1
|
Sun Q, Wang XY, Li DH, Li BR, Tu XZ, Jiang ZM, Ning SB, Sun T. Advances in gastrointestinal vascular bleeding disorders: Successful sirolimus treatment in colonic angioectasia. World J Gastroenterol 2025; 31:100718. [PMID: 39877708 PMCID: PMC11718635 DOI: 10.3748/wjg.v31.i4.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Gastrointestinal (GI) vascular bleeding disorders pose significant clinical challenges due to their complex pathogenesis and varied treatment responses. Despite advancements in diagnostic and therapeutic techniques, optimal management strategies remain elusive, necessitating further research. AIM To assess research trends and clinical advancements in GI vascular bleeding disorders, highlighting key themes and therapeutic progress. METHODS A bibliometric analysis was conducted using the Web of Science Core Collection database, reviewing publications from 2000 to 2024 to identify trends, high-frequency keywords, and key contributions from leading research institutions. In addition, a case study highlighted the effective application of sirolimus in managing colonic angioectasia in a patient with recurrent GI bleeding who had not responded to previous treatments. RESULTS The analysis reviewed 470 scholarly articles from 203 countries, involving 2817 authors across 1502 institutions. The United States led in publication contributions, with strong collaborations with countries like China, England, and Germany. A significant trend was observed in the shift from traditional endoscopic interventions to pharmacological therapies, particularly highlighting the successful use of sirolimus in treating colonic angioectasia. High-frequency keywords such as "angiodysplasia", "colon", and "management" were identified, indicating key research themes. The study also noted a growing interest in drug therapies, as evidenced by the increasing prominence of keywords like "thalidomide" since 2018. CONCLUSION This study links bibliometric analysis and clinical insights, highlighting the shift to pharmacological management in GI vascular bleeding disorders to improve patient outcomes.
Collapse
Affiliation(s)
- Qi Sun
- Department of Gastroenterology, Air Force Medical Center, Beijing 100142, China
| | - Xiao-Ying Wang
- Department of Gastroenterology, Air Force Medical Center, Beijing 100142, China
- College of Life Science, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Dong-Hao Li
- Department of Gastroenterology, Air Force Medical Center, Beijing 100142, China
| | - Bai-Rong Li
- Department of Gastroenterology, Air Force Medical Center, Beijing 100142, China
| | - Xin-Zhuo Tu
- Department of Pathology, Air Force Medical Center, Beijing 100142, China
| | - Zhi-Meng Jiang
- Department of Gastroenterology, Air Force Medical Center, Beijing 100142, China
| | - Shou-Bin Ning
- Department of Gastroenterology, Air Force Medical Center, Beijing 100142, China
| | - Tao Sun
- Department of Gastroenterology, Air Force Medical Center, Beijing 100142, China
| |
Collapse
|
2
|
Auvinen P, Vehviläinen J, Rämö K, Laukkanen I, Marjonen-Lindblad H, Wallén E, Söderström-Anttila V, Kahila H, Hydén-Granskog C, Tuuri T, Tiitinen A, Kaminen-Ahola N. Genome-wide DNA methylation and gene expression in human placentas derived from assisted reproductive technology. COMMUNICATIONS MEDICINE 2024; 4:267. [PMID: 39702541 DOI: 10.1038/s43856-024-00694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Assisted reproductive technology (ART) has been associated with increased risks for growth disturbance, disrupted imprinting as well as cardiovascular and metabolic disorders. However, the molecular mechanisms and whether they are a result of the ART procedures or the underlying subfertility are unknown. METHODS We performed genome-wide DNA methylation (EPIC Illumina microarrays) and gene expression (mRNA sequencing) analyses for a total of 80 ART and 77 control placentas. The separate analyses for placentas from different ART procedures and sexes were performed. To separate the effects of ART procedures and subfertility, 11 placentas from natural conception of subfertile couples and 12 from intrauterine insemination treatments were included. RESULTS Here we show that ART-associated changes in the placenta enriche in the pathways of hormonal regulation, insulin secretion, neuronal development, and vascularization. Observed decreased number of stromal cells as well as downregulated TRIM28 and NOTCH3 expressions in ART placentas indicate impaired angiogenesis and growth. DNA methylation changes in the imprinted regions and downregulation of TRIM28 suggest defective stabilization of the imprinting. Furthermore, downregulated expression of imprinted endocrine signaling molecule DLK1 associates with both ART and subfertility. CONCLUSIONS Decreased expressions of TRIM28, NOTCH3, and DLK1 bring forth potential mechanisms for several phenotypic features associated with ART. Our results support previous procedure specific findings: the changes associated with growth and metabolism link more prominently to the fresh embryo transfer with smaller placentas and newborns, than to the frozen embryo transfer with larger placentas and newborns. Furthermore, since the observed changes associate also with subfertility, they offer a precious insight to the molecular background of infertility.
