1
|
Bokov RO, Sharlo KA, Vilchinskaya NA, Tyganov SA, Turtikova OV, Rozhkov SV, Deviatiiarov RM, Gusev OA, Tomilovskaya ES, Shenkman BS, Orlov OI. Molecular insights into human soleus muscle atrophy development: long-term dry immersion effects on the transcriptomic profile and posttranslational signaling. Physiol Genomics 2025; 57:357-382. [PMID: 40072920 DOI: 10.1152/physiolgenomics.00196.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
Muscle disuse results in complex signaling alterations followed by structural and functional changes, such as atrophy, force decrease, and slow-to-fast fiber-type shift. Little is known about human skeletal muscle signaling alterations under long-term muscle disuse. In this study, we describe the effects of 21-day dry immersion on human postural soleus muscle. We performed both transcriptomic analysis and Western blots to describe the states of the key signaling pathways regulating soleus muscle fiber size, fiber type, and metabolism. Twenty-one-day dry immersion resulted in both slow-type and fast-type myofibers atrophy, downregulation of rRNA content, and mTOR signaling. Twenty-one-day dry immersion also leads to slow-to-fast fiber-type and gene expression shift, upregulation of p-eEF2, p-CaMKII, p-ACC content and downregulation of NFATc1 nuclear content. It also caused massive gene expression alterations associated with calcium signaling, cytoskeletal parameters, and downregulated mitochondrial signaling (including fusion, fission, and marker of mitochondrial density).NEW & NOTEWORTHY The main findings of our study are as follows: 1) The soleus slow fibers atrophy after 21-day dry immersion (DI) does not exceed that after 7-day DI; 2) The soleus ubiquitin ligases expression after 21-day DI returns to its initial level; 3) The soleus slow fibers atrophy after 21-day DI is accompanied by a mitochondrial apparatus structural markers decrease; 4) The soleus fibers signaling pathways restructuring process during 21-day DI is carried out in a complex manner.
Collapse
Affiliation(s)
- Roman O Bokov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Kristina A Sharlo
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey A Tyganov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Olga V Turtikova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Rozhkov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Oleg A Gusev
- Life Improvement by Future Technologies Center, Moscow, Russia
| | | | - Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Oleg I Orlov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Bosutti A, Ganse B, Maffiuletti NA, Wüst RCI, Strijkers GJ, Sanderson A, Degens H. Microgravity-induced changes in skeletal muscle and possible countermeasures: What we can learn from bed rest and human space studies. Exp Physiol 2025. [PMID: 40098289 DOI: 10.1113/ep092345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Despite exercise countermeasures to sustain health and performance in spaceflight, complete maintenance of muscle mass and functions in microgravity is still not possible for most astronauts. The principal cause of the limited effectiveness of existing exercise countermeasures is the difficulty in achieving full loading forces in space. The implementation of countermeasures which require small devices and simulate Earth-like loading forces to maintain muscle mass, strength and endurance is therefore highly desirable. At present, the cellular mechanisms that induce muscle atrophy in weightlessness are not yet fully known; a better understanding of how skeletal muscle cells adapt to microgravity will help in designing more effective countermeasures to sustain the health and operational capacity of the crew during long- and short-duration missions. The 6° head-down-tilt bed rest is a powerful ground-based analogue platform to simulate and study the physiological effects of spaceflight on the human body, and test the effectiveness of countermeasures before they are potentially applied in space. The aims of this narrative review are therefore to provide an overview of (i) the main mechanisms underlining muscle atrophy learnt from space and bed rest studies, (ii) the currently available countermeasures, and (iii) potential suitable countermeasures - such as neuromuscular electrical stimulation that is delivered with light and small portable units - to attenuate muscle wasting in astronauts during spaceflight.
Collapse
Affiliation(s)
| | - Bergita Ganse
- Departments and Institutes of Surgery, Saarland University, Homburg, Germany
| | | | - Rob C I Wüst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Andy Sanderson
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Hans Degens
- Department Life Sciences, Manchester Metropolitan University, Manchester, UK
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
3
|
Tu D, Song Z, Ren C, Hu Y, Jin Q, Wang Y. Joint association of antioxidant intakes from diet and supplements and sedentary behavior with all-cause and cardiovascular disease mortality among US adults. BMC Public Health 2025; 25:577. [PMID: 39939851 PMCID: PMC11817984 DOI: 10.1186/s12889-025-21725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Imbalanced dietary patterns, sedentary behavior, and other unhealthy lifestyle behaviors are among the potentially modifiable risk factors most consistently linked to all-cause and cardiovascular disease (CVD) mortality. This study aimed to investigate the joint association of antioxidant intakes from diet and supplements and sedentary behavior with all-cause and CVD mortality. METHODS This retrospective cohort study included 16,019 adults from National Health and Nutrition Examination Survey (NHANES) 2007-2014. All-cause and CVD mortality was ascertained by linkage to National Death Index records through 31 December 2019. Participants were divided into four lifestyle patterns based on their intake of six antioxidants from dietary intakes and supplements and their self-reported sedentary behavior: low-antioxidant diet and prolonged sedentary behavior, low-antioxidant diet and nonprolonged sedentary behavior, high-antioxidant diet and prolonged sedentary behavior, high-antioxidant diet and nonprolonged sedentary behavior. Multivariable Cox proportional hazards models were utilized to evaluate the associations of antioxidant diet and sedentary behavior with regards to all-cause and CVD mortality. RESULTS Over an average follow-up of 8.5 years, a total of 1,894 overall deaths and 482 CVD deaths were reported. Compared with the low-antioxidant diet and prolonged sedentary behavior group, participants in the high-antioxidant diet and nonprolonged sedentary behavior group had a significantly lower risk of all-cause (hazard ratio [HR], 0.60; 95% confidence interval [CI], 0.50-0.72) and CVD (0.51; 0.34-0.77) mortality. Similarly, individuals following a low-antioxidant diet and engaging in nonprolonged sedentary behavior also had a reduced risk of all-cause (0.63; 0.52-0.75) and CVD (0.54; 0.38-0.76) mortality. On the other hand, there was no significant reduction in all-cause mortality among individuals in the high-antioxidant diet and prolonged sedentary behavior group (0.83; 0.68-1.03), as well as CVD mortality (0.87; 0.62-1.21). Subgroup and sensitivity analyses yielded results that were consistent with the overall analysis. CONCLUSIONS Participants with both high-antioxidant diet and nonprolonged sedentary behavior had the lowest all-cause and CVD mortality. Additionally, nonprolonged sedentary behavior can help counteract the harms of low-antioxidant diet, whereas a high-antioxidant diet fails to offset the deleterious effect of prolonged sedentary behavior.
Collapse
Affiliation(s)
- Dingyuan Tu
- Department of Cardiology, The 960th Hospital of the Joint Logistics Support Force of The Chinese People's Liberation Army, Jinan, 250000, China
- Department of Cardiology, The 961st Hospital of the Joint Logistics Support Force of The Chinese People's Liberation Army, Qiqihar, 161000, China
| | - Zhiqiang Song
- Department of Hematology, Institute of Hematology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200433, China
| | - Changzhen Ren
- Department of Cardiology, The 960th Hospital of the Joint Logistics Support Force of The Chinese People's Liberation Army, Jinan, 250000, China
| | - Yuhong Hu
- Department of Cardiology, The 960th Hospital of the Joint Logistics Support Force of The Chinese People's Liberation Army, Jinan, 250000, China.
| | - Qun Jin
- Department of Cardiology, The 960th Hospital of the Joint Logistics Support Force of The Chinese People's Liberation Army, Jinan, 250000, China.
| | - Yang Wang
- Department of Hematology, Institute of Hematology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Motanova E, Pirazzini M, Negro S, Rossetto O, Narici M. Impact of ageing and disuse on neuromuscular junction and mitochondrial function and morphology: Current evidence and controversies. Ageing Res Rev 2024; 102:102586. [PMID: 39557298 DOI: 10.1016/j.arr.2024.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Inactivity and ageing can have a detrimental impact on skeletal muscle and the neuromuscular junction (NMJ). Decreased physical activity results in muscle atrophy, impaired mitochondrial function, and NMJ instability. Ageing is associated with a progressive decrease in muscle mass, deterioration of mitochondrial function in the motor axon terminals and in myofibres, NMJ instability and loss of motor units. Focusing on the impact of inactivity and ageing, this review examines the consequences on NMJ stability and the role of mitochondrial dysfunction, delving into their complex relationship with ageing and disuse. Evidence suggests that mitochondrial dysfunction can be a pathogenic driver for NMJ alterations, with studies revealing the role of mitochondrial defects in motor neuron degeneration and NMJ instability. Two perspectives behind NMJ instability are discussed: one is that mitochondrial dysfunction in skeletal muscle triggers NMJ deterioration, the other envisages dysfunction of motor terminal mitochondria as a primary contributor to NMJ instability. While evidence from these studies supports both perspectives on the relationship between NMJ dysfunction and mitochondrial impairment, gaps persist in the understanding of how mitochondrial dysfunction can cause NMJ deterioration. Further research, both in humans and in animal models, is essential for unravelling the mechanisms and potential interventions for age- and inactivity-related neuromuscular and mitochondrial alterations.
