1
|
Nolt GL, Keeble AR, Wen Y, Strong AC, Thomas NT, Valentino TR, Brightwell CR, Murach KA, Patrizia S, Weinstabl H, Gollner A, McCarthy JJ, Fry CS, Franti M, Filareto A, Peterson CA, Dungan CM. Inhibition of p53-MDM2 binding reduces senescent cell abundance and improves the adaptive responses of skeletal muscle from aged mice. GeroScience 2024; 46:2153-2176. [PMID: 37872294 PMCID: PMC10828311 DOI: 10.1007/s11357-023-00976-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Skeletal muscle adaptation to external stimuli, such as regeneration following injury and hypertrophy in response to resistance exercise, are blunted with advanced age. The accumulation of senescent cells, along with defects in myogenic progenitor cell (MPC) proliferation, have been strongly linked as contributing factors to age-associated impairment in muscle adaptation. p53 plays an integral role in all these processes, as upregulation of p53 causes apoptosis in senescent cells and prevents mitotic catastrophe in MPCs from old mice. The goal of this study was to determine if a novel pharmaceutical agent (BI01), which functions by upregulating p53 through inhibition of binding to MDM2, the primary p53 regulatory protein, improves muscle regeneration and hypertrophy in old mice. BI01 effectively reduced the number of senescent cells in vitro but had no effect on MPC survival or proliferation at a comparable dose. Following repeated oral gavage with 2 mg/kg of BI01 (OS) or vehicle (OV), old mice (24 months) underwent unilateral BaCl2 injury in the tibialis anterior (TA) muscle, with PBS injections serving as controls. After 7 days, satellite cell number was higher in the TA of OS compared to OV mice, as was the expression of genes involved in ATP production. By 35 days, old mice treated with BI01 displayed reduced senescent cell burden, enhanced regeneration (higher muscle mass and fiber cross-sectional area) and restoration of muscle function relative to OV mice. To examine the impact of 2 mg/kg BI01 on muscle hypertrophy, the plantaris muscle was subjected to 28 days of mechanical overload (MOV) in OS and OV mice. In response to MOV, OS mice had larger plantaris muscles and muscle fibers than OV mice, particularly type 2b + x fibers, associated with reduced senescent cells. Together our data show that BI01 is an effective senolytic agent that may also augment muscle metabolism to enhance muscle regeneration and hypertrophy in old mice.
Collapse
Affiliation(s)
- Georgia L Nolt
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Alexander R Keeble
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Aubrey C Strong
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Taylor R Valentino
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Camille R Brightwell
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Sini Patrizia
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Harald Weinstabl
- Boehringer Ingelheim RCV, Boehringer Ingelheim Pharmaceuticals Inc., Vienna, Austria
| | - Andreas Gollner
- Boehringer Ingelheim RCV, Boehringer Ingelheim Pharmaceuticals Inc., Vienna, Austria
| | - John J McCarthy
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Michael Franti
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Antonio Filareto
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA.
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Cory M Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA.
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, Waco, TX, 76706, USA.
| |
Collapse
|
2
|
Endo Y, Zhu C, Giunta E, Guo C, Koh DJ, Sinha I. The Role of Hypoxia and Hypoxia Signaling in Skeletal Muscle Physiology. Adv Biol (Weinh) 2024; 8:e2200300. [PMID: 37817370 DOI: 10.1002/adbi.202200300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/06/2023] [Indexed: 10/12/2023]
Abstract
Hypoxia and hypoxia signaling play an integral role in regulating skeletal muscle physiology. Environmental hypoxia and tissue hypoxia in muscles cue for their appropriate physiological response and adaptation, and cause an array of cellular and metabolic changes. In addition, muscle stem cells (satellite cells), exist in a hypoxic state, and this intrinsic hypoxic state correlates with their quiescence and stemness. The mechanisms of hypoxia-mediated regulation of satellite cells and myogenesis are yet to be characterized, and their seemingly contradicting effects reported leave their exact roles somewhat perplexing. This review summarizes the recent findings on the effect of hypoxia and hypoxia signaling on the key aspects of muscle physiology, namely, stem cell maintenance and myogenesis with a particular attention given to distinguish the intrinsic versus local hypoxia in an attempt to better understand their respective regulatory roles and how their relationship affects the overall response. This review further describes their mechanistic links and their possible implications on the relevant pathologies and therapeutics.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Christina Zhu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, 79430, USA