Collapse
Affiliation(s)
- Pauliina Auvinen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jussi Vehviläinen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Karita Rämö
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Ida Laukkanen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Heidi Marjonen-Lindblad
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Essi Wallén
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | | | - Hanna Kahila
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Christel Hydén-Granskog
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Aila Tiitinen
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nina Kaminen-Ahola
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Wang L, Hu R, Xu P, Gao P, Mo B, Dong L, Hu F. CD90's role in vascularization and healing of rib fractures: insights from Dll4/notch regulation. Inflamm Res 2024; 73:2263-2277. [PMID: 39455438 PMCID: PMC11632021 DOI: 10.1007/s00011-024-01962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Vascularization after rib fracture is a crucial physiological process that is essential for the repair and healing of the rib. Studies have shown that CD90 plays a critical role in regulating rib fracture healing, but the underlying mechanism of its role has not been fully elucidated. METHODS CD90 adenovirus knockout mice were used to construct a rib injury model. The bone healing was observed by micro-CT. CD31/EMCN immunofluorescence staining was performed on bone tissue to observe the density of H-shaped and L-shaped blood vessels at the site of bone injury. CD31 and EMCN dual-stained single cells from the rib fracture sites were detected by flow cytometry. The periosteal stem cells transfected with CD90 or Notch1 overexpression and silencing vector were co-cultured with osteoblast MC3T3-E1 in osteogenic induction medium. Moreover, bone microvascular endothelial cells were extracted from the rib injury and co-cultured with the periosteal stem cells transfected with CD90. CCK-8 was used to detect cell viability, RT-qPCR and Western blot were used to detect Notch1, Notch2, Notch3, Notch4, CD31, HIF-1α, CD90, RUNX2, OCN and OPN expression. Alkaline phosphatase (ALP) staining and alizarin red staining were used to observe mineralized nodules. Immunofluorescence staining was used to detect the expression of Dll4, Notch, and CD90 in each group of cells. The angiogenesis experiment was conducted to observe cellular vascular formation. RESULTS Compared with the Adsh-NC group, the bone healing in the Adsh-CD90 group was significantly impaired, with a marked reduction in the number and volume of blood vessels at the rib fracture site, as evidenced by CD31/EMCN immunofluorescence staining, which showed a reduction in the number of H type vessels at the site of bone injury. It was found that CD90 depletion can inhibit the signaling of Dll4/Notch in the rib fracture site. Furthermore, we found that overexpression of Notch1 reverses the impairment of tubule formation in bone microvascular endothelial cells caused by CD90 suppression.r.Dll4 protein reverses the inhibitory effect of CD90 deletion on periosteal stem cells and MC3T3-E1 cell viability and osteogenesis. In the end, we found that overexpression of Notch1 and CD90 can promote angiogenesis of bone microvascular endothelial cells and Notch pathway activation. CONCLUSION CD90 can affect vascular formation in mouse rib fractures, and CD90 may be regulated by Dll4/Notch.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Rui Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Pei Xu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Pengkai Gao
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Bin Mo
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Liya Dong
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| | - Fengqing Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
4
|
Li Y, Chen Y, Zhang H, Chen W, Pan Y. Liraglutide Ameliorates Renal Endothelial Dysfunction in Diabetic Rats Through the Inhibition of the Dll4/Notch2 Pathway. Diabetes Metab Syndr Obes 2024; 17:4091-4104. [PMID: 39492960 PMCID: PMC11531755 DOI: 10.2147/dmso.s492252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose The glucagon-like peptide-1 receptor agonist (GLP-1RA) is a pharmacological agent utilized for the treatment of diabetes, known for its significant reno protective effects. This study aims to investigate the impact of liraglutide, a representative GLP-1RA medication, on early endothelial dysfunction in diabetic rats and elucidate its underlying mechanisms. Methods The present study employed a high-fat, high-sugar diet in combination with a single intraperitoneal injection of streptozotocin (STZ) to establish an experimental rat model of diabetes. Subsequently, the therapeutic efficacy of liraglutide on renal injury in this model was evaluated using various doses. Results Compared to the DKD rats, the rats treated with Liraglutide exhibited significant reductions in levels of blood glucose (Glu), serum creatinine (Scr), and blood urea nitrogen (BUN) (P < 0.05). Furthermore, there was a dose-dependent decrease in urinary protein levels, including 24-hour urinary protein excretion rate and microalbuminuria (m-ALB), with higher doses demonstrating more pronounced therapeutic effects (P <0.05). In addition, treatment with Liraglutide effectively improved glomerular and interstitial damage, and suppressed the expression of CD31, CD34, and VE-cadherin associated with endothelial cell injury (P < 0.05). Furthermore, Liraglutide administration significantly increased nitric oxide (NO) production (P < 0.05). Moreover, Liraglutide treatment resulted in decreased expression of vascular endothelial growth factor (VEGF), Delta-like ligand-4(Dll4), and Notch2 protein in the Notch2 signaling pathway (P < 0.05). Conclusion The findings indicate that Liraglutide has a substantial effect on decreasing urinary protein excretion and improving vascular microinflammation, thus alleviating endothelial dysfunction in diabetic nephropathy. This observed mechanism can be attributed to the inhibition of the Dll4/Notch2 signaling pathway.