Collapse
Affiliation(s)
- Evgeniia Motanova
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| |
Collapse
|
5
|
Di Filippo ES, Chiappalupi S, Falone S, Dolo V, Amicarelli F, Marchianò S, Carino A, Mascetti G, Valentini G, Piccirillo S, Balsamo M, Vukich M, Fiorucci S, Sorci G, Fulle S. The MyoGravity project to study real microgravity effects on human muscle precursor cells and tissue. NPJ Microgravity 2024; 10:92. [PMID: 39362881 PMCID: PMC11450100 DOI: 10.1038/s41526-024-00432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
Microgravity (µG) experienced during space flights promotes adaptation in several astronauts' organs and tissues, with skeletal muscles being the most affected. In response to reduced gravitational loading, muscles (especially, lower limb and antigravity muscles) undergo progressive mass loss and alteration in metabolism, myofiber size, and composition. Skeletal muscle precursor cells (MPCs), also known as satellite cells, are responsible for the growth and maintenance of muscle mass in adult life as well as for muscle regeneration following damage and may have a major role in µG-induced muscle wasting. Despite the great relevance for astronaut health, very few data are available about the effects of real µG on human muscles. Based on the MyoGravity project, this study aimed to analyze: (i) the cellular and transcriptional alterations induced by real µG in human MPCs (huMPCs) and (ii) the response of human skeletal muscle to normal gravitational loading after prolonged exposure to µG. We evaluated the transcriptomic changes induced by µG on board the International Space Station (ISS) in differentiating huMPCs isolated from Vastus lateralis muscle biopsies of a pre-flight astronaut and an age- and sex-matched volunteer, in comparison with the same cells cultured on the ground in standard gravity (1×g) conditions. We found that huMPCs differentiated under real µG conditions showed: (i) upregulation of genes related to cell adhesion, plasma membrane components, and ion transport; (ii) strong downregulation of genes related to the muscle contraction machinery and sarcomere organization; and (iii) downregulation of muscle-specific microRNAs (myomiRs). Moreover, we had the unique opportunity to analyze huMPCs and skeletal muscle tissue of the same astronaut before and 30 h after a long-duration space flight on board the ISS. Prolonged exposure to real µG strongly affected the biology and functionality of the astronaut's satellite cells, which showed a dramatic reduction of responsiveness to activating stimuli and proliferation rate, morphological changes, and almost inability to fuse into myotubes. RNA-Seq analysis of post- vs. pre-flight muscle tissue showed that genes involved in muscle structure and remodeling are promptly activated after landing following a long-duration space mission. Conversely, genes involved in the myelination process or synapse and neuromuscular junction organization appeared downregulated. Although we have investigated only one astronaut, these results point to a prompt readaptation of the skeletal muscle mechanical components to the normal gravitational loading, but the inability to rapidly recover the physiological muscle myelination/innervation pattern after landing from a long-duration space flight. Together with the persistent functional deficit observed in the astronaut's satellite cells after prolonged exposure to real µG, these results lead us to hypothesize that a condition of inefficient regeneration is likely to occur in the muscles of post-flight astronauts following damage.
Collapse
Affiliation(s)
- Ester Sara Di Filippo
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
| | - Sara Chiappalupi
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127, Trieste, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Marchianò
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Adriana Carino
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | | | | | | | - Michele Balsamo
- Kayser Italia S.r.l, Via di Popogna, 501, 57128, Livorno, Italy
| | - Marco Vukich
- European Space Agency, Keplerlaan 1, NL-2200, AG, Noordwijk, The Netherlands
| | - Stefano Fiorucci
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127, Trieste, Italy
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy.
| |
Collapse
|
6
|
Cotter JA, Plaza-Florido A, Adams GR, Haddad F, Scott JM, Everett M, Ploutz-Snyder L, Radom-Aizik S. Exercise Training Attenuates the Muscle Mitochondria Genomic Response to Bed Rest. Med Sci Sports Exerc 2024; 56:1615-1622. [PMID: 38650118 PMCID: PMC11326991 DOI: 10.1249/mss.0000000000003457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE Exercise training during the National Aeronautics and Space Administration 70-d bed rest study effectively counteracted the decline in aerobic capacity, muscle mass, strength, and endurance. We aimed to characterize the genomic response of the participants' vastus lateralis on day 64 of bed rest with and without exercise countermeasures. METHODS Twenty-two healthy young males were randomized into three groups: 1) bed rest only ( n = 7), 2) bed rest + aerobic (6 d·wk -1 ) and resistance training (3 d·wk -1 ) on standard equipment ( n = 7), and 3) bed rest + aerobic and resistance training using a flywheel device ( n = 8). The vastus lateralis gene and microRNA microarrays were analyzed using GeneSpring GX 14.9.1 (Agilent Technologies, Palo Alto, CA). RESULTS Bed rest significantly altered the expression of 2113 annotated genes in at least one out of the three study groups (fold change (FC) > 1.2; P < 0.05). Interaction analysis revealed that exercise attenuated the bed rest effect of 511 annotated genes (FC = 1.2, P < 0.05). In the bed rest only group, a predominant downregulation of genes was observed, whereas in the two exercise groups, there was a notable attenuation or reversal of this effect, with no significant differences between the two exercise modalities. Enrichment analysis identified functional categories and gene pathways, many of them related to the mitochondria. In addition, bed rest significantly altered the expression of 35 microRNAs (FC > 1.2, P < 0.05) with no difference between the three groups. Twelve are known to regulate some of the mitochondrial-related genes that were altered following bed rest. CONCLUSIONS Mitochondrial gene expression was a significant component of the molecular response to long-term bed rest. Although exercise attenuated the FC in the downregulation of many genes, it did not completely counteract all the molecular consequences.
Collapse
Affiliation(s)
- Joshua A. Cotter
- Pediatric Exercise and Genomics Research Center, School of Medicine, University of California, Irvine, CA
- Physiology of EXercise and Sport (PEXS) Laboratory, Department of Kinesiology, California State University, Long Beach, CA
| | - Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, School of Medicine, University of California, Irvine, CA
| | - Gregory R. Adams
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA
| | - Fadia Haddad
- Pediatric Exercise and Genomics Research Center, School of Medicine, University of California, Irvine, CA
| | - Jessica M. Scott
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Meghan Everett
- National Aeronautics and Space Administration (NASA), Houston, TX
| | | | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, School of Medicine, University of California, Irvine, CA
| |
Collapse
|
7
|
Deane C, Piasecki M, Atherton P. Skeletal muscle immobilisation-induced atrophy: mechanistic insights from human studies. Clin Sci (Lond) 2024; 138:741-756. [PMID: 38895777 PMCID: PMC11186857 DOI: 10.1042/cs20231198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Periods of skeletal muscle disuse lead to rapid declines in muscle mass (atrophy), which is fundamentally underpinned by an imbalance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB). The complex interplay of molecular mechanisms contributing to the altered regulation of muscle protein balance during disuse have been investigated but rarely synthesised in the context of humans. This narrative review discusses human models of muscle disuse and the ensuing inversely exponential rate of muscle atrophy. The molecular processes contributing to altered protein balance are explored, with a particular focus on growth and breakdown signalling pathways, mitochondrial adaptations and neuromuscular dysfunction. Finally, key research gaps within the disuse atrophy literature are highlighted providing future avenues to enhance our mechanistic understanding of human disuse atrophy.
Collapse
Affiliation(s)
- Colleen S. Deane
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, U.K
| | - Matthew Piasecki
- Centre of Metabolism, Ageing and Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), National Institute of Health Research (NIHR) Biomedical Research Centre (BRC), University of Nottingham, U.K
| | - Philip J. Atherton
- Centre of Metabolism, Ageing and Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), National Institute of Health Research (NIHR) Biomedical Research Centre (BRC), University of Nottingham, U.K
| |
Collapse
|
8
|
Archer SN, Möller-Levet C, Bonmatí-Carrión MÁ, Laing EE, Dijk DJ. Extensive dynamic changes in the human transcriptome and its circadian organization during prolonged bed rest. iScience 2024; 27:109331. [PMID: 38487016 PMCID: PMC10937834 DOI: 10.1016/j.isci.2024.109331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Physiological and molecular processes including the transcriptome change across the 24-h day, driven by molecular circadian clocks and behavioral and systemic factors. It is not known how the temporal organization of the human transcriptome responds to a long-lasting challenge. This may, however, provide insights into adaptation, disease, and recovery. We investigated the human 24-h time series transcriptome in 20 individuals during a 90-day constant bed rest protocol. We show that the protocol affected 91% of the transcriptome with 76% of the transcriptome still affected after 10 days of recovery. Dimensionality-reduction approaches revealed that many affected transcripts were associated with mRNA translation and immune function. The number, amplitude, and phase of rhythmic transcripts, including clock genes, varied significantly across the challenge. These findings of long-lasting changes in the temporal organization of the transcriptome have implications for understanding the mechanisms underlying health consequences of conditions such as microgravity and bed rest.
