1
|
Fang H, Li P, Zhu S, Bi R. Genetic factors underlying Mandibular prognathism: insights from recent human and animal studies. Mamm Genome 2025; 36:293-305. [PMID: 39607497 DOI: 10.1007/s00335-024-10084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
This review aims to provide an updated overview of the genetic etiology of mandibular prognathism (MP), focusing on recent research efforts, to summarize the findings from human studies utilizing genome-wide association studies (GWAS), candidate gene analyses, whole exome sequencing (WES) and single-nucleotide polymorphisms (SNPs) in relation to MP. Additionally, insights from animal studies are incorporated to understand the molecular mechanisms underlying mandibular development and the pathogenesis of MP. A comprehensive literature search was conducted to identify relevant studies on the genetic basis of MP. Human studies employing GWAS, candidate gene analyses, and SNPs investigations were reviewed. Animal studies, including European seabass, zebrafish, transgenic mouse and miniature horse were also examined to provide additional insights into mandibular development and MP's pathogenesis using GWAS, WES, transgenic techniques, morpholino antisense oligos and homozygote. Human studies have identified multiple loci and genes potentially associated with MP through GWAS, candidate gene analyses, and SNP investigations. Animal models have contributed valuable information about the molecular mechanisms involved in mandibular development and the development of MP. Recent research efforts have enhanced our understanding of the genetic etiology of MP. Integration of genetic studies with functional analyses has shed light on key signaling pathways and gene regulatory networks implicated in MP.
Collapse
Affiliation(s)
- Han Fang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Jeannerod G, Chretien A, André G, Mabilleau G, Behets C. Craniofacial Effects of Zoledronic Acid on the Osteogenesis Imperfecta Mouse (-/-) Model of Severe Osteogenesis Imperfecta. Biomedicines 2024; 12:2692. [PMID: 39767599 PMCID: PMC11673974 DOI: 10.3390/biomedicines12122692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Osteogenesis imperfecta (OI) is a rare genetic disorder affecting mainly type I collagen, which leads to bone fragility and deformities. OI patients also present craniofacial abnormalities such as macrocephaly and malocclusion. Recently, craniofacial dysmorphism was highlighted in the osteogenesis imperfecta mouse (oim), a validated model of the most severe form of OI. This study explores the impact of zoledronic acid (ZA), commonly administered to OI patients to increase bone mass and mechanical strength, on oim craniofacial structure. Methods: Fifteen oim received a single intravenous ZA injection (100 µg/kg) at 5 weeks (ZA group), while fifteen remained untreated (control). Before euthanasia at 14 weeks, in vivo computed tomography provided craniometric data. Post-euthanasia, heads underwent peripheral Quantitative Computed Tomography (pQCT); coronal decalcified sections through temporomandibular joints were analyzed (n = 6/mouse) after Masson's trichrome staining (3 sections) or under polarized light to study collagen birefringence (3 sections). Results: In vivo craniometry highlighted the positive effect on vertical growth in ZA oim models as compared to untreated ones, with significant increases in mandibular length and incisor height and without any change in transversal dimensions. The pQCT scans showed the significantly higher total mineral density and cortical mineral density of the mandibular ramus in the ZA than the untreated group. Via microscopic analysis, the cranial vault was thicker and the collagen birefringence was higher in the ZA group than in the untreated group, but differences were not significant. Conclusion: To conclude, ZA had some beneficial effects on craniofacial vertical height and ramus density and, to a lower extent, on vault thickness, while transversal dimensions did not seem to be influenced by ZA intake. These data emphasize the need to consider the whole skeleton when treating OI patients.
