1
|
Kwon CH, Safaie ES, Torres JA, Jang YD. Effects of Pigs' Weaning Weight on Growth Performance and Blood Immunological, Antioxidant, and Gut Permeability Parameters in Early Nursery Period. Animals (Basel) 2025; 15:1119. [PMID: 40281954 PMCID: PMC12024217 DOI: 10.3390/ani15081119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
This study was conducted to investigate the effect of pigs' weaning weight (WW) on their growth performance and blood immunological, antioxidant, and gut permeability parameters in the early nursery period. At weaning, a total of 48 pigs, weaned at 20.7 ± 0.74 d of age, were allotted to two WW categories-HWW, with a WW over 5.5 kg (average 6.79 ± 0.53 kg), and LWW, with a WW of less than 5.5 kg (average 4.43 ± 0.56 kg)-for a 14 d postweaning period. The WW did not affect the average daily gain (ADG) in d 0-7 postweaning or the plasma malondialdehyde levels over the entire period. HWW pigs had a higher body weight and ADG than LWW pigs (p < 0.05) in the overall period, with greater plasma immunoglobulin G (p < 0.05) and A (p = 0.06, tendency) levels at d 7 postweaning and superoxide dismutase activity at d 14 postweaning (p = 0.05, tendency), with positive correlations with the WW (p < 0.05). HWW pigs had lower plasma diamine oxidase (p < 0.05) and d-lactate (p = 0.06, tendency) levels at d 14 postweaning, with a negative correlation with the WW (p < 0.05). In conclusion, although there was no effect of the WW on growth rate in the first week postweaning and oxidative stress in the early nursery period, HWW pigs exhibited greater growth performance, immunoglobulin levels, and antioxidant capacity but lower gut permeability than LWW pigs in the early nursery period.
Collapse
Affiliation(s)
| | | | | | - Young Dal Jang
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Gerhards K, Egerer C, Becker S, Willems H, Engel P, Koenig S, Reiner G. Genome-Wide Association Study Reveals Single Nucleotide Polymorphisms Associated with Tail Length and Tail Kinks in Piglets. Vet Sci 2025; 12:198. [PMID: 40266940 PMCID: PMC11946323 DOI: 10.3390/vetsci12030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 04/25/2025] Open
Abstract
Tail docking is still used in pigs to reduce the prevalence of tail biting, although it is purely symptomatic and contrary to animal welfare. Genetic selection for shorter tails might, however, help to avoid tail docking and has therefore been proposed. A genetic basis for tail length is known for many species. Variability in tail length, including moderate heritability, has also been demonstrated in pigs. The aim of the present study was to identify genetic markers for tail length and to define candidate genes. To this end, 140 piglets were phenotyped and genotyped at 3 days of age and a genome-wide association study was performed. Seven SNPs were mapped on chromosomes 1, 2, 6, 11, and 15. Two linked SNPs on chromosome 2 resulted in a functional amino acid exchange. The genotypes at the SNPs were only associated with small differences in relative tail length of up to 16.5% (short genotype versus long genotype at SSC15), but at the same time with the occurrence of malformations in the form of tail kinks. The small effect size and the association between tail length and tail kinks, together with the generally pure symptomatic effect on tail biting, argue against the applicability of selection for shorter tails in pigs.
Collapse
Affiliation(s)
- Katharina Gerhards
- Clinic for Swine, Justus Liebig University Giessen, Frankfurter Strasse 112, 35392 Giessen, Germany; (K.G.); (C.E.); (S.B.); (H.W.)
| | - Christiane Egerer
- Clinic for Swine, Justus Liebig University Giessen, Frankfurter Strasse 112, 35392 Giessen, Germany; (K.G.); (C.E.); (S.B.); (H.W.)
| | - Sabrina Becker
- Clinic for Swine, Justus Liebig University Giessen, Frankfurter Strasse 112, 35392 Giessen, Germany; (K.G.); (C.E.); (S.B.); (H.W.)
| | - Hermann Willems
- Clinic for Swine, Justus Liebig University Giessen, Frankfurter Strasse 112, 35392 Giessen, Germany; (K.G.); (C.E.); (S.B.); (H.W.)
| | - Petra Engel
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Giessen, 35390 Giessen, Germany; (P.E.); (S.K.)
| | - Sven Koenig
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Giessen, 35390 Giessen, Germany; (P.E.); (S.K.)
| | - Gerald Reiner
- Clinic for Swine, Justus Liebig University Giessen, Frankfurter Strasse 112, 35392 Giessen, Germany; (K.G.); (C.E.); (S.B.); (H.W.)