| | - Elena Giunta
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Cynthia Guo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Daniel J Koh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Indranil Sinha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Endo Y, Hwang CD, Zhang Y, Olumi S, Koh DJ, Zhu C, Neppl RL, Agarwal S, Sinha I. VEGFA Promotes Skeletal Muscle Regeneration in Aging. Adv Biol (Weinh) 2023; 7:e2200320. [PMID: 36988414 PMCID: PMC10539483 DOI: 10.1002/adbi.202200320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Aging is associated with loss of skeletal muscle regeneration. Differentially regulated vascular endothelial growth factor (VEGF)A with aging may partially underlies this loss of regenerative capacity. To assess the role of VEGFA in muscle regeneration, young (12-14 weeks old) and old C57BL/6 mice (24,25 months old) are subjected to cryoinjury in the tibialis anterior (TA) muscle to induce muscle regeneration. The average cross-sectional area (CSA) of regenerating myofibers is 33% smaller in old as compared to young (p < 0.01) mice, which correlates with a two-fold loss of muscle VEGFA protein levels (p = 0.02). The capillary density in the TA is similar between the two groups. Young VEGFlo mice, with a 50% decrease in systemic VEGFA activity, exhibit a two-fold reduction in the average regenerating fiber CSA following cryoinjury (p < 0.01) in comparison to littermate controls. ML228, a hypoxia signaling activator known to increase VEGFA levels, augments muscle VEGFA levels and increases average CSA of regenerating fibers in both old mice (25% increase, p < 0.01) and VEGFlo (20% increase, p < 0.01) mice, but not in young or littermate controls. These results suggest that VEGFA may be a therapeutic target in age-related muscle loss.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| | - Charles D. Hwang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| | - Yuteng Zhang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| | - Shayan Olumi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| | - Daniel J. Koh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| | - Christina Zhu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| | - Ronald L. Neppl
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02114
| | - Shailesh Agarwal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| | - Indranil Sinha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| |
Collapse
|
4
|
Montano M, Correa-de-Araujo R. Maladaptive Immune Activation in Age-Related Decline of Muscle Function. J Gerontol A Biol Sci Med Sci 2023; 78:19-24. [PMID: 37325961 PMCID: PMC10272988 DOI: 10.1093/gerona/glad036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 06/17/2023] Open
Abstract
Age-related changes in immune competency and inflammation play a role in the decline of physical function. In this review of the conference on Function-Promoting Therapies held in March 2022, we discuss the biology of aging and geroscience with an emphasis on decline in physical function and the role of age-related changes in immune competence and inflammation. More recent studies in skeletal muscle and aging highlighting a crosstalk between skeletal muscle, neuromuscular feedback, and immune cell subsets are also discussed. The value of strategies targeting specific pathways that affect skeletal muscle and more systems-wide approaches that provide benefits in muscle homeostasis with aging are underscored. Goals in clinical trial design and the need for incorporating differences in life history when interpreting results from these intervention strategies are important. Where applicable, references are made to papers presented at the conference. We conclude by underscoring the need to incorporate age-related immune competency and inflammation when interpreting results from interventions that target specific pathways predicted to promote skeletal muscle function and tissue homeostasis.
