1
|
Ray S, McCall JL, Tian JB, Jeon J, Douglas A, Tyler K, Liu S, Berry K, Nicewarner B, Hall C, Groschner K, Bacsa B, Geldenhuys W, Zhu MX, Blair HC, Barnett JB, Soboloff J. Targeting TRPC channels for control of arthritis-induced bone erosion. SCIENCE ADVANCES 2025; 11:eabm9843. [PMID: 39813349 PMCID: PMC11734723 DOI: 10.1126/sciadv.abm9843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
Arthritis leads to bone erosion due to an imbalance between osteoclast and osteoblast function. Our prior investigations revealed that the Ca2+-selective ion channel, Orai1, is critical for osteoclast maturation. Here, we show that the small-molecule ELP-004 preferentially inhibits transient receptor potential canonical (TRPC) channels. While ELP-004 minimally affected physiological RANKL-induced osteoclast maturation in murine bone marrow- and spleen-derived myeloid cells (BMSMCs) and human PBMC-derived cells, it potently interfered with osteoclast maturation driven by TNFα or LTB4. The contribution of TRPC channels to osteoclastogenesis was examined using BMSMCs derived from TRPC4-/- or TRPC(1-7)-/- mice, again revealing preferential interference with osteoclastogenesis driven by proinflammatory cytokines. ELP-004 also reduced bone erosion in a mouse model of rheumatoid arthritis. These investigations reveal TRPC channels as critical mediators of inflammatory bone erosion and provide insight into the major target of ELP-004, a drug currently in preclinical testing as a therapeutic for inflammatory arthritis.
Collapse
Affiliation(s)
- Suravi Ray
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jamie L. McCall
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- ExesaLibero Pharma, Morgantown, WV 26505, USA
| | - Jin Bin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Jaepyo Jeon
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Aidan Douglas
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kendall Tyler
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Siyao Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Kendyl Berry
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- ExesaLibero Pharma, Morgantown, WV 26505, USA
| | | | - Casey Hall
- ExesaLibero Pharma, Morgantown, WV 26505, USA
| | - Klaus Groschner
- Medical University of Graz, Division of Medical Physics and Biophysics, Neue Stiftingtalstrasse 6/H03, 8010 Graz, Austria
| | - Bernadett Bacsa
- Medical University of Graz, Division of Medical Physics and Biophysics, Neue Stiftingtalstrasse 6/H03, 8010 Graz, Austria
| | - Werner Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Harry C. Blair
- Research Service, VA Medical Centre, Departments of Pathology and of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - John B. Barnett
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- ExesaLibero Pharma, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - Jonathan Soboloff
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
2
|
Bhuvaneshwari S, Venkataraman K, Sankaranarayanan K. Exploring potential ion channel targets for rheumatoid arthritis: combination of network analysis and gene expression analysis. Biotechnol Appl Biochem 2024; 71:1405-1427. [PMID: 39049164 DOI: 10.1002/bab.2638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/29/2024] [Indexed: 07/27/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation of the synovial membrane that leads to the destruction of cartilage and bone. Currently, pharmacological targeting of ion channels is being increasingly recognized as an attractive and feasible strategy for the treatment of RA. The present work employs a network analysis approach to predict the most promising ion channel target for potential RA-treating drugs. A protein-protein interaction map was generated for 343 genes associated with inflammation in RA and ion channel genes using Search Tool for the Retrieval of Interacting Genes and visualized using Cytoscape. Based on the betweenness centrality and traffic values as key topological parameters, 17 hub nodes were identified, including FOS (9800.85), tumor necrosis factor (3654.60), TGFB1 (3305.75), and VEGFA (3052.88). The backbone network constructed with these 17 hub genes was intensely analyzed to identify the most promising ion channel target using network analyzer. Calcium permeating ion channels, especially store-operated calcium entry channels, and their associated regulatory proteins were found to highly interact with RA inflammatory hub genes. This significant ion channel target for RA identified by theoretical and statistical studies was further validated by a pilot case-control gene expression study. Experimental verification of the above findings in 75 RA cases and 25 controls showed increased ORAI1 expression. Thus, with a combination of network analysis approach and gene expression studies, we have explored potential targets for RA treatment.