Collapse
Affiliation(s)
- Gaspard Jeannerod
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium; (G.J.); (A.C.); (G.A.)
| | - Antoine Chretien
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium; (G.J.); (A.C.); (G.A.)
| | - Grégoire André
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium; (G.J.); (A.C.); (G.A.)
| | - Guillaume Mabilleau
- Oniris, Inserm, UMR_S 1229–RMeS, REGOS, SFR ICAT, Univ Angers, Nantes Université, 49000 Angers, France;
- Bone Pathology Unit, CHU Angers, 49000 Angers, France
| | - Catherine Behets
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium; (G.J.); (A.C.); (G.A.)
| |
Collapse
|
3
|
Fosséprez J, Roels T, Manicourt D, Behets C. Craniofacial dysmorphism of osteogenesis imperfecta mouse and effect of cathepsin K knockout: Preliminary craniometry observations. Morphologie 2024; 108:100785. [PMID: 38788496 DOI: 10.1016/j.morpho.2024.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVES In addition to bone fragility, patients with osteogenesis imperfecta (OI) type III have typical craniofacial abnormalities, such as a triangular face and maxillary micrognathism. However, in the osteogenesis imperfecta mouse (oim), a validated model of OI type III, few descriptions exist of craniofacial phenotype. Treatment of OI mostly consists of bisphosphonate administration. Cathepsin K inhibition has been tested as a promising therapeutic approach for osteoporosis and positive results were observed in long bones of cathepsin K knocked out oim (oim/CatK-/-). This craniometry study aimed to highlight the craniofacial characteristics of oim and Cathepsin K KO mouse. MATERIALS AND METHODS We analyzed the craniofacial skeleton of 51 mice distributed in 4 genotype groups: Wt (control), oim, CatK-/-, oim/CatK-/-. The mice were euthanized at 13 weeks and their heads were analyzed using densitometric (pQCT), X-ray cephalometric, and histomorphometric methods. RESULTS The craniofacial skeleton of the oim mouse is frailer than the Wt one, with a reduced thickness and mineral density of the cranial vault and mandibular ramus. Different cephalometric data attest a dysmorphism similar to the one observed in humans with OI type III. Those abnormalities were not improved in the oim/CatK-/- group. CONCLUSION These results suggest that oim mouse could serve as a complete model of the human OI type III, including the craniofacial skeleton. They also suggest that invalidation of cathepsin K has no impact on the craniofacial abnormalities of the oim model.
Collapse
Affiliation(s)
- J Fosséprez
- Pole of Morphology, institut de recherche expérimentale et clinique (IREC), université catholique de Louvain (UCLouvain), Brussels, Belgium.
| | - T Roels
- Pole of Morphology, institut de recherche expérimentale et clinique (IREC), université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - D Manicourt
- Pole of Rheumatic Diseases, IREC, UCLouvain, Brussels, Belgium
| | - C Behets
- Pole of Morphology, institut de recherche expérimentale et clinique (IREC), université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
4
|
Husain TS, Moore JC, Huston LA, Miller CA, Steele AT, Gonzales LA, Handler EK, Organ JM, Menegaz RA. Neurocranial growth in the OIM mouse model of osteogenesis imperfecta. Anat Rec (Hoboken) 2024; 307:581-591. [PMID: 37638403 DOI: 10.1002/ar.25307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023]
Abstract
Osteogenesis imperfecta (OI) is a disorder of type I collagen characterized by abnormal bone formation. The OI craniofacial phenotype includes midfacial underdevelopment, as well as neurocranial changes (e.g., macrocephaly and platybasia) that may also affect underlying nervous tissues. This study aims to better understand how OI affects the integrated development of the neurocranium and the brain. Juvenile and adult mice with OI (OIM) and unaffected wild type (WT) littermates were imaged using in vivo micro-computed tomography (microCT). Virtual endocast models were used to measure brain volume, and 3D landmarks were collected from the cranium and brain endocasts. Geometric morphometric analyses were used to compare brain shape and integration between the genotypes. OIM mice had increased brain volumes (relative to cranial centroid size) only at the juvenile stage. No significant difference was seen in cranial base angle (CBA) between OIM and WT mice. However, CBA was higher in juvenile than in adult OIM mice. Brain shape was significantly different between OIM and WT mice at both stages, with OIM mice having more globular brains than WT mice. Neurocranial and brain morphology were strongly integrated within both genotypes, while adult OIM mice tended to have lower levels of skull-brain integration than WT mice. These results suggest that neurocranial dysmorphologies in OI may be more severe at earlier stages of postnatal development. Decreased skull-brain integration in adult mice suggests that compensatory mechanisms may exist during postnatal growth to maintain neurological function despite significant changes in neurocranial morphology.
