK-2 cells were treated with 300 μM PQ for 24 h to induce cellular injury in vitro or 300 μM PQ and 5 μM nuclear factor-κB (NF-κB) inhibitor BAY11-7082 for 24 h. Rats were infected with adenovirus carrying TOLLIP shRNA via tail vein injection and HK-2 cells with adenovirus carrying TOLLIP shRNA or TOLLIP 48 h before PQ exposure. Results showed that TOLLIP and Toll-like receptor 2/4 (TLR2/4) expressions were boosted in the kidney after PQ intoxication. The toxic effect of PQ on the kidney and HK-2 cells was exacerbated by TOLLIP knockdown, as evidenced by aggravated glomerulus and tubule injury, inflammatory infiltration, and cell apoptosis in the kidney and increased loss of cell viability and apoptotic cells in HK-2 cells. TOLLIP knockdown also enhanced PQ-induced NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation in vivo and in vitro and TLR2/4-NF-κB signaling in vitro, reflected by increased contents of proinflammatory cytokines and expressions of NLRP3 inflammasome-related proteins in the kidney and HK-2 cells and expressions of TLR2, TLR4, and nuclear NF-κB p65 in HK-2 cells. However, TOLLIP overexpression inhibited PQ-induced loss of cell viability, cell apoptosis, NLRP3 inflammasome activation, and TLR2/4-NF-κB signaling in vitro. Additionally, BAY11-7082 abolished TOLLIP knockdown-induced NLRP3 inflammasome activation in vitro, indicating that TOLLIP protected against NLRP3 inflammasome activation in PQ-induced AKI through inhibiting TLR2/4-NF-κB signaling. This study highlights the importance of TOLLIP in AKI after PQ intoxication.
Collapse
|
26
|
Zheng Q, Zhang Y, Zhao Z, Shen H, Zhao H, Zhao M. Isorhynchophylline ameliorates paraquat-induced acute kidney injury by attenuating oxidative stress and mitochondrial damage via regulating toll-interacting expression. Toxicol Appl Pharmacol 2021; 420:115521. [PMID: 33838153 DOI: 10.1016/j.taap.2021.115521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 01/13/2023]
Abstract
Isorhynchophylline (IRN) is an alkaloid with anti-inflammatory and anti-oxidative activities in cardiovascular and brain diseases, but its role in paraquat (PQ)-induced acute kidney injury (AKI) is yet unknown. The model of PQ-induced AKI in rats was established by intraperitoneal injection of PQ (25 mg/kg). We found that the tail vein injection of IRN (4 mg/kg) significantly increased the survival rate of PQ-intoxicated rats. IRN administration alleviated PQ-induced renal injury and renal dysfunction in rats, as evidenced by decreased apoptosis in renal cortex and reduced serum creatinine, serum BUN, and urine NGAL levels. Furthermore, IRN treatment improved the PQ-triggered oxidative stress in renal cortex by increasing the levels of anti-oxidant indicators (SOD activity, GSH/GSSG ratio, levels of Nrf-2, NQO-1, and HO-1 in renal cortex) and decreasing the levels of oxidative stress indexes (ROS and MDA levels in renal cortex). Interestingly, toll-interacting protein (Tollip), a negative regulator of interleukin 1 receptor associated kinase 1 (IRAK1) phosphorylation, was demonstrated to be increased by IRN injection in the renal cortex of PQ-intoxicated rats. In vitro experiments revealed that IRN protected renal tubular epithelial cells against PQ toxicity through suppressing oxidative stress and mitochondrial damage, and these protective effects were reversed by Tollip shRNA. Collectively, the present study demonstrated that IRN ameliorated PQ-induced AKI by attenuating oxidative stress and mitochondrial damage through upregulating Tollip, which provides new insights into the pathogenesis and treatment of PQ poisoning.
Collapse
Affiliation(s)
- Qiang Zheng
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yuan Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Zheng Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Hongyu Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
27
|
Planté-Bordeneuve T, Pilette C, Froidure A. The Epithelial-Immune Crosstalk in Pulmonary Fibrosis. Front Immunol 2021; 12:631235. [PMID: 34093523 PMCID: PMC8170303 DOI: 10.3389/fimmu.2021.631235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions between the lung epithelium and the immune system involve a tight regulation to prevent inappropriate reactions and have been connected to several pulmonary diseases. Although the distal lung epithelium and local immunity have been implicated in the pathogenesis and disease course of idiopathic pulmonary fibrosis (IPF), consequences of their abnormal interplay remain less well known. Recent data suggests a two-way process, as illustrated by the influence of epithelial-derived periplakin on the immune landscape or the effect of macrophage-derived IL-17B on epithelial cells. Additionally, damage associated molecular patterns (DAMPs), released by damaged or dying (epithelial) cells, are augmented in IPF. Next to “sterile inflammation”, pathogen-associated molecular patterns (PAMPs) are increased in IPF and have been linked with lung fibrosis, while outer membrane vesicles from bacteria are able to influence epithelial-macrophage crosstalk. Finally, the advent of high-throughput technologies such as microbiome-sequencing has allowed for the identification of a disease-specific microbial environment. In this review, we propose to discuss how the interplays between the altered distal airway and alveolar epithelium, the lung microbiome and immune cells may shape a pro-fibrotic environment. More specifically, it will highlight DAMPs-PAMPs pathways and the specificities of the IPF lung microbiome while discussing recent elements suggesting abnormal mucosal immunity in pulmonary fibrosis.