Collapse
Affiliation(s)
- Simon N. Archer
- Surrey Sleep Research Centre, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Carla Möller-Levet
- Bioinformatics Core Facility, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - María-Ángeles Bonmatí-Carrión
- Surrey Sleep Research Centre, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
- Chronobiology Laboratory, Department of Physiology, University of Murcia, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Emma E. Laing
- Department of Microbiology, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
- UK Dementia Research Institute Care Research & Technology Centre, Imperial College London & University of Surrey, Guildford, UK
| |
Collapse
|
9
|
Campisi M, Cannella L, Pavanello S. Cosmic chronometers: Is spaceflight a catalyst for biological ageing? Ageing Res Rev 2024; 95:102227. [PMID: 38346506 DOI: 10.1016/j.arr.2024.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Astronauts returning from space missions often exhibit health issues mirroring age-related conditions, suggesting spaceflight as a potential driver of biological ageing and age-related diseases. To unravel the underlying mechanisms of these conditions, this comprehensive review explores the impact of the space "exposome" on the twelve hallmarks of ageing. Through a meticulous analysis encompassing both space environments and terrestrial analogs, we aim to decipher how different conditions influence ageing hallmarks. Utilizing PubMed, we identified 189 studies and 60 meet screening criteria. Research on biological ageing in space has focused on genomic instability, chronic inflammation, and deregulated nutrient sensing. Spaceflight consistently induces genomic instability, linked to prolonged exposure to ionizing radiation, triggers pro-inflammatory and immune alterations, resembling conditions in isolated simulations. Nutrient sensing pathways reveal increased systemic insulin-like growth-factor-1. Microbiome studies indicate imbalances favoring opportunistic species during spaceflight. Telomere dynamics present intriguing patterns, with lengthening during missions and rapid shortening upon return. Despite a pro-ageing trend, some protective mechanisms emerge. Countermeasures, encompassing dietary adjustments, prebiotics, postbiotics, symbiotics, tailored exercises, meditation, and anti-inflammatory supplements, exhibit potential. Spaceflight's impact on ageing is intricate, with diverse findings challenging established beliefs. Multidisciplinary studies provide guidance for future research in this field.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Luana Cannella
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.
| |
Collapse
|
10
|
Gan X, Zhao J, Li S, Kan G, Zhang Y, Wang B, Zhang P, Ma X, Tian H, Liao M, Ju D, Xu S, Chen X, Guo J. Simulated space environmental factors of weightlessness, noise and low atmospheric pressure differentially affect the diurnal rhythm and the gut microbiome. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:115-125. [PMID: 38245336 DOI: 10.1016/j.lssr.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 09/19/2023] [Indexed: 01/22/2024]
Abstract
The circadian clock extensively regulates physiology and behavior. In space, astronauts encounter many environmental factors that are dramatically different from those on Earth; however, the effects of these factors on circadian rhythms and the mechanisms remain largely unknown. The present study aimed to investigate the changes in the mouse diurnal rhythm and gut microbiome under simulated space capsule conditions, including microgravity, noise and low atmospheric pressure (LAP). Noise and LAP were loaded in the capsule while the conditions in the animal room remained constant. The mice in the capsule showed disturbed locomotor rhythms and faster adaptation to a 6-h phase advance. RNA sequencing of hypothalamus samples containing the suprachiasmatic nucleus (SCN) revealed that microgravity simulated by hind limb unloading (HU) and exposure to noise and LAP led to decreases in the quantities of differentially expressed genes (DEGs), including circadian clock genes. Changes in the rhythmicity of genes implicated in pathways of cardiovascular deconditioning and more concentrated phases were found under HU or noise and LAP. Furthermore, 16S rRNA sequencing revealed dysbiosis in the gut microbiome, and noise and LAP may repress the temporal discrepancy in the microbiome community structure induced by microgravity. Changes in diurnal oscillations were observed in a number of gut bacteria with critical physiological consequences on metabolism and immunodefense. We also found that the superimposition of noise and LAP may repress normal changes in global gene expression and adaptation in the gut microbiome. Our data demonstrate that in addition to microgravity, exposure to noise and LAP affect the robustness of circadian rhythms and the community structure of the gut microbiome, and these factors may interfere with each other in their adaptation to respective conditions. These findings are important for furthering our understanding of the alterations in circadian rhythms in the complex environment of space.
Collapse
Affiliation(s)
- Xihui Gan
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Jianwei Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Silin Li
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yin Zhang
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Bo Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaohong Ma
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Hongni Tian
- National Institute of Biological Sciences, Beijing, China
| | - Meimei Liao
- National Institute of Biological Sciences, Beijing, China
| | - Dapeng Ju
- National Institute of Biological Sciences, Beijing, China
| | - Shuihong Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoping Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China; National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China.
| | - Jinhu Guo
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Aschman T, Wyler E, Baum O, Hentschel A, Rust R, Legler F, Preusse C, Meyer-Arndt L, Büttnerova I, Förster A, Cengiz D, Alves LGT, Schneider J, Kedor C, Bellmann-Strobl J, Sanchin A, Goebel HH, Landthaler M, Corman V, Roos A, Heppner FL, Radbruch H, Paul F, Scheibenbogen C, Dengler NF, Stenzel W. Post-COVID exercise intolerance is associated with capillary alterations and immune dysregulations in skeletal muscles. Acta Neuropathol Commun 2023; 11:193. [PMID: 38066589 PMCID: PMC10704838 DOI: 10.1186/s40478-023-01662-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 12/18/2023] Open
Abstract
The SARS-CoV-2 pandemic not only resulted in millions of acute infections worldwide, but also in many cases of post-infectious syndromes, colloquially referred to as "long COVID". Due to the heterogeneous nature of symptoms and scarcity of available tissue samples, little is known about the underlying mechanisms. We present an in-depth analysis of skeletal muscle biopsies obtained from eleven patients suffering from enduring fatigue and post-exertional malaise after an infection with SARS-CoV-2. Compared to two independent historical control cohorts, patients with post-COVID exertion intolerance had fewer capillaries, thicker capillary basement membranes and increased numbers of CD169+ macrophages. SARS-CoV-2 RNA could not be detected in the muscle tissues. In addition, complement system related proteins were more abundant in the serum of patients with PCS, matching observations on the transcriptomic level in the muscle tissue. We hypothesize that the initial viral infection may have caused immune-mediated structural changes of the microvasculature, potentially explaining the exercise-dependent fatigue and muscle pain.
Collapse
Affiliation(s)
- Tom Aschman
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Emanuel Wyler
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Oliver Baum
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas Hentschel
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V, Dortmund, Germany
| | - Rebekka Rust
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Franziska Legler
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lil Meyer-Arndt
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ivana Büttnerova
- Department of Autoimmune Diagnostics, Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Alexandra Förster
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Derya Cengiz
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Julia Schneider
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Claudia Kedor
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Aminaa Sanchin
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Department of Neuropathology, Universitätsmedizin Mainz, Mainz, Germany
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Faculty of Medicine, University Children's Hospital, University of Duisburg-Essen, Essen, Germany
- Department of Neurology Bergmannsheil, Heimer-Institut Für Muskelforschung am Bergmannsheil, Bochum, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Nora F Dengler
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
12
|
Pinto AJ, Bergouignan A, Dempsey PC, Roschel H, Owen N, Gualano B, Dunstan DW. Physiology of sedentary behavior. Physiol Rev 2023; 103:2561-2622. [PMID: 37326297 PMCID: PMC10625842 DOI: 10.1152/physrev.00022.2022] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/10/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
Sedentary behaviors (SB) are characterized by low energy expenditure while in a sitting or reclining posture. Evidence relevant to understanding the physiology of SB can be derived from studies employing several experimental models: bed rest, immobilization, reduced step count, and reducing/interrupting prolonged SB. We examine the relevant physiological evidence relating to body weight and energy balance, intermediary metabolism, cardiovascular and respiratory systems, the musculoskeletal system, the central nervous system, and immunity and inflammatory responses. Excessive and prolonged SB can lead to insulin resistance, vascular dysfunction, shift in substrate use toward carbohydrate oxidation, shift in muscle fiber from oxidative to glycolytic type, reduced cardiorespiratory fitness, loss of muscle mass and strength and bone mass, and increased total body fat mass and visceral fat depot, blood lipid concentrations, and inflammation. Despite marked differences across individual studies, longer term interventions aimed at reducing/interrupting SB have resulted in small, albeit marginally clinically meaningful, benefits on body weight, waist circumference, percent body fat, fasting glucose, insulin, HbA1c and HDL concentrations, systolic blood pressure, and vascular function in adults and older adults. There is more limited evidence for other health-related outcomes and physiological systems and for children and adolescents. Future research should focus on the investigation of molecular and cellular mechanisms underpinning adaptations to increasing and reducing/interrupting SB and the necessary changes in SB and physical activity to impact physiological systems and overall health in diverse population groups.