Collapse
Affiliation(s)
- Tooba S Husain
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Arkansas College of Osteopathic Medicine, Fort Smith, Arkansas, USA
| | - Jacob C Moore
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Edward Via College of Osteopathic Medicine, Monroe, Louisiana, USA
| | - Lila A Huston
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
- University of the Incarnate Word School of Osteopathic Medicine, San Antonio, Texas, USA
| | - Courtney A Miller
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ashley T Steele
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Lauren A Gonzales
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Emma K Handler
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Jason M Organ
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rachel A Menegaz
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
5
|
Huston LA, Husain TS, Moore JC, Organ JM, Menegaz RA, Handler EK, Gonzales LA. Morphological variability in the inner ear of mice with osteogenesis imperfecta. Anat Rec (Hoboken) 2024; 307:592-599. [PMID: 37515586 DOI: 10.1002/ar.25298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Osteogenesis imperfecta (OI) is known to cause hearing loss in ~60% of the affected human population. While OI-related pathologies have been studied in the middle ear, the development of cochlear pathologies is less well understood. In this study, we examine OI-related pathologies of the cochlea in a mouse model of OI to (1) document variation between OI and unaffected mice, and (2) assess the intrusion of the otic capsule onto the cochlea by analyzing differences in duct volumes. Juvenile and adult OIM C57BL/6mice were compared to unaffected wildtype (WT) mice using three-dimensional models of the cochlea generated from high resolution micro-CT scans. Two-tailed Mann-Whitney U tests were then used to investigate duct volume differences both within and between the OI and WT samples. Areas of higher ossification were observed at the cochlear base in the OI sample. OI mice also had significant intraindividual differences in duct volume between right and left ears (4%-15%), an effect not observed in WT mice. WT and OI duct volumes showed a large degree of overlap, although the OIM volumes were more variable. Our findings indicate that OIM mice are likely to exhibit more asymmetry and variation in cochlear volume despite minor differences in sample cochlear volumes, possibly due to bony capsule intrusion. This suggests a potential mechanism of hearing loss, and a high potential for cochlear and otic capsule alteration in OIM mice.
Collapse
Affiliation(s)
- Lila A Huston
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
- University of the Incarnate Word School of Medicine, San Antonio, Texas, USA
| | - Tooba S Husain
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Arkansas College of Osteopathic Medicine, Chad, Arkansas, USA
| | - Jacob C Moore
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Edward Via College of Osteopathic Medicine, Monroe, Louisiana, USA
| | - Jason M Organ
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rachel A Menegaz
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Emma K Handler
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Lauren A Gonzales
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
6
|
Moore JC, Husain TS, Huston LA, Steele AT, Organ JM, Gonzales LA, Menegaz RA, Handler EK. Dental tissue changes in juvenile and adult mice with osteogenesis imperfecta. Anat Rec (Hoboken) 2024; 307:600-610. [PMID: 37638385 DOI: 10.1002/ar.25306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
Osteogenesis imperfecta (OI), a disorder of type I collagen, causes skeletal deformities as well as defects in dental tissues, which lead to increased enamel wear and smaller teeth with shorter roots. Mice with OI exhibit similar microstructural dentin changes, including reduced dentin tubule density and dentin cross-sectional area. However, the effects of these mutations on gross dental morphology and dental tissue volumes have never been characterized in the osteogenesis imperfecta murine (OIM) mouse model. Here we compare mineralized dental tissue measurements of OIM mice and unaffected wild type (WT) littermates at the juvenile and adult stages. The maxillary and mandibular incisors and first molars were isolated from microCT scans, and tissue volumes and root length were measured. OIM mice have smaller teeth with shorter roots relative to WT controls. Maxillary incisor volumes differed significantly between OIM and WT mice at both the juvenile and young adult stage, perhaps due to shortening of the maxilla itself in OIM mice. Additionally, adult OIM mice have significantly less crown enamel volume than do juveniles, potentially due to loss through wear. Thus, OIM mice demonstrate a dental phenotype similar to humans with OI, with decreased tooth size, decreased root length, and accelerated enamel wear. Further investigation of dental development in the OIM mouse may have important implications for the development and treatment of dental issues in OI patients.