Collapse
Affiliation(s)
- Thomas Planté-Bordeneuve
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Charles Pilette
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| | - Antoine Froidure
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| |
Collapse
|
28
|
Bonella F, Campo I, Zorzetto M, Boerner E, Ohshimo S, Theegarten D, Taube C, Costabel U. Potential clinical utility of MUC5B und TOLLIP single nucleotide polymorphisms (SNPs) in the management of patients with IPF. Orphanet J Rare Dis 2021; 16:111. [PMID: 33639995 PMCID: PMC7913255 DOI: 10.1186/s13023-021-01750-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/16/2021] [Indexed: 11/26/2022] Open
Abstract
Background Genetic variants of TOLLIP and MUC5B, both on chromosome 11, have been reported to be associated with the development and/or prognosis of idiopathic pulmonary fibrosis (IPF). This retrospective study was conducted to investigate the association of MUC5B and TOLLIP SNPs with disease outcome in IPF. 62 IPF patients and 50 healthy controls (HC) from our Institution were genotyped for SNPs within MUC5B (rs35705950) and TOLLIP (rs3750920 and rs5743890). Correlation of SNPs genotypes with survival, acute exacerbation (AE) or disease progression (defined as a decline of ≥ 5% in FVC and or ≥ 10% in DLco in one year) was investigated. Results The MUC5B rs35705950 minor allele (T) was more frequent in IPF subjects than in HC (35% vs 9% p < 0.001). TOLLIP SNPs alleles and genotype distribution did not differ between IPF and HC and did not vary according to gender, age, BMI and lung functional impairment at baseline. The minor allele (C) in TOLLIP rs5743890 was associated with worse survival and with disease progression in all performed analyses. The MUC5B rs35705950 or the TOLLIP rs3750920 minor allele, were not associated with disease progression or AE.
Conclusion We confirm that the minor allele of MUC5B rs35705950 is associated with IPF. The minor allele of TOLLIP rs5743890 appears to be a predictor of worse survival and more rapid disease progression, therefore being of potential utility to stratify IPF patients at baseline.
Collapse
Affiliation(s)
- Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik University Hospital, University of Duisburg-Essen, 45239, Essen, Germany.
| | - Ilaria Campo
- SC Pneumologia - Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Zorzetto
- Clinical Chemistry Laboratory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Eda Boerner
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik University Hospital, University of Duisburg-Essen, 45239, Essen, Germany
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Taube
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik University Hospital, University of Duisburg-Essen, 45239, Essen, Germany
| | - Ulrich Costabel
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik University Hospital, University of Duisburg-Essen, 45239, Essen, Germany
| |
Collapse
|
29
|
Michalski JE, Schwartz DA. Genetic Risk Factors for Idiopathic Pulmonary Fibrosis: Insights into Immunopathogenesis. J Inflamm Res 2021; 13:1305-1318. [PMID: 33447070 PMCID: PMC7801923 DOI: 10.2147/jir.s280958] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis is an etiologically complex interstitial lung disease characterized by progressive scarring of the lungs with a subsequent decline in lung function. While much of the pathogenesis of IPF still remains unclear, it is now understood that genetic variation accounts for at least one-third of the risk of developing the disease. The single-most validated and most significant risk factor, genetic or otherwise, is a gain-of-function promoter variant in the MUC5B gene. While the functional impact of these IPF risk variants at the cellular and tissue levels are areas of active investigation, there is a growing body of evidence that these genetic variants may influence disease pathogenesis through modulation of innate immune processes.
Collapse
Affiliation(s)
- Jacob E Michalski
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
30
|
Li X, Goobie GC, Zhang Y. Toll-interacting protein impacts on inflammation, autophagy, and vacuole trafficking in human disease. J Mol Med (Berl) 2020; 99:21-31. [PMID: 33128579 DOI: 10.1007/s00109-020-01999-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
Toll-interacting protein (TOLLIP) is a ubiquitous intracellular adaptor protein involved in multiple intracellular signaling pathways. It plays a key role in mediating inflammatory intracellular responses, promoting autophagy, and enabling vacuole transport within the cell. TOLLIP is being increasingly recognized for its role in disease pathophysiology through involvement in these three primary pathways. Recent research also indicates that TOLLIP is involved in nuclear-cytoplasmic transfer, although this area requires further exploration. TOLLIP is involved in the pathophysiologic pathways associated with neurodegenerative diseases, pulmonary diseases, cardiovascular disease, inflammatory bowel disease, and malignancy. We postulate that TOLLIP plays an integral role in the disease pathophysiology of other conditions involved in vacuole trafficking and autophagy. We suggest that future research in this field should investigate the role of TOLLIP in the pathogenesis of these multiple conditions. This research has the potential to inform disease mechanisms and identify novel opportunities for therapeutic advances in multiple disease processes.
Collapse
Affiliation(s)
- Xiaoyun Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Gillian C Goobie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Clinician Investigator Program, Department of Medicine, University of British Columbia, BC, V5Z-3X7, Vancouver, Canada
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|