Collapse
Affiliation(s)
- Yining Li
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People’s Republic of China
| | - Yulin Chen
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People’s Republic of China
| | - Hui Zhang
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People’s Republic of China
| | - Weidong Chen
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People’s Republic of China
| | - Yan Pan
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People’s Republic of China
| |
Collapse
|
5
|
Deng SL, Fu Q, Liu Q, Huang FJ, Zhang M, Zhou X. Modulating endothelial cell dynamics in fat grafting: the impact of DLL4 siRNA via adipose stem cell extracellular vesicles. Am J Physiol Cell Physiol 2024; 327:C929-C945. [PMID: 39099421 PMCID: PMC11481985 DOI: 10.1152/ajpcell.00186.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024]
Abstract
In the context of improving the efficacy of autologous fat grafts (AFGs) in reconstructive surgery, this study delineates the novel use of adipose-derived mesenchymal stem cells (ADSCs) and their extracellular vesicles (EVs) as vehicles for delivering delta-like ligand 4 (DLL4) siRNA. The aim was to inhibit DLL4, a gene identified through transcriptome analysis as a critical player in the vascular endothelial cells of AFG tissues, thereby negatively affecting endothelial cell functions and graft survival through the Notch signaling pathway. By engineering ADSC EVs to carry DLL4 siRNA (ADSC EVs-siDLL4), the research demonstrated a marked improvement in endothelial cell proliferation, migration, and lumen formation, and enhanced angiogenesis in vivo, leading to a significant increase in the survival rate of AFGs. This approach presents a significant advancement in the field of tissue engineering and regenerative medicine, offering a potential method to overcome the limitations of current fat grafting techniques.NEW & NOTEWORTHY This study introduces a groundbreaking method for enhancing autologous fat graft survival using adipose-derived stem cell extracellular vesicles (ADSC EVs) to deliver DLL4 siRNA. By targeting the delta-like ligand 4 (DLL4) gene, crucial in endothelial cell dynamics, this innovative approach significantly improves endothelial cell functions and angiogenesis, marking a substantial advancement in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Sen-Lin Deng
- Plastic and Aesthetic Department, People's Hospital of Chongqing Banan District, Chongqing, People's Republic of China
| | - Qiang Fu
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| | - Qing Liu
- Banan District Center for Disease Control and Prevention, Chongqing, People's Republic of China
| | - Fu-Jun Huang
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| | - Miao Zhang
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| | - Xun Zhou
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| |
Collapse
|
6
|
Chen M, Shi P, Wang P, Zhang T, Zhao J, Zhao L. Up-regulation of Trim28 in pregnancy-induced hypertension is involved in the injury of human umbilical vein endothelial cells through the p38 signaling pathway. Histol Histopathol 2024; 39:603-610. [PMID: 37522419 DOI: 10.14670/hh-18-651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
AIMS The present study is to analyze the regulation and potential molecular mechanism of Trim28 on vascular endothelial injury induced by pregnancy-induced hypertension (PIH). METHODS Trim28 mRNA in placental tissues and peripheral blood from PIH patients were determined by quantitative real-time polymerase chain reaction. The serum from PIH was used to stimulate human umbilical vein endothelial cells (HUVECs). After silencing Trim28 in HUVECs, we used CCK-8 assay, Transwell assay and flow cytometry to investigate proliferation, migration and apoptosis. Western blotting was used to measure Trim28 protein level and p38 phosphorylation level. After addition of p38 inhibitor, the proliferation, migration and apoptosis of HUVECs with silenced Trim28 were studied again. RESULTS Trim28 expression in placental tissues and peripheral blood from PIH patients is elevated, and serum from these patients can up-regulate the expression of Trim28 in HUVECs in vitro. Trim28 silencing significantly inhibits the proliferation and migration of HUVECs by affecting the cell cycle. Down-regulation of Trim28 expression promotes the apoptosis of HUVECs. Trim28 regulates the biological function of HUVECs by affecting the activity of the p38 signaling pathway. CONCLUSIONS The present study demonstrates that Trim28 is up-regulated in peripheral blood of patients with PIH and participates in HUVECs injury through the p38 signaling pathway.