Collapse
Affiliation(s)
- Ana J Pinto
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Audrey Bergouignan
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Institut Pluridisciplinaire Hubert Curien, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Paddy C Dempsey
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Neville Owen
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Centre for Urban Transitions, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Food Research Center, University of Sao Paulo, Sao Paulo, Brazil
| | - David W Dunstan
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
13
|
GrönholdtKlein M, Gorzi A, Wang L, Edström E, Rullman E, Altun M, Ulfhake B. Emergence and Progression of Behavioral Motor Deficits and Skeletal Muscle Atrophy across the Adult Lifespan of the Rat. BIOLOGY 2023; 12:1177. [PMID: 37759577 PMCID: PMC10526071 DOI: 10.3390/biology12091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
The facultative loss of muscle mass and function during aging (sarcopenia) poses a serious threat to our independence and health. When activities of daily living are impaired (clinical phase), it appears that the processes leading to sarcopenia have been ongoing in humans for decades (preclinical phase). Here, we examined the natural history of sarcopenia in male outbred rats to compare the occurrence of motor behavioral deficits with the degree of muscle wasting and to explore the muscle-associated processes of the preclinical and clinical phases, respectively. Selected metrics were validated in female rats. We used the soleus muscle because of its long duty cycles and its importance in postural control. Results show that gait and coordination remain intact through middle age (40-60% of median lifespan) when muscle mass is largely preserved relative to body weight. However, the muscle shows numerous signs of remodeling with a shift in myofiber-type composition toward type I. As fiber-type prevalence shifted, fiber-type clustering also increased. The number of hybrid fibers, myofibers with central nuclei, and fibers expressing embryonic myosin increased from being barely detectable to a significant number (5-10%) at late middle age. In parallel, TGFβ1, Smad3, FBXO32, and MuRF1 mRNAs increased. In early (25-month-old) and advanced (30-month-old) aging, gait and coordination deteriorate with the progressive loss of muscle mass. In late middle age and early aging due to type II atrophy (>50%) followed by type I atrophy (>50%), the number of myofibers did not correlate with this process. In advanced age, atrophy is accompanied by a decrease in SCs and βCatenin mRNA, whereas several previously upregulated transcripts were downregulated. The re-expression of embryonic myosin in myofibers and the upregulation of mRNAs encoding the γ-subunit of the nicotinic acetylcholine receptor, the neuronal cell adhesion molecule, and myogenin that begins in late middle age suggest that one mechanism driving sarcopenia is the disruption of neuromuscular connectivity. We conclude that sarcopenia in rats, as in humans, has a long preclinical phase in which muscle undergoes extensive remodeling to maintain muscle mass and function. At later time points, these adaptive mechanisms fail, and sarcopenia becomes clinically manifest.
Collapse
Affiliation(s)
- Max GrönholdtKlein
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Ali Gorzi
- Department of Sport Sciences, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Lingzhan Wang
- Department of Human Anatomy, Histology and Embryology, Inner Mongolia Minzu University, Tongliao 028000, China;
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Eric Rullman
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.R.); (M.A.)
| | - Mikael Altun
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.R.); (M.A.)
| | - Brun Ulfhake
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.R.); (M.A.)
| |
Collapse
|
14
|
Malhan D, Yalçin M, Schoenrock B, Blottner D, Relógio A. Skeletal muscle gene expression dysregulation in long-term spaceflights and aging is clock-dependent. NPJ Microgravity 2023; 9:30. [PMID: 37012297 PMCID: PMC10070655 DOI: 10.1038/s41526-023-00273-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
The circadian clock regulates cellular and molecular processes in mammals across all tissues including skeletal muscle, one of the largest organs in the human body. Dysregulated circadian rhythms are characteristic of aging and crewed spaceflight, associated with, for example, musculoskeletal atrophy. Molecular insights into spaceflight-related alterations of circadian regulation in skeletal muscle are still missing. Here, we investigated potential functional consequences of clock disruptions on skeletal muscle using published omics datasets obtained from spaceflights and other clock-altering, external (fasting and exercise), or internal (aging) conditions on Earth. Our analysis identified alterations of the clock network and skeletal muscle-associated pathways, as a result of spaceflight duration in mice, which resembles aging-related gene expression changes observed in humans on Earth (e.g., ATF4 downregulation, associated with muscle atrophy). Furthermore, according to our results, external factors such as exercise or fasting lead to molecular changes in the core-clock network, which may compensate for the circadian disruption observed during spaceflights. Thus, maintaining circadian functioning is crucial to ameliorate unphysiological alterations and musculoskeletal atrophy reported among astronauts.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Britt Schoenrock
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Neuromuscular System and Neuromuscular Signaling, Berlin Center of Space Medicine & Extreme Environments, Berlin, 10115, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
| |
Collapse
|
15
|
Musculoskeletal research in human space flight - unmet needs for the success of crewed deep space exploration. NPJ Microgravity 2023; 9:9. [PMID: 36707515 PMCID: PMC9883469 DOI: 10.1038/s41526-023-00258-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Based on the European Space Agency (ESA) Science in Space Environment (SciSpacE) community White Paper "Human Physiology - Musculoskeletal system", this perspective highlights unmet needs and suggests new avenues for future studies in musculoskeletal research to enable crewed exploration missions. The musculoskeletal system is essential for sustaining physical function and energy metabolism, and the maintenance of health during exploration missions, and consequently mission success, will be tightly linked to musculoskeletal function. Data collection from current space missions from pre-, during-, and post-flight periods would provide important information to understand and ultimately offset musculoskeletal alterations during long-term spaceflight. In addition, understanding the kinetics of the different components of the musculoskeletal system in parallel with a detailed description of the molecular mechanisms driving these alterations appears to be the best approach to address potential musculoskeletal problems that future exploratory-mission crew will face. These research efforts should be accompanied by technical advances in molecular and phenotypic monitoring tools to provide in-flight real-time feedback.
Collapse
|
16
|
Raffin J, de Souto Barreto P, Le Traon AP, Vellas B, Aubertin-Leheudre M, Rolland Y. Sedentary behavior and the biological hallmarks of aging. Ageing Res Rev 2023; 83:101807. [PMID: 36423885 DOI: 10.1016/j.arr.2022.101807] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
While the benefits of physical exercise for a healthy aging are well-recognized, a growing body of evidence shows that sedentary behavior has deleterious health effects independently, to some extent, of physical activity levels. Yet, the increasing prevalence of sedentariness constitutes a major public health issue that contributes to premature aging but the potential cellular mechanisms through which prolonged immobilization may accelerate biological aging remain unestablished. This narrative review summarizes the impact of sedentary behavior using different models of extreme sedentary behaviors including bedrest, unilateral limb suspension and space travel studies, on the hallmarks of aging such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. We further highlight the remaining knowledge gaps that need more research in order to promote healthspan extension and to provide future contributions to the field of geroscience.
Collapse
Affiliation(s)
- Jérémy Raffin
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France.
| | - Philipe de Souto Barreto
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Anne Pavy Le Traon
- Institute for Space Medicine and Physiology (MEDES), Neurology Department CHU Toulouse, INSERM U 1297, Toulouse, France
| | - Bruno Vellas
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Mylène Aubertin-Leheudre
- Département des Sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal, Montreal, Canada; Centre de recherche, Institut universitaire de gériatrie de Montréal (IUGM), CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada, Faculté des sciences, Université du Québec à Montréal, Montreal, Canada
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| |
Collapse
|
17
|
Kerr NR, Booth FW. Contributions of physical inactivity and sedentary behavior to metabolic and endocrine diseases. Trends Endocrinol Metab 2022; 33:817-827. [PMID: 36283907 DOI: 10.1016/j.tem.2022.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Physical inactivity is the fourth leading global cause of death and is a major contributor to metabolic and endocrine diseases. In this review we provide a current update of the past 5 years in the field as it pertains to the most prevalent and deadly chronic diseases. Despite the prevalence of physical inactivity in modern society, it remains largely overlooked relative to other comparable risk factors such as obesity, and our molecular understanding of how physical inactivity impacts metabolism is still partially unknown. Therefore, we discuss current clinical inactivity models along with their most recent findings regarding health outcomes along with any discrepancies that are present in the field. Lastly, we discuss future directions and the need for translatable animal models of physical inactivity to discover novel molecular targets for the prevention of chronic disease.
Collapse
Affiliation(s)
- Nathan R Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
18
|
Hedge ET, Patterson CA, Mastrandrea CJ, Sonjak V, Hajj-Boutros G, Faust A, Morais JA, Hughson RL. Implementation of exercise countermeasures during spaceflight and microgravity analogue studies: Developing countermeasure protocols for bedrest in older adults (BROA). Front Physiol 2022; 13:928313. [PMID: 36017336 PMCID: PMC9395735 DOI: 10.3389/fphys.2022.928313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Significant progress has been made in the development of countermeasures to attenuate the negative consequences of prolonged exposure to microgravity on astronauts’ bodies. Deconditioning of several organ systems during flight includes losses to cardiorespiratory fitness, muscle mass, bone density and strength. Similar deconditioning also occurs during prolonged bedrest; any protracted time immobile or inactive, especially for unwell older adults (e.g., confined to hospital beds), can lead to similar detrimental health consequences. Due to limitations in physiological research in space, the six-degree head-down tilt bedrest protocol was developed as ground-based analogue to spaceflight. A variety of exercise countermeasures have been tested as interventions to limit detrimental changes and physiological deconditioning of the musculoskeletal and cardiovascular systems. The Canadian Institutes of Health Research and the Canadian Space Agency recently provided funding for research focused on Understanding the Health Impact of Inactivity to study the efficacy of exercise countermeasures in a 14-day randomized clinical trial of six-degree head-down tilt bedrest study in older adults aged 55–65 years old (BROA). Here we will describe the development of a multi-modality countermeasure protocol for the BROA campaign that includes upper- and lower-body resistance exercise and head-down tilt cycle ergometry (high-intensity interval and continuous aerobic exercise training). We provide reasoning for the choice of these modalities following review of the latest available information on exercise as a countermeasure for inactivity and spaceflight-related deconditioning. In summary, this paper sets out to review up-to-date exercise countermeasure research from spaceflight and head-down bedrest studies, whilst providing support for the proposed research countermeasure protocols developed for the bedrest study in older adults.