Collapse
Affiliation(s)
- Sampath Bhuvaneshwari
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, India
| | | | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, India
| |
Collapse
|
3
|
McCall JL, Geldenhuys WJ, Robinson LJ, Witt MR, Gannett PM, Söderberg BCG, Blair HC, Soboloff J, Barnett JB. Preclinical evaluation of ELP-004 in mice. Pharmacol Res Perspect 2024; 12:e1230. [PMID: 38940379 PMCID: PMC11212004 DOI: 10.1002/prp2.1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 06/29/2024] Open
Abstract
This study provides a detailed understanding of the preclinical pharmacokinetics and metabolism of ELP-004, an osteoclast inhibitor in development for the treatment of bone erosion. Current treatments for arthritis, including biological disease-modifying antirheumatic drugs, are not well-tolerated in a substantial subset of arthritis patients and are expensive; therefore, new treatments are needed. Pharmacokinetic parameters of ELP-004 were tested with intravenous, oral, and subcutaneous administration and found to be rapidly absorbed and distributed. We found that ELP-004 was non-mutagenic, did not induce chromosome aberrations, non-cardiotoxic, and had minimal off-target effects. Using in vitro hepatic systems, we found that ELP-004 is primarily metabolized by CYP1A2 and CYP2B6 and predicted metabolic pathways were identified. Finally, we show that ELP-004 inhibits osteoclast differentiation without suppressing overall T-cell function. These preclinical data will inform future development of an oral compound as well as in vivo efficacy studies in mice.
Collapse
Affiliation(s)
- Jamie L. McCall
- Department of Microbiology, Immunology, and Cell BiologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- ExesaLibero Pharma, Inc.MorgantownWest VirginiaUSA
| | - Werner J. Geldenhuys
- Department of Pharmaceutical SciencesWest Virginia University School of PharmacyMorgantownWest VirginiaUSA
| | - Lisa J. Robinson
- Department of PathologyWest Virginia School of MedicineMorgantownWest VirginiaUSA
- Present address:
Department of Pathology, Microbiology, and ImmunologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Michelle R. Witt
- Department of Microbiology, Immunology, and Cell BiologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- Department of PathologyWest Virginia School of MedicineMorgantownWest VirginiaUSA
| | - Peter M. Gannett
- College of PharmacyNova Southeastern UniversityFt. LauderdaleFloridaUSA
| | - Björn C. G. Söderberg
- C. Eugene Bennett Department of ChemistryWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Harry C. Blair
- Departments of Pathology and Cell BiologyThe Pittsburgh VA Medical Center and the University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Jonathan Soboloff
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular BiologyLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - John B. Barnett
- Department of Microbiology, Immunology, and Cell BiologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- ExesaLibero Pharma, Inc.MorgantownWest VirginiaUSA
| |
Collapse
|
4
|
Robinson LJ, Soboloff J, Tourkova IL, Larrouture QC, Onwuka KM, Papachristou DJ, Gross S, Hooper R, Samakai E, Worley PF, Liu P, Tuckermann J, Witt MR, Blair HC. The calcium channel Orai1 is required for osteoblast development: Studies in a chimeric mouse with variable in vivo Runx-cre deletion of Orai-1. PLoS One 2023; 18:e0264596. [PMID: 37167218 PMCID: PMC10174572 DOI: 10.1371/journal.pone.0264596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/27/2023] [Indexed: 05/13/2023] Open
Abstract
The calcium-selective ion channel Orai1 has a complex role in bone homeostasis, with defects in both bone production and resorption detected in Orai1 germline knock-out mice. To determine whether Orai1 has a direct, cell-intrinsic role in osteoblast differentiation and function, we bred Orai1 flox/flox (Orai1fl/fl) mice with Runx2-cre mice to eliminate its expression in osteoprogenitor cells. Interestingly, Orai1 was expressed in a mosaic pattern in Orai1fl/fl-Runx2-cre bone. Specifically, antibody labeling for Orai1 in vertebral sections was uniform in wild type animals, but patchy regions in Orai1fl/fl-Runx2-cre bone revealed Orai1 loss while in other areas expression persisted. Nevertheless, by micro-CT, bones from Orai1fl/fl-Runx2-cre mice showed reduced bone mass overall, with impaired bone formation identified by dynamic histomorphometry. Cortical surfaces of Orai1fl/fl-Runx2-cre vertebrae however exhibited patchy defects. In cell culture, Orai1-negative osteoblasts showed profound reductions in store-operated Ca2+ entry, exhibited greatly decreased alkaline phosphatase activity, and had markedly impaired substrate mineralization. We conclude that defective bone formation observed in the absence of Orai1 reflects an intrinsic role for Orai1 in differentiating osteoblasts.