Collapse
Affiliation(s)
- Min Chen
- Department of Obstetrics and Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, PR China
| | - Peng Shi
- Department of Obstetrics and Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, PR China
| | - Ping Wang
- Department of Obstetrics and Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, PR China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, PR China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, PR China
| | - Li Zhao
- Department of Obstetrics and Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, PR China.
| |
Collapse
|
7
|
Chen X, Chen X. The Role of TRIM Proteins in Vascular Disease. Curr Vasc Pharmacol 2024; 22:11-18. [PMID: 38031766 DOI: 10.2174/0115701611241848231114111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
There are more than 80 different tripartite motifs (TRIM) proteins within the E3 ubiquitin ligase subfamily, including proteins that regulate intracellular signaling, apoptosis, autophagy, proliferation, inflammation, and immunity through the ubiquitination of target proteins. Studies conducted in recent years have unraveled the importance of TRIM proteins in the pathophysiology of vascular diseases. In this review, we describe the effects of TRIM proteins on vascular endothelial cells, smooth muscle cells, heart, and lungs. In particular, we discuss the potential mechanisms by which TRIMs regulate diseases and shed light on the potential therapeutic applications of TRIMs.
Collapse
Affiliation(s)
- Xinxin Chen
- Ophthalmology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, China
| | - Xiaolong Chen
- Ophthalmology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Zhao F, He Y, Zhao Z, He J, Huang H, Ai K, Liu L, Cai X. The Notch signaling-regulated angiogenesis in rheumatoid arthritis: pathogenic mechanisms and therapeutic potentials. Front Immunol 2023; 14:1272133. [PMID: 38022508 PMCID: PMC10643158 DOI: 10.3389/fimmu.2023.1272133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Angiogenesis plays a key role in the pathological process of inflammation and invasion of the synovium, and primarily drives the progression of rheumatoid arthritis (RA). Recent studies have demonstrated that the Notch signaling may represent a new therapeutic target of RA. Although the Notch signaling has been implicated in the M1 polarization of macrophages and the differentiation of lymphocytes, little is known about its role in angiogenesis in RA. In this review, we discourse the unique roles of stromal cells and adipokines in the angiogenic progression of RA, and investigate how epigenetic regulation of the Notch signaling influences angiogenesis in RA. We also discuss the interaction of the Notch-HIF signaling in RA's angiogenesis and the potential strategies targeting the Notch signaling to improve the treatment outcomes of RA. Taken together, we further suggest new insights into future research regarding the challenges in the therapeutic strategies of RA.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhihao Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Huang
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiong Cai
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
9
|
Abhinand CS, Galipon J, Mori M, Ramesh P, Prasad TSK, Raju R, Sudhakaran PR, Tomita M. Temporal phosphoproteomic analysis of VEGF-A signaling in HUVECs: an insight into early signaling events associated with angiogenesis. J Cell Commun Signal 2023; 17:1067-1079. [PMID: 36881336 PMCID: PMC10409921 DOI: 10.1007/s12079-023-00736-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is one of the primary factors promoting angiogenesis in endothelial cells. Although defects in VEGF-A signaling are linked to diverse pathophysiological conditions, the early phosphorylation-dependent signaling events pertinent to VEGF-A signaling remain poorly defined. Hence, a temporal quantitative phosphoproteomic analysis was performed in human umbilical vein endothelial cells (HUVECs) treated with VEGF-A-165 for 1, 5 and 10 min. This led to the identification and quantification of 1971 unique phosphopeptides corresponding to 961 phosphoproteins and 2771 phosphorylation sites in total. Specifically, 69, 153, and 133 phosphopeptides corresponding to 62, 125, and 110 phosphoproteins respectively, were temporally phosphorylated at 1, 5, and 10 min upon addition of VEGF-A. These phosphopeptides included 14 kinases, among others. This study also captured the phosphosignaling events directed through RAC, FAK, PI3K-AKT-MTOR, ERK, and P38 MAPK modules with reference to our previously assembled VEGF-A/VEGFR2 signaling pathway map in HUVECs. Apart from a significant enrichment of biological processes such as cytoskeleton organization and actin filament binding, our results also suggest a role of AAK1-AP2M1 in the regulation of VEGFR endocytosis. Taken together, the temporal quantitative phosphoproteomics analysis of VEGF signaling in HUVECs revealed early signaling events and we believe that this analysis will serve as a starting point for the analysis of differential signaling across VEGF members toward the full elucidation of their role in the angiogenesis processes. Workflow for the identification of early phosphorylation events induced by VEGF-A-165 in HUVEC cells.