Collapse
Affiliation(s)
- Eric T. Hedge
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | | | | | - Vita Sonjak
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Guy Hajj-Boutros
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andréa Faust
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - José A. Morais
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
- Division of Geriatric Medicine, McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Richard L. Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- *Correspondence: Richard L. Hughson,
| |
Collapse
|
19
|
Murgia M, Ciciliot S, Nagaraj N, Reggiani C, Schiaffino S, Franchi MV, Pišot R, Šimunič B, Toniolo L, Blaauw B, Sandri M, Biolo G, Flück M, Narici MV, Mann M. Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics. PNAS NEXUS 2022; 1:pgac086. [PMID: 36741463 PMCID: PMC9896895 DOI: 10.1093/pnasnexus/pgac086] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Astronauts experience dramatic loss of muscle mass, decreased strength, and insulin resistance, despite performing daily intense physical exercise that would lead to muscle growth on Earth. Partially mimicking spaceflight, prolonged bed rest causes muscle atrophy, loss of force, and glucose intolerance. To unravel the underlying mechanisms, we employed highly sensitive single fiber proteomics to detail the molecular remodeling caused by unloading and inactivity during bed rest and changes of the muscle proteome of astronauts before and after a mission on the International Space Station. Muscle focal adhesions, involved in fiber-matrix interaction and insulin receptor stabilization, are prominently downregulated in both bed rest and spaceflight and restored upon reloading. Pathways of antioxidant response increased strongly in slow but not in fast muscle fibers. Unloading alone upregulated markers of neuromuscular damage and the pathway controlling EIF5A hypusination. These proteomic signatures of mechanical unloading in muscle fiber subtypes contribute to disentangle the effect of microgravity from the pleiotropic challenges of spaceflight.
Collapse
Affiliation(s)
| | - Stefano Ciciliot
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy,Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy,Science and Research Center Koper, Institute for Kinesiology Research, Garibaldijeva Street 1, 6000 Koper, Slovenia
| | | | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Rado Pišot
- Science and Research Center Koper, Institute for Kinesiology Research, Garibaldijeva Street 1, 6000 Koper, Slovenia
| | - Boštjan Šimunič
- Science and Research Center Koper, Institute for Kinesiology Research, Garibaldijeva Street 1, 6000 Koper, Slovenia
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy,Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy,Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy
| | - Gianni Biolo
- Clinical Department of Medical, Surgical and Health Sciences, Strada di Fiume 447, 34149 Trieste, Italy
| | - Martin Flück
- Department of Medicine, University of Fribourg, Chemin du Musee 5, 1700 Fribourg, Switzerland
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy,Science and Research Center Koper, Institute for Kinesiology Research, Garibaldijeva Street 1, 6000 Koper, Slovenia,CIR-MYO Myology Center, Viale G Colombo 3, 35121 Padua, Italy
| | - Matthias Mann
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany,NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, Building 6.1, 2200 Copenhagen, Denmark
| |
Collapse
|
20
|
Responses of neuromuscular properties to unloading and potential countermeasures during space exploration missions. Neurosci Biobehav Rev 2022; 136:104617. [PMID: 35283170 DOI: 10.1016/j.neubiorev.2022.104617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
Abstract
We reviewed the responses of the neuromuscular properties of mainly the soleus and possible mechanisms. Sensory nervous activity in response to passive shortening and/or active contraction, associated with plantar-flexion or dorsi-flexion of the ankle joints, may play an essential role in the regulation of muscle properties. Passive shortening of the muscle fibers and sarcomeres inhibits the development of tension, electromyogram (EMG), and afferent neurogram. Remodeling of the sarcomeres, which decreases the total sarcomere number in a single muscle fiber causing recovery of the length in each sarcomere, is induced in the soleus following chronic unloading. Although EMG activity and tension development in each sarcomere are increased, the total tension produced by the whole muscle is still less owing to the lower sarcomere number. Therefore, muscle atrophy continues to progress. Moreover, walking or slow running by rear-foot strike landing with the application of greater ground reaction force, which stimulates soleus mobilization, could be an effective countermeasure. Periodic, but not chronic, passive stretching of the soleus may also be effective.
Collapse
|
21
|
Nunes EA, Stokes T, McKendry J, Currier BS, Phillips SM. Disuse-induced skeletal muscle atrophy in disease and non-disease states in humans: mechanisms, prevention, and recovery strategies. Am J Physiol Cell Physiol 2022; 322:C1068-C1084. [PMID: 35476500 DOI: 10.1152/ajpcell.00425.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decreased skeletal muscle contractile activity (disuse) or unloading leads to muscle mass loss, also known as muscle atrophy. The balance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB) is the primary determinant of skeletal muscle mass. A reduced mechanical load on skeletal muscle is one of the main external factors leading to muscle atrophy. However, endocrine and inflammatory factors can act synergistically in catabolic states, amplifying the atrophy process and accelerating its progression. Additionally, older individuals display aging-induced anabolic resistance, which can predispose this population to more pronounced effects when exposed to periods of reduced physical activity or mechanical unloading. Different cellular mechanisms contribute to the regulation of muscle protein balance during skeletal muscle atrophy. This review summarizes the effects of muscle disuse on muscle protein balance and the molecular mechanisms involved in muscle atrophy in the absence or presence of disease. Finally, a discussion of the current literature describing efficient strategies to prevent or improve the recovery from muscle atrophy is also presented.
Collapse
Affiliation(s)
- Everson A Nunes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.,Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Brad S Currier
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
22
|
Deane CS, da Silveira WA, Herranz R. Space omics research in Europe: Contributions, geographical distribution and ESA member state funding schemes. iScience 2022; 25:103920. [PMID: 35265808 PMCID: PMC8898910 DOI: 10.1016/j.isci.2022.103920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The European research community, via European Space Agency (ESA) spaceflight opportunities, has significantly contributed toward our current understanding of spaceflight biology. Recent molecular biology experiments include "omic" analysis, which provides a holistic and systems level understanding of the mechanisms underlying phenotypic adaptation. Despite vast interest in, and the immense quantity of biological information gained from space omics research, the knowledge of ESA-related space omics works as a collective remains poorly defined due to the recent exponential application of omics approaches in space and the limited search capabilities of pre-existing records. Thus, a review of such contributions is necessary to clarify and promote the development of space omics among ESA and ESA state members. To address this gap, in this review, we i) identified and summarized omics works led by European researchers, ii) geographically described these omics works, and iii) highlighted potential caveats in complex funding scenarios among ESA member states.
Collapse
Affiliation(s)
- Colleen S Deane
- Department of Sport and Health Science, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK.,Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | | | - Willian A da Silveira
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD, 2080, Malta
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
23
|
Le Roux E, De Jong NP, Blanc S, Simon C, Bessesen DH, Bergouignan A. Physiology of physical inactivity, sedentary behaviours and non-exercise activity: insights from the space bedrest model. J Physiol 2022; 600:1037-1051. [PMID: 33501660 PMCID: PMC10895929 DOI: 10.1113/jp281064] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
Physical inactivity, i.e. not reaching the recommended level of physical activity (PA), and sedentary behaviours (SB), i.e. sitting time, have been associated with increased risk for common metabolic diseases. Recent epidemiological data suggest that high volumes of SB are detrimental to metabolic health, even in the presence of regular exercise, i.e. moderate/vigorous PA. This suggests that the health effects of SB are independent from those of exercise. However, experimentally testing this hypothesis is complicated because of the difficulty in disassociating SB from PA. Bedrest studies, a traditional space science model, can offer new insights. In some bedrest studies, an exercise training protocol has been used to counteract the harmful effects of inactivity. While bedrest induces an inactive and sedentary state, exercise with bedrest represents a unique model of sedentary yet physically active people. Here, we review bedrest studies with and without exercise training. Although exercise training prevents the loss of muscle mass and function, even large volumes of exercise are not sufficient to fully counteract the negative metabolic adaptations triggered by inactivity. This observation supports the existence of independent adverse health effects of SB, but also the potential benefits of non-exercise activity, i.e. daily living light PA. We gathered available data to examine the complex relationships between exercise, non-exercise activity, SB and health outcomes. Given the large amount of SB in modern societies, the sole promotion of exercise, i.e. moderate/vigorous PA may be insufficient, and promotion of light PA may be a complimentary approach to improve health.