Collapse
Affiliation(s)
- Monty Montano
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Rosaly Correa-de-Araujo
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Endo Y, Samandari M, Karvar M, Mostafavi A, Quint J, Rinoldi C, Yazdi IK, Swieszkowski W, Mauney J, Agarwal S, Tamayol A, Sinha I. Aerobic exercise and scaffolds with hierarchical porosity synergistically promote functional recovery post volumetric muscle loss. Biomaterials 2023; 296:122058. [PMID: 36841214 PMCID: PMC10085854 DOI: 10.1016/j.biomaterials.2023.122058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Volumetric muscle loss (VML), which refers to a composite skeletal muscle defect, most commonly heals by scarring and minimal muscle regeneration but substantial fibrosis. Current surgical interventions and physical therapy techniques are limited in restoring muscle function following VML. Novel tissue engineering strategies may offer an option to promote functional muscle recovery. The present study evaluates a colloidal scaffold with hierarchical porosity and controlled mechanical properties for the treatment of VML. In addition, as VML results in an acute decrease in insulin-like growth factor 1 (IGF-1), a myogenic factor, the scaffold was designed to slowly release IGF-1 following implantation. The foam-like scaffold is directly crosslinked onto remnant muscle without the need for suturing. In situ 3D printing of IGF-1-releasing porous muscle scaffold onto VML injuries resulted in robust tissue ingrowth, improved muscle repair, and increased muscle strength in a murine VML model. Histological analysis confirmed regeneration of new muscle in the engineered scaffolds. In addition, the scaffolds significantly reduced fibrosis and increased the expression of neuromuscular junctions in the newly regenerated tissue. Exercise training, when combined with the engineered scaffolds, augmented the treatment outcome in a synergistic fashion. These data suggest highly porous scaffolds and exercise therapy, in combination, may be a treatment option following VML.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06269, USA
| | - Mehran Karvar
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Azadeh Mostafavi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06269, USA
| | - Chiara Rinoldi
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Iman K Yazdi
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Joshua Mauney
- Department of Urology and Biomedical Engineering, University of California, Irvine, Irvine, CA, 92868, USA
| | - Shailesh Agarwal
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06269, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Wang X, Bao J, Bi Y, Hu W, Zhang L. Polymorphism, Expression, and Structure Analysis of a Key Gene ARNT in Sheep ( Ovis aries). BIOLOGY 2022; 11:biology11121795. [PMID: 36552304 PMCID: PMC9774921 DOI: 10.3390/biology11121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Growth traits are influential factors that significantly affects the development of the sheep industry. A previous TMT proteomic analysis found that a key protein in the HIF signaling pathway, ARNT, may influence embryonic skeletal muscle growth and development in sheep. The purpose of this study was to better understand the association between the polymorphisms of ARNT and growth traits of sheep, and the potential function of ARNT. Real-time qPCR (qRT-PCR) of ARNT was carried out to compare its expression in different developmental stages of the muscle tissues and primary myoblasts in the Hu, Chinese merino, and Gangba sheep. The genetic variance of ARNT was detected using the Illumina Ovine SNP 50 K and 600 K BeadChip in the Hu and Ujimqin sheep populations, respectively. The CDS sequence of the ARNT gene was cloned in the Hu sheep using PCR technology. Finally, bioinformatic analytical methods were applied to characterize the genes and their hypothetical protein products. The qRT-PCR results showed that the ARNT gene was expressed significantly in the Chinese merino embryo after 85 gestation days (D85) (p < 0.05). Additionally, after the sheep were born, the expression of ARNT was significant at the weaning stage of the Hu sheep (p < 0.01). However, there was no difference in the Gangba sheep.In addition, six SNP loci were screened using 50 K and 600 K BeadChip. We found a significant association between rs413597480 A > G and the Hu sheep weight at weaning and backfat thickness in the 5-month-old sheep (p < 0.05), and four SNP loci (rs162298018 G > C, rs159644025 G > A, rs421351865 G > A, and rs401758103 A > G) were also associated with growth traits in the Ujimqin sheep (p < 0.05). Interestingly, we found that a G > C mutation at 1948 bp in the cloned ARNT CDS sequence of the Hu sheep was the same locus mutation as rs162298018 G > C identified using the 600 K BeadChip, which resulted in a nonconservative missense point mutation, leading to a change from proline to alanine and altering the number of DNA, protein-binding sites, and the α-helix of the ARNT protein. There was a strong linkage disequilibrium between rs162298018 G > C and rs159644025 G > A, and the ARNT protein was conserved among the goat, Hu sheep, and Texel sheep. And, we propose that a putative molecular marker for growth and development in sheep may be the G > C mutation at 1948 bp in the CDS region of the ARNT gene. Our study systematically analyzed the expression, structure, and function of the ARNT gene and its encoded proteins in sheep. This provides a basis for future studies of the regulatory mechanisms of the ARNT gene.