Collapse
Affiliation(s)
- Chandran S Abhinand
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Josephine Galipon
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan.
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Perumana R Sudhakaran
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Department of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| |
Collapse
|
10
|
Li R, Wang T, Marquardt RM, Lydon JP, Wu SP, DeMayo FJ. TRIM28 modulates nuclear receptor signaling to regulate uterine function. Nat Commun 2023; 14:4605. [PMID: 37528140 PMCID: PMC10393996 DOI: 10.1038/s41467-023-40395-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Estrogen and progesterone, acting through their cognate receptors the estrogen receptor α (ERα) and the progesterone receptor (PR) respectively, regulate uterine biology. Using rapid immunoprecipitation and mass spectrometry (RIME) and co-immunoprecipitation, we identified TRIM28 (Tripartite motif containing 28) as a protein which complexes with ERα and PR in the regulation of uterine function. Impairment of TRIM28 expression results in the inability of the uterus to support early pregnancy through altered PR and ERα action in the uterine epithelium and stroma by suppressing PR and ERα chromatin binding. Furthermore, TRIM28 ablation in PR-expressing uterine cells results in the enrichment of a subset of TRIM28 positive and PR negative pericytes and epithelial cells with progenitor potential. In summary, our study reveals the important roles of TRIM28 in regulating endometrial cell composition and function in women, and also implies its critical functions in other hormone regulated systems.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ryan M Marquardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
11
|
Zhou Y, Zhang H, Huang Y, Wu S, Liu Z. Tanshinone IIA regulates expression of glucose transporter 1 via activation of the HIF‑1α signaling pathway. Mol Med Rep 2022; 26:328. [PMID: 36069225 PMCID: PMC9727584 DOI: 10.3892/mmr.2022.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 12/30/2022] Open
Abstract
Tanshinone IIA (Tan 2A) is a lipid‑soluble compound extracted from the Chinese herb Danshen (Salvia miltiorrhiza Bunge). It protects neuron and microvascular endothelial cells against hypoxia/ischemia both in vitro and in vivo however the mechanism is not fully known. Glucose transporter 1 (GLUT‑1) is ubiquitously expressed in all types of tissue in the human body and serves important physiological functions due to its glucose uptake ability. The present study evaluated the role of Tan 2A in regulating GLUT‑1 expression and its potential mechanism. RT‑PCR and western Blot were used to detect the expression of GLUT‑1. Si RNA mediated knockdown and CHIP assay were used to explore the mechanism of Tan 2A on GLUT‑1expression. Tan 2A treatment induced expression of GLUT‑1 and subsequently increased glucose uptake in endothelial cells (ECs). Furthermore, mRNA expression levels of vascular endothelial cell growth factor, BCL2 interacting protein 3 and enolase 2, which are target genes for hypoxia‑inducible factor‑1α (HIF‑1α), were significantly upregulated by Tan 2A. Co‑immunoprecipitation demonstrated that Tan 2A markedly increased the association of HIF‑1α with recombination signal‑binding protein for immunoglobulin κJ region (RBPJκ). Moreover, knockdown of HIF‑1α and RBPJκ significantly reversed the regulatory effect of Tan 2A on mRNA expression levels of these genes in ECs. The results of the present study suggested that HIF‑1α partially mediated the regulatory effect of Tan 2A on GLUT‑1 expression in ECs. Therefore, GLUT‑1 may be a potential therapeutic target for Tan 2A.