Collapse
Affiliation(s)
- Elisa Le Roux
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Nathan P De Jong
- Division of Endocrinology, Metabolism and Diabetes, Anschutz Health & Wellness Center, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Stéphane Blanc
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, Oullins, France
- Human Nutrition Research Centre of Rhône-Alpes, Hospices Civils de Lyon, Lyon, France
| | - Daniel H Bessesen
- Division of Endocrinology, Metabolism and Diabetes, Anschutz Health & Wellness Center, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Audrey Bergouignan
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France
- Division of Endocrinology, Metabolism and Diabetes, Anschutz Health & Wellness Center, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| |
Collapse
|
24
|
McFarland AJ, Ray PR, Bhai S, Levine BD, Price TJ. RNA sequencing on muscle biopsy from a 5-week bed rest study reveals the effect of exercise and potential interactions with dorsal root ganglion neurons. Physiol Rep 2022; 10:e15176. [PMID: 35133080 PMCID: PMC8823189 DOI: 10.14814/phy2.15176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 04/16/2023] Open
Abstract
Sedentary lifestyle, chronic disease, or microgravity can cause muscle deconditioning that then has an impact on other physiological systems. An example is the nervous system, which is adversely affected by decreased physical activity resulting in increased incidence of neurological problems such as chronic pain. We sought to better understand how this might occur by conducting RNA sequencing experiments on muscle biopsies from human volunteers in a 5-week bed-rest study with an exercise intervention arm. We also used a computational method for examining ligand-receptor interactions between muscle and human dorsal root ganglion (DRG) neurons, the latter of which play a key role in nociception and are generators of signals responsible for chronic pain. We identified 1352 differentially expressed genes (DEGs) in bed rest subjects without an exercise intervention but only 132 DEGs in subjects with the intervention. Among 591 upregulated muscle genes in the no intervention arm, 26 of these were ligands that have receptors that are expressed by human DRG neurons. We detected a specific splice variant of one of these ligands, placental growth factor (PGF), in deconditioned muscle that binds to neuropilin 1, a receptor that is highly expressed in DRG neurons and known to promote neuropathic pain. We conclude that exercise intervention protects muscle from deconditioning transcriptomic changes, and prevents changes in the expression of ligands that might sensitize DRG neurons, or act on other cell types throughout the body. Our work creates a set of actionable hypotheses to better understand how deconditioned muscle may influence the function of sensory neurons that innervate the entire body.
Collapse
Affiliation(s)
- Amelia J. McFarland
- School of Behavioral and Brain Sciences and Center for Advanced Pain StudiesUniversity of Texas at DallasDallasTexasUSA
| | - Pradipta R. Ray
- School of Behavioral and Brain Sciences and Center for Advanced Pain StudiesUniversity of Texas at DallasDallasTexasUSA
| | - Salman Bhai
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian Hospital DallasDallasTexasUSA
- University of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - Benjamin D. Levine
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian Hospital DallasDallasTexasUSA
- University of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - Theodore J. Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain StudiesUniversity of Texas at DallasDallasTexasUSA
| |
Collapse
|
25
|
Sharlo K, Tyganov SA, Tomilovskaya E, Popov DV, Saveko AA, Shenkman BS. Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling. Int J Mol Sci 2021; 23:ijms23010468. [PMID: 35008893 PMCID: PMC8745071 DOI: 10.3390/ijms23010468] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is capable of changing its structural parameters, metabolic rate and functional characteristics within a wide range when adapting to various loading regimens and states of the organism. Prolonged muscle inactivation leads to serious negative consequences that affect the quality of life and work capacity of people. This review examines various conditions that lead to decreased levels of muscle loading and activity and describes the key molecular mechanisms of muscle responses to these conditions. It also details the theoretical foundations of various methods preventing adverse muscle changes caused by decreased motor activity and describes these methods. A number of recent studies presented in this review make it possible to determine the molecular basis of the countermeasure methods used in rehabilitation and space medicine for many years, as well as to identify promising new approaches to rehabilitation and to form a holistic understanding of the mechanisms of gravity force control over the muscular system.
Collapse
|
26
|
Gries KJ, Zysik VS, Jobe TK, Griffin N, Leeds BP, Lowery JW. Muscle-derived factors influencing bone metabolism. Semin Cell Dev Biol 2021; 123:57-63. [PMID: 34756782 DOI: 10.1016/j.semcdb.2021.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
A significant amount of attention has been brought to the endocrine-like function of skeletal muscle on various tissues, particularly with bone. Several lines of investigation indicate that the physiology of both bone and muscle systems may be regulated by a given stimulus, such as exercise, aging, and inactivity. Moreover, emerging evidence indicates that bone is heavily influenced by soluble factors derived from skeletal muscle (i.e., muscle-to-bone communication). The purpose of this review is to discuss the regulation of bone remodeling (formation and/or resorption) through skeletal muscle-derived cytokines (hereafter myokines) including the anti-inflammatory cytokine METRNL and pro-inflammatory cytokines (e.g., TNF-α, IL-6, FGF-2 and others). Our goal is to highlight possible therapeutic opportunities to improve muscle and bone health in aging.
Collapse
Affiliation(s)
- Kevin J Gries
- Program in Exercise & Sports Science, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA; Bone & Muscle Research Group, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA; Division of Biomedical Science, Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, IN 46222, USA.
| | - Victoria S Zysik
- Bone & Muscle Research Group, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA; Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, IN 46222, USA
| | - Tyler K Jobe
- Program in Exercise & Sports Science, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA
| | - Nicole Griffin
- Bone & Muscle Research Group, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA; Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, IN 46222, USA
| | - Benjamin P Leeds
- Bone & Muscle Research Group, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA; Division of Clinical Affairs, Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, IN 46222, USA
| | - Jonathan W Lowery
- Bone & Muscle Research Group, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA; Division of Biomedical Science, Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, IN 46222, USA
| |
Collapse
|
27
|
von Walden F, Vechetti IJ, Englund D, Figueiredo VC, Fernandez-Gonzalo R, Murach K, Pingel J, Mccarthy JJ, Stål P, Pontén E. Reduced mitochondrial DNA and OXPHOS protein content in skeletal muscle of children with cerebral palsy. Dev Med Child Neurol 2021; 63:1204-1212. [PMID: 34176131 DOI: 10.1111/dmcn.14964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
AIM To provide a detailed gene and protein expression analysis related to mitochondrial biogenesis and assess mitochondrial content in skeletal muscle of children with cerebral palsy (CP). METHOD Biceps brachii muscle samples were collected from 19 children with CP (mean [SD] age 15y 4mo [2y 6mo], range 9-18y, 16 males, three females) and 10 typically developing comparison children (mean [SD] age 15y [4y], range 7-21y, eight males, two females). Gene expression (quantitative reverse transcription polymerase chain reaction [PCR]), mitochondrial DNA (mtDNA) to genomic DNA ratio (quantitative PCR), and protein abundance (western blotting) were analyzed. Microarray data sets (CP/aging/bed rest) were analyzed with a focused query investigating metabolism- and mitochondria-related gene networks. RESULTS The mtDNA to genomic DNA ratio was lower in the children with CP compared to the typically developing group (-23%, p=0.002). Out of five investigated complexes in the mitochondrial respiratory chain, we observed lower protein levels of all complexes (I, III, IV, V, -20% to -37%; p<0.05) except complex II. Total peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) messenger RNA (p<0.004), isoforms PGC1α1 (p=0.05), and PGC1α4 (p<0.001) were reduced in CP. Transcriptional similarities were observed between CP, aging, and 90 days' bed rest. INTERPRETATION Mitochondrial biogenesis, mtDNA, and oxidative phosphorylation protein content are reduced in CP muscle compared with typically developing muscle. Transcriptional pathways shared between aging and long-term unloading suggests metabolic dysregulation in CP, which may guide therapeutic strategies for combatting CP muscle pathology. What this paper adds Cerebral palsy (CP) muscle contains fewer energy-generating organelles than typically developing muscle. Gene expression in CP muscle is similar to aging and long-term bed rest.