Collapse
Affiliation(s)
- Jacob C Moore
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Edward Via College of Osteopathic Medicine, Monroe, Louisiana, USA
| | - Tooba S Husain
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Arkansas College of Osteopathic Medicine, Fort Smith, Arkansas, USA
| | - Lila A Huston
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
- University of the Incarnate Word School of Osteopathic Medicine, San Antonio, Texas, USA
| | - Ashley T Steele
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Jason M Organ
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lauren A Gonzales
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rachel A Menegaz
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Emma K Handler
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Sung HH, Spresser WJ, Hoffmann JP, Dai Z, Van der Kraan PM, Caird MS, Davidson EB, Kozloff KM. Collagen mutation and age contribute to differential craniofacial phenotypes in mouse models of osteogenesis imperfecta. JBMR Plus 2024; 8:ziad004. [PMID: 38690127 PMCID: PMC11059998 DOI: 10.1093/jbmrpl/ziad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 05/02/2024] Open
Abstract
Craniofacial and dentoalveolar abnormalities are present in all types of osteogenesis imperfecta (OI). Mouse models of the disorder are critical to understand these abnormalities and underlying OI pathogenesis. Previous studies on severely affected OI mice report a broad spectrum of craniofacial phenotypes, exhibiting some similarities to the human disorder. The Brtl/+ and G610c/+ are moderately severe and mild-type IV OI, respectively. Little is known about the aging effects on the craniofacial bones of these models and their homology to human OI. This study aimed to analyze the Brtl/+ and G610c/+ craniofacial morphometries during aging to establish suitability for further OI craniofacial bone intervention studies. We performed morphological measurements on the micro-CT-scanned heads of 3-wk-old, 3-mo-old, and 6-mo-old female Brtl/+ and G610c/+ mice. We observed that Brtl/+ skulls are shorter in length than WT (P < .05), whereas G610c/+ skulls are similar in length to their WT counterparts. The Brtl/+ mice exhibit alveolar bone with a porotic-like appearance that is not observed in G610c/+. As they age, Brtl/+ mice show severe bone resorption in both the maxilla and mandible (P < .05). By contrast, G610c/+ mice experience mandibular resorption consistently across all ages, but maxillary resorption is only evident at 6 mo (P < .05). Western blot shows high osteoclastic activities in the Brtl/+ maxilla. Both models exhibit delayed pre-functional eruptions of the third molars (P < .05), which are similar to those observed in some bisphosphonate-treated OI subjects. Our study shows that the Brtl/+ and G610c/+ mice display clear features found in type IV OI patients; both show age-related changes in the craniofacial growth phenotype. Therefore, understanding the craniofacial features of these models and how they age will allow us to select the most accurate mouse model, mouse age, and bone structure for the specific craniofacial bone treatment of differing OI groups.