Collapse
Affiliation(s)
- Yanyun Zhou
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China,Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Hong Zhang
- Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yitong Huang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Shengyun Wu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Zongjun Liu
- Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China,Correspondence to: Dr Zongjun Liu, Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Putuo, Shanghai 200062, P.R. China, E-mail:
| |
Collapse
|
12
|
Chen Q, Su L, Liu C, Gao F, Chen H, Yin Q, Li S. PRKAR1A and SDCBP Serve as Potential Predictors of Heart Failure Following Acute Myocardial Infarction. Front Immunol 2022; 13:878876. [PMID: 35592331 PMCID: PMC9110666 DOI: 10.3389/fimmu.2022.878876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
Background and Objectives Early diagnosis of patients with acute myocardial infarction (AMI) who are at a high risk of heart failure (HF) progression remains controversial. This study aimed at identifying new predictive biomarkers of post-AMI HF and at revealing the pathogenesis of HF involving these marker genes. Methods and Results A transcriptomic dataset of whole blood cells from AMI patients with HF progression (post-AMI HF, n = 16) and without progression (post-AMI non-HF, n = 16) was analyzed using the weighted gene co-expression network analysis (WGCNA). The results indicated that one module consisting of 720 hub genes was significantly correlated with post-AMI HF. The hub genes were validated in another transcriptomic dataset of peripheral blood mononuclear cells (post-AMI HF, n = 9; post-AMI non-HF, n = 8). PRKAR1A, SDCBP, SPRED2, and VAMP3 were upregulated in the two datasets. Based on a single-cell RNA sequencing dataset of leukocytes from heart tissues of normal and infarcted mice, PRKAR1A was further verified to be upregulated in monocytes/macrophages on day 2, while SDCBP was highly expressed in neutrophils on day 2 and in monocytes/macrophages on day 3 after AMI. Cell-cell communication analysis via the "CellChat" package showed that, based on the interaction of ligand-receptor (L-R) pairs, there were increased autocrine/paracrine cross-talk networks of monocytes/macrophages and neutrophils in the acute stage of MI. Functional enrichment analysis of the abovementioned L-R genes together with PRKAR1A and SDCBP performed through the Metascape platform suggested that PRKAR1A and SDCBP were mainly involved in inflammation, apoptosis, and angiogenesis. The receiver operating characteristic (ROC) curve analysis demonstrated that PRKAR1A and SDCBP, as well as their combination, had a promising prognostic value in the identification of AMI patients who were at a high risk of HF progression. Conclusion This study identified that PRKAR1A and SDCBP may serve as novel biomarkers for the early diagnosis of post-AMI HF and also revealed their potentially regulatory mechanism during HF progression.
Collapse
Affiliation(s)
- Qixin Chen
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
| | - Lina Su
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
| | - Chuanfen Liu
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
| | - Fu Gao
- Department of Cardiac Surgery, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Hong Chen
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
| | - Qijin Yin
- Ministry of Education Key Laboratory of Bioinformatics, Research Department of Bioinformatics at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, China
| | - Sufang Li
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
13
|
Gong X, Li Y, Yang K, Chen S, Ji Y. Infantile hepatic hemangiomas: looking backwards and forwards. PRECISION CLINICAL MEDICINE 2022; 5:pbac006. [PMID: 35692445 PMCID: PMC8982613 DOI: 10.1093/pcmedi/pbac006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
Infantile hepatic hemangiomas (IHHs) are common benign tumors seen in the liver of infants. IHHs are true infantile hemangiomas (IHs) and have phases of proliferation and involution parallel to those of cutaneous IHs. The definition and classification of IHH are still confusing in the literature. The mechanisms during the pathogenesis of IHH have yet to be discovered. The clinical manifestations of IHH are heterogeneous. Although most IHH lesions are asymptomatic, some lesions can lead to severe complications, such as hypothyroidism, consumptive coagulopathy, and high-output congestive cardiac failure. Consequently, some patients can possibly encounter a fatal clinical condition. The heterogeneity of the lesions and the occurrence of disease-related comorbidities can make the treatment of IHH challenging. Oral propranolol is emerging as an effective systemic approach to IHH with obvious responses in tumor remission and symptom regression. However, the precise clinical characteristics and treatment strategies for patients with severe IHH have not yet been well established. Here, we summarize the epidemiology, pathogenic mechanism, clinical manifestations, diagnosis, and treatment of IHH. Recent updates and future perspectives for IHH will also be elaborated.