Collapse
Affiliation(s)
- Xinyue Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingjing Bao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yazhen Bi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Qingdao Agriculture University, Qingdao 266109, China
| | - Wenping Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-6281-6002
| |
Collapse
|
7
|
Dungan CM, Murach KA, Zdunek CJ, Tang ZJ, Nolt GL, Brightwell CR, Hettinger Z, Englund D, Liu Z, Fry CS, Filareto A, Franti M, Peterson CA. Deletion of SA β-Gal+ cells using senolytics improves muscle regeneration in old mice. Aging Cell 2022; 21:e13528. [PMID: 34904366 PMCID: PMC8761017 DOI: 10.1111/acel.13528] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/05/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022] Open
Abstract
Systemic deletion of senescent cells leads to robust improvements in cognitive, cardiovascular, and whole-body metabolism, but their role in tissue reparative processes is incompletely understood. We hypothesized that senolytic drugs would enhance regeneration in aged skeletal muscle. Young (3 months) and old (20 months) male C57Bl/6J mice were administered the senolytics dasatinib (5 mg/kg) and quercetin (50 mg/kg) or vehicle bi-weekly for 4 months. Tibialis anterior (TA) was then injected with 1.2% BaCl2 or PBS 7- or 28 days prior to euthanization. Senescence-associated β-Galactosidase positive (SA β-Gal+) cell abundance was low in muscle from both young and old mice and increased similarly 7 days following injury in both age groups, with no effect of D+Q. Most SA β-Gal+ cells were also CD11b+ in young and old mice 7- and 14 days following injury, suggesting they are infiltrating immune cells. By 14 days, SA β-Gal+/CD11b+ cells from old mice expressed senescence genes, whereas those from young mice expressed higher levels of genes characteristic of anti-inflammatory macrophages. SA β-Gal+ cells remained elevated in old compared to young mice 28 days following injury, which were reduced by D+Q only in the old mice. In D+Q-treated old mice, muscle regenerated following injury to a greater extent compared to vehicle-treated old mice, having larger fiber cross-sectional area after 28 days. Conversely, D+Q blunted regeneration in young mice. In vitro experiments suggested D+Q directly improve myogenic progenitor cell proliferation. Enhanced physical function and improved muscle regeneration demonstrate that senolytics have beneficial effects only in old mice.
Collapse
Affiliation(s)
- Cory M. Dungan
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Kevin A. Murach
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Present address:
Department of Health, Human Performance, and Recreation, and Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | | | - Zuo Jian Tang
- Computational BiologyGCBDSBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Georgia L. Nolt
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Camille R. Brightwell
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Athletic Training and Clinical NutritionCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Zachary Hettinger
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Davis A. Englund
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Zheng Liu
- Computational BiologyGCBDSBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Christopher S. Fry
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Athletic Training and Clinical NutritionCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Antonio Filareto
- Regenerative MedicineBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Michael Franti
- Regenerative MedicineBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Charlotte A. Peterson
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
8
|
Endo Y, Zhang Y, Olumi S, Karvar M, Argawal S, Neppl RL, Sinha I. Exercise-induced gene expression changes in skeletal muscle of old mice. Genomics 2021; 113:2965-2976. [PMID: 34214629 DOI: 10.1016/j.ygeno.2021.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
Exercise is believed to be beneficial for skeletal muscle functions across all ages. Regimented exercise is often prescribed as an effective treatment/prophylaxis for age-related loss of muscle mass and function, known as sarcopenia, and plays an important role in the maintenance of mobility and functional independence in the elderly. However, response to exercise declines with aging, resulting in limited gain of muscle strength and endurance. These changes likely reflect age-dependent alterations in transcriptional response underlying the muscular adaptation to exercise. The exact changes in gene expression accompanying exercise, however, are largely unknown, and elucidating them is of a great clinical interest for understanding and optimizing the exercise-based therapies for sarcopenia. In order to characterize the exercise-induced transcriptomic changes in aged muscle, a paired-end RNA sequencing was performed on rRNA-depleted total RNA extracted from the gastrocnemius muscles of 24 months-old mice after 8 weeks of regimented exercise (exercise group) or no formal exercise program (sedentary group). Differential gene expression analysis of aged skeletal muscle revealed upregulations in the group of genes involved in neurotransmission and neuroexcitation, as well as equally notable absence of anabolic gene upregulations in the exercise group. In particular, genes encoding the transporters and receptor components of glutaminergic transmission were significantly upregulated in exercised muscles, as exemplified by Gria 1, Gria 2 and Grin2c encoding glutamate receptor 1, 2 and 2C respectively, Grin1 and Grin2b encoding N-methyl-d-aspartate receptors (NMDARs), Nptx1 responsible for glutaminergic receptor clustering, and Slc1a2 and Slc17a7 regulating synaptic uptake of glutamate. These changes were accompanied by an increase in the post-synaptic density of NMDARs and acetylcholine receptors (AChRs), as well as their innervation at neuromuscular junctions (NMJs). These results suggest that neural responses predominate the adaptive response of aged skeletal muscle to exercise, and indicate a possibility that glutaminergic transmission at NMJs may be present and responsible for synaptic protection and neural remodeling accompanying the exercise-induced functional enhancement in aged skeletal muscle. In addition, the absence of upregulations in the anabolic pathways highlights them as the area of potential pharmacological targeting for optimizing exercise-led sarcopenia therapy.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yuteng Zhang
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shayan Olumi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mehran Karvar
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shailesh Argawal
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ronald L Neppl
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Harvard Stem Cell Institute, Cambridge, MA, United States.