Collapse
Affiliation(s)
- Hsiao H Sung
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, United States
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, The Netherlands, 6525 GA
| | - Wyatt J Spresser
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Joseph P Hoffmann
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zongrui Dai
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Peter M Van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, The Netherlands, 6525 GA
| | - Michelle S Caird
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Esmeralda Blaney Davidson
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, The Netherlands, 6525 GA
| | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
8
|
Korff A, Yang X, O’Donovan K, Gonzalez A, Teubner BJ, Nakamura H, Messing J, Yang F, Carisey AF, Wang YD, Patni T, Sheppard H, Zakharenko SS, Chook YM, Taylor JP, Kim HJ. A murine model of hnRNPH2-related neurodevelopmental disorder reveals a mechanism for genetic compensation by Hnrnph1. J Clin Invest 2023; 133:e160309. [PMID: 37463454 PMCID: PMC10348767 DOI: 10.1172/jci160309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/24/2023] [Indexed: 07/20/2023] Open
Abstract
Mutations in HNRNPH2 cause an X-linked neurodevelopmental disorder with features that include developmental delay, motor function deficits, and seizures. More than 90% of patients with hnRNPH2 have a missense mutation within or adjacent to the nuclear localization signal (NLS) of hnRNPH2. Here, we report that hnRNPH2 NLS mutations caused reduced interaction with the nuclear transport receptor Kapβ2 and resulted in modest cytoplasmic accumulation of hnRNPH2. We generated 2 knockin mouse models with human-equivalent mutations in Hnrnph2 as well as Hnrnph2-KO mice. Knockin mice recapitulated clinical features of the human disorder, including reduced survival in male mice, impaired motor and cognitive functions, and increased susceptibility to audiogenic seizures. In contrast, 2 independent lines of Hnrnph2-KO mice showed no detectable phenotypes. Notably, KO mice had upregulated expression of Hnrnph1, a paralog of Hnrnph2, whereas knockin mice failed to upregulate Hnrnph1. Thus, genetic compensation by Hnrnph1 may counteract the loss of hnRNPH2. These findings suggest that HNRNPH2-related disorder may be driven by a toxic gain of function or a complex loss of HNRNPH2 function with impaired compensation by HNRNPH1. The knockin mice described here are an important resource for preclinical studies to assess the therapeutic benefit of gene replacement or knockdown of mutant hnRNPH2.
Collapse
Affiliation(s)
- Ane Korff
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Xiaojing Yang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kevin O’Donovan
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Abner Gonzalez
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Haruko Nakamura
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - James Messing
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Fen Yang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Alexandre F. Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Heather Sheppard
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
9
|
De Paolis A, Miller BJ, Doube M, Bodey AJ, Rau C, Richter CP, Cardoso L, Carriero A. Increased cochlear otic capsule thickness and intracortical canal porosity in the oim mouse model of osteogenesis imperfecta. J Struct Biol 2021; 213:107708. [PMID: 33581284 DOI: 10.1016/j.jsb.2021.107708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 01/19/2023]
Abstract
Osteogenesis imperfecta (OI or brittle bone disease) is a group of genetic disorders of the connective tissues caused mainly by mutations in the genes encoding collagen type I. Clinical manifestations of OI include skeletal fragility, bone deformities, and severe functional disabilities, such as hearing loss. Progressive hearing loss, usually beginning in childhood, affects approximately 70% of people with OI with more than half of the cases involving the inner ear. There is no cure for OI nor a treatment to ameliorate its corresponding hearing loss, and very little is known about the properties of OI ears. In this study, we investigate the morphology of the otic capsule and the cochlea in the inner ear of the oim mouse model of OI. High-resolution 3D images of 8-week old oim and WT inner ears were acquired using synchrotron microtomography. Volumetric morphometric measurements were conducted for the otic capsule, its intracortical canal network and osteocyte lacunae, and for the cochlear spiral ducts. Our results show that the morphology of the cochlea is preserved in the oim ears at 8 weeks of age but the otic capsule has a greater cortical thickness and altered intracortical bone porosity, with a larger number and volume density of highly branched canals in the oim otic capsule. These results portray a state of compromised bone quality in the otic capsule of the oim mice that may contribute to their hearing loss.
Collapse
Affiliation(s)
- Annalisa De Paolis
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | | | - Michael Doube
- Department of Infectious Diseases and Public Health, City University of Hong Kong, HK
| | - Andrew John Bodey
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; University of Manchester, Manchester, UK
| | - Claus-Peter Richter
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Luis Cardoso
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Alessandra Carriero
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|