Collapse
Affiliation(s)
- Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Ivan J Vechetti
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Davis Englund
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Vandré C Figueiredo
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Rodrigo Fernandez-Gonzalo
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Kevin Murach
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Jessica Pingel
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - John J Mccarthy
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Per Stål
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå University, Umeå, Sweden
| | - Eva Pontén
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Fernandez-Gonzalo R, McDonnell AC, Simpson EJ, Macdonald IA, Rullman E, Mekjavic IB. Substantial and Reproducible Individual Variability in Skeletal Muscle Outcomes in the Cross-Over Designed Planica Bed Rest Program. Front Physiol 2021; 12:676501. [PMID: 34335293 PMCID: PMC8322684 DOI: 10.3389/fphys.2021.676501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
To evaluate the individual responses in skeletal muscle outcomes following bed rest, data from three studies (21-day PlanHab; 10-day FemHab and LunHab) were combined. Subjects (n = 35) participated in three cross-over campaigns within each study: normoxic (NBR) and hypoxic bed rest (HBR), and hypoxic ambulation (HAMB; used as control). Individual variability (SDIR) was investigated as √(SDExp 2 -SDCon 2 ), where SDExp and SDCon are the standard deviations of the change score (i.e., post - pre) in the experimental (NBR and HBR) and the control (HAMB) groups, respectively. Repeatability and moderators of the individual variability were explored. Significant SDIR was detected for knee extension torque, and thigh and calf muscle area, which translated into an individual response ranging from 3 to -17% for knee extension torque, -2 to -12% for calf muscle area, and -1 to -8% for thigh muscle area. Strong correlations were found for changes in NBR vs. HBR (i.e., repeatability) in thigh and calf muscle area (r = 0.65-0.75, P < 0.0001). Change-scores in knee extension torque, and thigh and calf muscle area strongly correlated with baseline values (P < 0.001; r between -0.5 and -0.9). Orthogonal partial least squares regression analysis explored if changes in the investigated variables could predict calf muscle area alterations. This analysis indicated that 43% of the variance in calf muscle area could be attributed to changes in all of the other variables. This is the first study using a validated methodology to report clinically relevant individual variability after bed rest in knee extension torque, calf muscle area, and (to a lower extent) thigh muscle area. Baseline values emerged as a moderator of the individual response, and a global bed rest signature served as a moderately strong predictor of the individual variation in calf muscle area alterations.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalo
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Adam C. McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Elizabeth J. Simpson
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Ian A. Macdonald
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Eric Rullman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Igor B. Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
29
|
McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. Compr Physiol 2021; 11:2249-2278. [PMID: 34190341 DOI: 10.1002/cphy.c200029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle is the organ of locomotion, its optimal function is critical for athletic performance, and is also important for health due to its contribution to resting metabolic rate and as a site for glucose uptake and storage. Numerous endogenous and exogenous factors influence muscle mass. Much of what is currently known regarding muscle protein turnover is owed to the development and use of stable isotope tracers. Skeletal muscle mass is determined by the meal- and contraction-induced alterations of muscle protein synthesis and muscle protein breakdown. Increased loading as resistance training is the most potent nonpharmacological strategy by which skeletal muscle mass can be increased. Conversely, aging (sarcopenia) and muscle disuse lead to the development of anabolic resistance and contribute to the loss of skeletal muscle mass. Nascent omics-based technologies have significantly improved our understanding surrounding the regulation of skeletal muscle mass at the gene, transcript, and protein levels. Despite significant advances surrounding the mechanistic intricacies that underpin changes in skeletal muscle mass, these processes are complex, and more work is certainly needed. In this article, we provide an overview of the importance of skeletal muscle, describe the influence that resistance training, aging, and disuse exert on muscle protein turnover and the molecular regulatory processes that contribute to changes in muscle protein abundance. © 2021 American Physiological Society. Compr Physiol 11:2249-2278, 2021.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Graham ZA, Lavin KM, O'Bryan SM, Thalacker-Mercer AE, Buford TW, Ford KM, Broderick TJ, Bamman MM. Mechanisms of exercise as a preventative measure to muscle wasting. Am J Physiol Cell Physiol 2021; 321:C40-C57. [PMID: 33950699 DOI: 10.1152/ajpcell.00056.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle is the most abundant tissue in healthy individuals and it has important roles in health beyond voluntary movement. The overall mass and energy requirements of skeletal muscle require it to be metabolically active and flexible to multiple energy substrates. The tissue has evolved to be largely load dependent and it readily adapts in a number of positive ways to repetitive overload, such as various forms of exercise training. However, unloading from extended bed rest and/or metabolic derangements in response to trauma, acute illness, or severe pathology, commonly results in rapid muscle wasting. Decline in muscle mass contributes to multimorbidity, reduces function, and exerts a substantial, negative impact on the quality of life. The principal mechanisms controlling muscle mass have been well described and these cellular processes are intricately regulated by exercise. Accordingly, exercise has shown great promise and efficacy in preventing or slowing muscle wasting through changes in molecular physiology, organelle function, cell signaling pathways, and epigenetic regulation. In this review, we focus on the role of exercise in altering the molecular landscape of skeletal muscle in a manner that improves or maintains its health and function in the presence of unloading or disease.epigenetics; exercise; muscle wasting; resistance training; skeletal muscle.
Collapse
Affiliation(s)
- Zachary A Graham
- Birmingham VA Medical Center, Birmingham, Alabama.,Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kaleen M Lavin
- Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Samia M O'Bryan
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas W Buford
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Nathan Shock Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kenneth M Ford
- Florida Institute for Human and Machine Cognition, Pensacola, Florida
| | | | - Marcas M Bamman
- Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
31
|
Mahmassani ZS, McKenzie AI, Petrocelli JJ, De Hart NM, Fix DK, Kelly JJ, Baird LM, Howard MT, Drummond MJ. Reduced Physical Activity Alters the Leucine-Stimulated Translatome in Aged Skeletal Muscle. J Gerontol A Biol Sci Med Sci 2021; 76:2112-2121. [PMID: 33705535 DOI: 10.1093/gerona/glab077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Periods of inactivity experienced by older adults induce nutrient anabolic resistance creating a cascade of skeletal muscle transcriptional and translational aberrations contributing to muscle dysfunction. The purpose of this study was to identify how inactivity alters leucine-stimulated translation of molecules and pathways within the skeletal muscle of older adults. We performed ribosomal profiling alongside RNA sequencing from skeletal muscle biopsies taken from older adults (n=8; ~72y; 6F/2M) in response to a leucine bolus before (Active) and after (Reduced Activity) 2-weeks of reduced physical activity. At both visits, muscle biopsies were taken at baseline, 60min (early response), and 180min (late response) after leucine ingestion. Previously identified inactivity-related gene transcription changes (PFKFB3, GADD45A, NMRK2) were heightened by leucine with corresponding changes in translation. In contrast, leucine also stimulated translational efficiency (T.E.) of several transcripts in a manner not explained by corresponding changes in mRNA abundance ("uncoupled translation"). Inactivity eliminated this uncoupled translational response for several transcripts, and reduced the translation of most mRNAs encoding for ribosomal proteins. Ingenuity Pathway Analysis identified discordant circadian translation and transcription as a result of inactivity such as translation changes to PER2 and PER3 despite unchanged transcription. We demonstrate inactivity alters leucine-stimulated "uncoupled translation" of ribosomal proteins and circadian regulators otherwise not detectable by traditional RNA-sequencing. Innovative techniques such as ribosomal profiling continues to further our understanding of how physical activity mediates translational regulation, and will set a path towards therapies that can restore optimal protein synthesis on the transcript specific level to combat negative consequences of inactivity on aging muscle.
Collapse
Affiliation(s)
- Ziad S Mahmassani
- University of Utah Department of Physical Therapy and Athletic Training
| | - Alec I McKenzie
- University of Utah Department of Physical Therapy and Athletic Training
| | | | - Naomi M De Hart
- University of Utah Department of Nutrition and Integrative Physiology
| | - Dennis K Fix
- University of Utah Department of Physical Therapy and Athletic Training
| | - Joshua J Kelly
- University of Utah Department of Nutrition and Integrative Physiology
| | | | | | - Micah J Drummond
- University of Utah Department of Physical Therapy and Athletic Training.,University of Utah Molecular Medicine Program
| |
Collapse
|
32
|
Piquet V, Luczak C, Seiler F, Monaury J, Martini A, Ward AB, Gracies JM, Motavasseli D. Do Patients With COVID-19 Benefit from Rehabilitation? Functional Outcomes of the First 100 Patients in a COVID-19 Rehabilitation Unit. Arch Phys Med Rehabil 2021; 102:1067-1074. [PMID: 33548208 PMCID: PMC7857995 DOI: 10.1016/j.apmr.2021.01.069] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/08/2023]
Abstract
Objective To determine the benefits associated with brief inpatient rehabilitation for coronavirus 2019 (COVID-19) patients. Design Retrospective chart review. Setting A newly created specialized rehabilitation unit in a tertiary care medical center. Participants Consecutive sample of patients (N=100) with COVID-19 infection admitted to rehabilitation. Intervention Inpatient rehabilitation for postacute care COVID-19 patients. Main Outcome Measures Measurements at admission and discharge comprised a Barthel Activities of Daily Living Index (including baseline value before COVID-19 infection), time to perform 10 sit-to-stands with associated cardiorespiratory changes, and grip strength (dynamometry). Correlations between these outcomes and the time spent in the intensive care unit (ICU) were explored. Results Upon admission to rehabilitation, 66% of the patients were men, the age was 66±22 years, mean delay from symptom onset was 20.4±10.0 days, body mass index was 26.0±5.4 kg/m2, 49% had hypertension, 29% had diabetes, and 26% had more than 50% pulmonary damage on computed tomographic scans. The mean length of rehabilitation stay was 9.8±5.6 days. From admission to discharge, the Barthel index increased from 77.3±26.7 to 88.8±24.5 (P<.001), without recovering baseline values (94.5±16.2; P<.001). There was a 37% improvement in sit-to-stand frequency (0.27±0.16 to 0.37±0.16 Hz; P<.001), a 13% decrease in post-test respiratory rate (30.7±12.6 to 26.6±6.1; P=.03), and a 15% increase in grip strength (18.1±9.2 to 20.9±8.9 kg; P<.001). At both admission and discharge, Barthel score correlated with grip strength (ρ=0.39-0.66; P<.01), which negatively correlated with time spent in the ICU (ρ=–0.57 to –0.49; P<.05). Conclusions Inpatient rehabilitation for COVID-19 patients was associated with substantial motor, respiratory, and functional improvement, especially in severe cases, although there remained mild persistent autonomy loss upon discharge. After acute stages, COVID-19, primarily a respiratory disease, might convert into a motor impairment correlated with the time spent in intensive care.