| |
Collapse
|
9
|
Endo Y, Karvar M, Sinha I. Muscle Cryoinjury and Quantification of Regenerating Myofibers in Mice. Bio Protoc 2021; 11:e4036. [PMID: 34250203 DOI: 10.21769/bioprotoc.4036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 11/02/2022] Open
Abstract
Cryoinjury, or injury due to freezing, is a method of creating reproducible, local injuries in skeletal muscle. This method allows studying the regenerative response following muscle injuries in vivo, thus enabling the evaluation of local and systemic factors that influence the processes of myofiber regeneration. Cryoinjuries are applicable to the study of various modalities of muscle injury, particularly non-traumatic and traumatic injuries, without a loss of substantial volume of muscle mass. Cryoinjury requires only simple instruments and has the advantage over other methods that the extent of the lesion can be easily adjusted and standardized according to the duration of contact with the freezing instrument. The regenerative response can be evaluated histologically by the average maturity of regenerating myofibers as indicated by the cross-sectional areas of myofibers with centrally located nuclei. Accordingly, cryoinjury is regarded as one of the most reliable and easily accessible methods for simulating muscle injuries in studies of muscle regeneration.
Collapse
Affiliation(s)
- Yori Endo
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Mehran Karvar
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Indranil Sinha
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.,Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
10
|
Endo Y, Baldino K, Li B, Zhang Y, Sakthivel D, MacArthur M, Panayi AC, Kip P, Spencer DJ, Jasuja R, Bagchi D, Bhasin S, Nuutila K, Neppl RL, Wagers AJ, Sinha I. Loss of ARNT in skeletal muscle limits muscle regeneration in aging. FASEB J 2020; 34:16086-16104. [PMID: 33064329 PMCID: PMC7756517 DOI: 10.1096/fj.202000761rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
The ability of skeletal muscle to regenerate declines significantly with aging. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT), a critical component of the hypoxia signaling pathway, was less abundant in skeletal muscle of old (23-25 months old) mice. This loss of ARNT was associated with decreased levels of Notch1 intracellular domain (N1ICD) and impaired regenerative response to injury in comparison to young (2-3 months old) mice. Knockdown of ARNT in a primary muscle cell line impaired differentiation in vitro. Skeletal muscle-specific ARNT deletion in young mice resulted in decreased levels of whole muscle N1ICD and limited muscle regeneration. Administration of a systemic hypoxia pathway activator (ML228), which simulates the actions of ARNT, rescued skeletal muscle regeneration in both old and ARNT-deleted mice. These results suggest that the loss of ARNT in skeletal muscle is partially responsible for diminished myogenic potential in aging and activation of hypoxia signaling holds promise for rescuing regenerative activity in old muscle.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Kodi Baldino
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Bin Li
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
- Department of Plastic and Aesthetic SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuteng Zhang
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
- Department of Plastic and Aesthetic SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | | | - Michael MacArthur
- Department of Genetics and Complex DiseasesHarvard School of Public HealthBostonMAUSA
- Division of Vascular and Endovascular SurgeryBrigham and Women's HospitalBostonMAUSA
| | - Adriana C. Panayi
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Peter Kip
- Division of Vascular and Endovascular SurgeryBrigham and Women's HospitalBostonMAUSA
| | | | - Ravi Jasuja
- Division of EndocrinologyBrigham and Women's HospitalBostonMAUSA
| | - Debalina Bagchi
- Department of Orthopedic SurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Shalender Bhasin
- Division of EndocrinologyBrigham and Women's HospitalBostonMAUSA
| | - Kristo Nuutila
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Ronald L. Neppl
- Department of Orthopedic SurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Amy J. Wagers
- Joslin Diabetes CenterBostonMAUSA
- Harvard Department of Stem Cell and Regenerative BiologyHarvard Stem Cell InstituteCambridgeMAUSA
- Paul F. Glenn Center for the Biology of AgingHarvard Medical SchoolBostonMAUSA
| | - Indranil Sinha
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
- Harvard Department of Stem Cell and Regenerative BiologyHarvard Stem Cell InstituteCambridgeMAUSA
| |
Collapse
|