Collapse
Affiliation(s)
- Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanan Li
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Siyuan Chen
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Zhang J, Xiong Q, Yang L, Xue Y, Ke M, Li Z. Cytochrome P450 2J2 inhibits the proliferation and angiogenesis of retinal vascular endothelial cells by regulating the Notch signaling pathway in a hypoxia-induced retinopathy model. Bioengineered 2021; 12:10878-10890. [PMID: 34666595 PMCID: PMC8809993 DOI: 10.1080/21655979.2021.1994722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Retinopathy of Prematurity (ROP), a type of retinal neovascularization in premature infants, has become a serious problem that drastically affects the quality of life of premature infants. ROP is associated with angiogenesis and neovascularization. Here, we aimed to explain the function and latent roles of Cytochrome P450 2J2 (CYP2J2) in hypoxia-induced retinopathy in retinal vascular endothelial cells (HRVECs). HRVECs were stimulated with hypoxia for 24 h to establish an in vitro retinopathy model. Cell viability and migration were evaluated using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and Transwell assays, respectively. Protein and gene expression was determined by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot analysis. We observed that pcDNA3.1(+)-CYP2J2 promoted CYP2J2 and Jagged1 expression, while Dll4 was down-regulated in hypoxia-stimulated HRVECs. Additionally, pcDNA3.1(+)-CYP2J2 inhibited HRVEC viability, reduced PCNA expression, and inhibited the migration of HRVECs. Further, the Notch pathway was inhibited in the Hypoxia+pcDNA3.1(+)-CYP2J2 group. Opposite results were observed upon Terfenadone treatment in hypoxia induced HRVECs. Finally, our findings further verified that DAPT promotes the effects of CYP2J2 on cell viability, migration, and Notch signaling in hypoxia-induced HRVECs, while EDTA reversed the inhibitory effects of CYP2J2 on hypoxia-induced HRVECs. In conclusions, CYP2J2 was found to inhibit the viability and angiogenesis of HRVECs by inhibiting Notch signaling in a hypoxia-induced retinopathy model.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qi Xiong
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Yang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanni Xue
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Wang Y, Fan Y, Huang Y, Du T, Liu Z, Huang D, Wang Y, Wang N, Zhang P. TRIM28 regulates SARS-CoV-2 cell entry by targeting ACE2. Cell Signal 2021; 85:110064. [PMID: 34146659 PMCID: PMC8213541 DOI: 10.1016/j.cellsig.2021.110064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019, it binds to angiotensin-converting enzyme 2 (ACE2) to enter into human cells. The expression level of ACE2 potentially determine the susceptibility and severity of COVID-19, it is thus of importance to understand the regulatory mechanism of ACE2 expression. Tripartite motif containing 28 (TRIM28) is known to be involved in multiple processes including antiviral restriction, endogenous retrovirus latency and immune response, it is recently reported to be co-expressed with SARS-CoV-2 receptor in type II pneumocytes; however, the roles of TRIM28 in ACE2 expression and SARS-CoV-2 cell entry remain unclear. This study showed that knockdown of TRIM28 induces ACE2 expression and increases pseudotyped SARS-CoV-2 cell entry of A549 cells and primary pulmonary alveolar epithelial cells (PAEpiCs). In a co-culture model of NK cells and lung epithelial cells, our results demonstrated that NK cells inhibit TRIM28 and promote ACE2 expression in lung epithelial cells, which was partially reversed by depletion of interleukin-2 and blocking of granzyme B in the co-culture medium. Furthermore, TRIM28 knockdown enhanced interferon-γ (IFN-γ)- induced ACE2 expression through a mechanism involving upregulating IFN-γ receptor 2 (IFNGR2) in both A549 and PAEpiCs. The upregulated ACE2 induced by TRIM28 knockdown and co-culture of NK cells was partially reversed by dexamethasone in A549 cells. Our study identified TRIM28 as a novel regulator of ACE2 expression and SARS-CoV-2 cell entry.