Collapse
Affiliation(s)
- Violaine Piquet
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France; UR 7377 BIOTN, Laboratoire Analyze et Restauration du Mouvement, Université Paris Est Créteil (UPEC), France
| | - Cédric Luczak
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France; UR 7377 BIOTN, Laboratoire Analyze et Restauration du Mouvement, Université Paris Est Créteil (UPEC), France
| | - Fabien Seiler
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France; UR 7377 BIOTN, Laboratoire Analyze et Restauration du Mouvement, Université Paris Est Créteil (UPEC), France
| | - Jordan Monaury
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France; UR 7377 BIOTN, Laboratoire Analyze et Restauration du Mouvement, Université Paris Est Créteil (UPEC), France
| | - Alexandre Martini
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France; UR 7377 BIOTN, Laboratoire Analyze et Restauration du Mouvement, Université Paris Est Créteil (UPEC), France
| | - Anthony B Ward
- North Staffordshire Rehabilitation Centre, Haywood Hospital, High Lane, Burslem, Stoke on Trent, United Kingdom
| | - Jean-Michel Gracies
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France; UR 7377 BIOTN, Laboratoire Analyze et Restauration du Mouvement, Université Paris Est Créteil (UPEC), France
| | - Damien Motavasseli
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France; UR 7377 BIOTN, Laboratoire Analyze et Restauration du Mouvement, Université Paris Est Créteil (UPEC), France.
| | | |
Collapse
|
33
|
Cui Q, Yang H, Gu Y, Zong C, Chen X, Lin Y, Sun H, Shen Y, Zhu J. RNA sequencing (RNA-seq) analysis of gene expression provides new insights into hindlimb unloading-induced skeletal muscle atrophy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1595. [PMID: 33437794 PMCID: PMC7791259 DOI: 10.21037/atm-20-7400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Weightlessness-induced skeletal muscle atrophy, accompanied by complex biochemical and physiological changes, has potentially damaged consequences. However, there is still an insufficient effective strategy to treat skeletal muscle atrophy. Therefore, exploring the molecular mechanisms regulating skeletal muscle atrophy and effective protection is necessary. Methods RNA sequencing (RNA-seq) analysis was used to detect differentially expressed genes (DEGs) in the soleus muscle at 12, 24, 36 hours, three days, and seven days after hindlimb unloading in rats. Pearson correlation heatmaps and principal component analysis (PCA) were applied to analyze DEGs’ expression profiles. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for cluster analysis of DEGs. Ingenuity pathway analysis (IPA) was used to analyze specific biological processes further. Results At different time points (12, 24, 36 hours, three days, seven days) after hindlimb unloading, the expression levels of 712, 1,109, 1,433, 1,162, and 1,182 genes in rat soleus muscle were upregulated, respectively, whereas the expression levels of 1,186, 1,324, 1,632, 1,446, and 1,596 genes were downregulated, respectively. PCA revealed that rat soleus muscle showed three different transcriptional phases within seven days after hindlimb unloading. KEGG and GO annotation indicated that the first transcriptional phase primarily involved the activation of stress responses, including oxidative stress, and the inhibition of cell proliferation and angiogenesis; the second transcriptional phase primarily involved the activation of proteolytic systems and, to a certain degree, inflammatory responses; and the third transcriptional phase primarily involved extensive activation of the proteolytic system, significant inhibition of energy metabolism, and activation of the aging process and slow-to-fast muscle conversion. Conclusions Different physiological processes in rat skeletal muscles were activated sequentially after unloading. From these activated biological processes, the three transcriptional phases after skeletal muscle unloading can be successively defined as the stress response phase, the atrophic initiation phase, and the atrophic phase. Our study not only helps in the understanding of the molecular mechanisms underlying weightlessness-induced muscle atrophy but may also provide an important time window for the treatment and prevention of weightlessness-induced muscle atrophy.
Collapse
Affiliation(s)
- Qihao Cui
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Yang
- Department of Neurosurgery, People's Hospital of Binhai County, Yancheng, China
| | - Yuming Gu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Chenyu Zong
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yinghao Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
34
|
Stokes T, Tripp TR, Murphy K, Morton RW, Oikawa SY, Lam Choi H, McGrath J, McGlory C, MacDonald MJ, Phillips SM. Methodological considerations for and validation of the ultrasonographic determination of human skeletal muscle hypertrophy and atrophy. Physiol Rep 2021; 9:e14683. [PMID: 33403796 PMCID: PMC7786033 DOI: 10.14814/phy2.14683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the current gold standard for measuring changes in muscle size (cross-sectional area [CSA] and volume) but can be cost-prohibitive and resource-intensive. We evaluated the validity of B-mode ultrasonography (US) as a low-cost alternative to MRI for measuring muscle hypertrophy and atrophy in response to resistance training and immobilization, respectively. Fourteen young men performed 10wk of unilateral resistance training (RT) to induce muscle hypertrophy. In the final two weeks of the 10wk, the subjects' contralateral leg was immobilized (IMB). The cross-sectional area of the vastus lateralis (VLCSA) was measured at the mid-thigh before and after each intervention using MRI (VLCSAMRI ) and US (VLCSAUS ). The relationship and agreement between methods were assessed. Reliability of US measurements ranged from good to excellent in all comparisons (ICC >0.67). VLCSA significantly increased after 10 weeks of RT (VLCSAUS : 7.9 ± 3.8%; VLCSAMRI : 7.8 ± 4.5%) and decreased after 2 weeks of IMB (VLCSAUS : -8.2%±5.8%; VLCSAMRI : -8.7 ± 6.1%). Significant correlations were identified between MRI and US at each time point measured (all r > 0.85) and, importantly, between MRI- and US-derived changes in VLCSA. Bland-Altman analysis revealed minimal bias in US measurements relative to the MRI (-0.5 ± 3.0%) and all measurements were within the upper and lower limits of agreement. Our data suggest that B-mode ultrasonography can be a suitable alternative to MRI for measuring changes in muscle size in response to increased and decreased muscle loading in young men.
Collapse
Affiliation(s)
- Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Thomas R Tripp
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Kevin Murphy
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Robert W Morton
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Hon Lam Choi
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jessica McGrath
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Chris McGlory
- School of Kinesiology and Health Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
35
|
Willis CRG, Szewczyk NJ, Costes SV, Udranszky IA, Reinsch SS, Etheridge T, Conley CA. Comparative Transcriptomics Identifies Neuronal and Metabolic Adaptations to Hypergravity and Microgravity in Caenorhabditis elegans. iScience 2020; 23:101734. [PMID: 33376968 PMCID: PMC7756135 DOI: 10.1016/j.isci.2020.101734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Deep space exploration is firmly within reach, but health decline during extended spaceflight remains a key challenge. In this study, we performed comparative transcriptomic analysis of Caenorhabditis elegans responses to varying degrees of hypergravity and to two spaceflight experiments (ICE-FIRST and CERISE). We found that progressive hypergravitational load concomitantly increases the extent of differential gene regulation and that subtle changes in ∼1,000 genes are reproducibly observed during spaceflight-induced microgravity. Consequently, we deduce those genes that are concordantly regulated by altered gravity per se or that display inverted expression profiles during hypergravity versus microgravity. Through doing so, we identify several candidate targets with terrestrial roles in neuronal function and/or cellular metabolism, which are linked to regulation by daf-16/FOXO signaling. These data offer a strong foundation from which to expedite mechanistic understanding of spaceflight-induced maladaptation in higher organisms and, ultimately, promote future targeted therapeutic development. Comparative transcriptomics in C. elegans exposed to hypergravity and spaceflight Bioinformatics identifies novel putative regulators of altered gravitational load Candidate molecules infer a close gravity > daf-16/FOXO > neuronal link
Collapse
Affiliation(s)
- Craig R G Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Nathaniel J Szewczyk
- MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, DE22 3DT, UK.,Ohio Musculoskeletal and Neurological Institute (OMNI) and Department of Biomedical Sciences, Ohio University, Athens, OH 43147, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Sigrid S Reinsch
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Catharine A Conley
- Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
36
|
Petrocelli JJ, Drummond MJ. PGC-1α-Targeted Therapeutic Approaches to Enhance Muscle Recovery in Aging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228650. [PMID: 33233350 PMCID: PMC7700690 DOI: 10.3390/ijerph17228650] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Impaired muscle recovery (size and strength) following a disuse period commonly occurs in older adults. Many of these individuals are not able to adequately exercise due to pain and logistic barriers. Thus, nutritional and pharmacological therapeutics, that are translatable, are needed to promote muscle recovery following disuse in older individuals. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may be a suitable therapeutic target due to pleiotropic regulation of skeletal muscle. This review focuses on nutritional and pharmacological interventions that target PGC-1α and related Sirtuin 1 (SIRT1) and 5' AMP-activated protein kinase (AMPKα) signaling in muscle and thus may be rapidly translated to prevent muscle disuse atrophy and promote recovery. In this review, we present several therapeutics that target PGC-1α in skeletal muscle such as leucine, β-hydroxy-β-methylbuyrate (HMB), arginine, resveratrol, metformin and combination therapies that may have future application to conditions of disuse and recovery in humans.
Collapse
|