Collapse
Affiliation(s)
- Lisa J. Robinson
- Departments of Pathology, Anatomy and Laboratory Medicine, and of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
| | - Jonathan Soboloff
- Fels Cancer Institute for Personalized Medicine, Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Irina L. Tourkova
- Departments of Pathology and of Cell Biology, The Pittsburgh VA Medical Center and the University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Quitterie C. Larrouture
- Departments of Pathology and of Cell Biology, The Pittsburgh VA Medical Center and the University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kelechi M. Onwuka
- Departments of Pathology and of Cell Biology, The Pittsburgh VA Medical Center and the University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Dionysios J. Papachristou
- Departments of Pathology and of Cell Biology, The Pittsburgh VA Medical Center and the University of Pittsburgh, Pittsburgh, PA, United States of America
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, University Patras Medical School, Patras, Greece
| | - Scott Gross
- Fels Cancer Institute for Personalized Medicine, Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Robert Hooper
- Fels Cancer Institute for Personalized Medicine, Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Elsie Samakai
- Fels Cancer Institute for Personalized Medicine, Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Paul F. Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Peng Liu
- Institute of Comparative Molecular Endocrinology, Helmholtzstraße, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Helmholtzstraße, Ulm, Germany
| | - Michelle R. Witt
- Departments of Pathology, Anatomy and Laboratory Medicine, and of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
| | - Harry C. Blair
- Departments of Pathology and of Cell Biology, The Pittsburgh VA Medical Center and the University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
5
|
Calcium-Permeable Channels Cooperation for Rheumatoid Arthritis: Therapeutic Opportunities. Biomolecules 2022; 12:biom12101383. [PMID: 36291594 PMCID: PMC9599458 DOI: 10.3390/biom12101383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis is a common autoimmune disease that results from the deposition of antibodies–autoantigens in the joints, leading to long-lasting inflammation. The main features of RA include cartilage damage, synovial invasion and flare-ups of intra-articular inflammation, and these pathological processes significantly reduce patients’ quality of life. To date, there is still no drug target that can act in rheumatoid arthritis. Therefore, the search for novel drug targets has become urgent. Due to their unique physicochemical properties, calcium ions play an important role in all cellular activities and the body has evolved a rigorous calcium signaling system. Calcium-permeable channels, as the main operators of calcium signaling, are widely distributed in cell membranes, endoplasmic reticulum membranes and mitochondrial membranes, and mediate the efflux and entry of Ca2+. Over the last century, more and more calcium-permeable channels have been identified in human cells, and the role of this large family of calcium-permeable channels in rheumatoid arthritis has gradually become clear. In this review, we briefly introduce the major calcium-permeable channels involved in the pathogenesis of RA (e.g., acid-sensitive ion channel (ASIC), transient receptor potential (TRP) channel and P2X receptor) and explain the specific roles and mechanisms of these calcium-permeable channels in the pathogenesis of RA, providing more comprehensive ideas and targets for the treatment of RA.
Collapse
|