Collapse
Affiliation(s)
- Yinfang Wang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China,Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China,Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yingzhe Fan
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yitong Huang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China,Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zongjun Liu
- Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China,Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Dekui Huang
- Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China,Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nanping Wang
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Peng Zhang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China,Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China,Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China,Corresponding author at: Central Laboratory, Institute of Experimental and Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Meerschaut I, Vergult S, Dheedene A, Menten B, De Groote K, De Wilde H, Muiño Mosquera L, Panzer J, Vandekerckhove K, Coucke PJ, De Wolf D, Callewaert B. A Reassessment of Copy Number Variations in Congenital Heart Defects: Picturing the Whole Genome. Genes (Basel) 2021; 12:genes12071048. [PMID: 34356064 PMCID: PMC8304049 DOI: 10.3390/genes12071048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Copy number variations (CNVs) can modulate phenotypes by affecting protein-coding sequences directly or through interference of gene expression. Recent studies in cancer and limb defects pinpointed the relevance of non-coding gene regulatory elements such as long non-coding RNAs (lncRNAs) and topologically associated domain (TAD)-related gene-enhancer interactions. The contribution of such non-coding elements is largely unexplored in congenital heart defects (CHD). We performed a retrospective analysis of CNVs reported in a cohort of 270 CHD patients. We reviewed the diagnostic yield of pathogenic CNVs, and performed a comprehensive reassessment of 138 CNVs of unknown significance (CNV-US), evaluating protein-coding genes, lncRNA genes, and potential interferences with TAD-related gene-enhancer interactions. Fifty-two of the 138 CNV-US may relate to CHD, revealing three candidate CHD regions, 19 candidate CHD genes, 80 lncRNA genes of interest, and six potentially CHD-related TAD interferences. Our study thus indicates a potential relevance of non-coding gene regulatory elements in CNV-related CHD pathogenesis. Shortcomings in our current knowledge on genomic variation call for continuous reporting of CNV-US in international databases, careful patient counseling, and additional functional studies to confirm these preliminary findings.
Collapse
Affiliation(s)
- Ilse Meerschaut
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
| | - Annelies Dheedene
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
| | - Katya De Groote
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Hans De Wilde
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Laura Muiño Mosquera
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Joseph Panzer
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Kristof Vandekerckhove
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Paul J. Coucke
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
| | - Daniël De Wolf
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
- Department of Pediatric Cardiology, Brussels University Hospital, 1090 Brussels, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
- Correspondence: ; Tel.: +32-9-332-3603
| |
Collapse
|
17
|
Léger JAD, Athanasio CG, Zhera A, Chauhan MF, Simmons DBD. Hypoxic responses in Oncorhynchus mykiss involve angiogenesis, lipid, and lactate metabolism, which may be triggered by the cortisol stress response and epigenetic methylation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100860. [PMID: 34126312 DOI: 10.1016/j.cbd.2021.100860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The incidence of hypoxia in water bodies is increasing more rapidly than aquatic life can adapt. This study aimed to determine the effects of hypoxia on fish physiology, as well as protein expression through proteomics. To do this, 40 rainbow trout were divided into normoxic control (11.5 mg/L dissolved oxygen) and hypoxic treatment (5 mg/L dissolved oxygen) tanks for a period of 7 days. Fish were then anesthetized and blood was sampled. Fish were then euthanized and heart and liver samples were taken. Blood glucose, cortisol and lipid, body and liver mass, fork length, hematocrit and, blood cell counts and global heart methylation were measured. Red blood cell counts were significantly lower, while hematocrit and mean corpuscular volume were significantly higher in the hypoxic treatment. Global DNA methylation was significantly decreased in hypoxic heart tissue. Plasma cortisol and 18:1 monoacylglyerol increased, while 15:0-18:1 phosphatidylethanolamine, and 18:1 lysophosphatidylethanolamine decreased in plasma of rainbow trout under hypoxic conditions. Plasma proteomics revealed 70 significantly altered proteins (p < 0.05) in the hypoxia treatment (Data are available via ProteomeXchange with identifier PXD026589). Many of these molecular changes appear to be related to the observed increase in red blood cell volume and epigenetic modifications, as well as to angiogenesis, lipid, and glucose metabolism. This study highlights a range of cellular and molecular responses in the blood and plasma of freshwater fish that may be phenotypic adaptions to hypoxia, and that could aid in diagnosing the health status of wild fish populations using several, potential, discovered biomarkers.
Collapse
Affiliation(s)
- Jessica A D Léger
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| | - Camila G Athanasio
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada
| | - Aaleen Zhera
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| | - Mohammed Faiz Chauhan
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| | - Denina B D Simmons
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| |
Collapse
|