| |
Collapse
|
3
|
Araujo AC, Johnson JS, Graham JR, Howard J, Huang Y, Oliveira HR, Brito LF. Transgenerational epigenetic heritability for growth, body composition, and reproductive traits in Landrace pigs. Front Genet 2025; 15:1526473. [PMID: 39917178 PMCID: PMC11799271 DOI: 10.3389/fgene.2024.1526473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/24/2024] [Indexed: 02/09/2025] Open
Abstract
Epigenetics is an important source of variation in complex traits that is not due to changes in DNA sequences, and is dependent on the environment the individuals are exposed to. Therefore, we aimed to estimate transgenerational epigenetic heritability, percentage of resetting epigenetic marks, genetic parameters, and predicting breeding values using genetic and epigenetic models for growth, body composition, and reproductive traits in Landrace pigs using routinely recorded datasets. Birth and weaning weight, backfat thickness, total number of piglets born, and number of piglets born alive (BW, WW, BF, TNB, and NBA, respectively) were investigated. Models including epigenetic effects had a similar or better fit than solely genetic models. Including genomic information in epigenetic models resulted in large changes in the variance component estimates. Transgenerational epigenetic heritability estimates ranged between 0.042 (NBA) to 0.336 (BF). The reset coefficient estimates for epigenetic marks were between 80% and 90%. Heritability estimates for the direct additive and maternal genetic effects ranged between 0.040 (BW) to 0.502 (BF) and 0.034 (BF) to 0.134 (BW), respectively. Repeatability of the reproductive traits ranged between 0.098 (NBA) to 0.148 (TNB). Prediction accuracies, bias, and dispersion of breeding values ranged between 0.199 (BW) to 0.443 (BF), -0.080 (WW) to 0.034 (NBA), and -0.134 (WW) to 0.131 (TNB), respectively, with no substantial differences between genetic and epigenetic models. Transgenerational epigenetic heritability estimates are moderate for growth and body composition and low for reproductive traits in North American Landrace pigs. Fitting epigenetic effects in genetic models did not impact the prediction of breeding values.
Collapse
Affiliation(s)
- Andre C. Araujo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jay S. Johnson
- Livestock Behavior Research Unity, USDA-ARS, West Lafayette, IN, United States
| | - Jason R. Graham
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jeremy Howard
- Smithfield Premium Genetics, Rose Hill, NC, United States
| | - Yijian Huang
- Smithfield Premium Genetics, Rose Hill, NC, United States
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
Khazaei-Koohpar H, Gholizadeh M, Hafezian SH, Esmaeili-Fard SM. Weighted single-step genome-wide association study for direct and maternal genetic effects associated with birth and weaning weights in sheep. Sci Rep 2024; 14:13120. [PMID: 38849438 PMCID: PMC11161479 DOI: 10.1038/s41598-024-63974-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Body weight is an important economic trait for sheep meat production, and its genetic improvement is considered one of the main goals in the sheep breeding program. Identifying genomic regions that are associated with growth-related traits accelerates the process of animal breeding through marker-assisted selection, which leads to increased response to selection. In this study, we conducted a weighted single-step genome-wide association study (WssGWAS) to identify potential candidate genes for direct and maternal genetic effects associated with birth weight (BW) and weaning weight (WW) in Baluchi sheep. The data used in this research included 13,408 birth and 13,170 weaning records collected at Abbas-Abad Baluchi Sheep Breeding Station, Mashhad-Iran. Genotypic data of 94 lambs genotyped by Illumina 50K SNP BeadChip for 54,241 markers were used. The proportion of variance explained by genomic windows was calculated by summing the variance of SNPs within 1 megabase (Mb). The top 10 window genomic regions explaining the highest percentages of additive and maternal genetic variances were selected as candidate window genomic regions associated with body weights. Our findings showed that for BW, the top-ranked genomic regions (1 Mb windows) explained 4.30 and 4.92% of the direct additive and maternal genetic variances, respectively. The direct additive genetic variance explained by the genomic window regions varied from 0.31 on chromosome 1 to 0.59 on chromosome 8. The highest (0.84%) and lowest (0.32%) maternal genetic variances were explained by genomic windows on chromosome 10 and 17, respectively. For WW, the top 10 genomic regions explained 6.38 and 5.76% of the direct additive and maternal genetic variances, respectively. The highest and lowest contribution of direct additive genetic variances were 1.37% and 0.42%, respectively, both explained by genomic regions on chromosome 2. For maternal effects on WW, the highest (1.38%) and lowest (0.41%) genetic variances were explained by genomic windows on chromosome 2. Further investigation of these regions identified several possible candidate genes associated with body weight. Gene ontology analysis using the DAVID database identified several functional terms, such as translation repressor activity, nucleic acid binding, dehydroascorbic acid transporter activity, growth factor activity and SH2 domain binding.
Collapse
Affiliation(s)
- Hava Khazaei-Koohpar
- Department of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Mohsen Gholizadeh
- Department of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.
| | - Seyed Hasan Hafezian
- Department of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | | |
Collapse
|
5
|
Zhang H, Pertiwi H, Hou Y, Majdeddin M, Michiels J. Protective effects of Lactobacillus on heat stress-induced intestinal injury in finisher broilers by regulating gut microbiota and stimulating epithelial development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170410. [PMID: 38280596 DOI: 10.1016/j.scitotenv.2024.170410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Heat stress (HS) is a critical challenge in broilers due to the high metabolic rate and lack of sweat glands. Results from this study show that implementing a cyclic chronic HS (34 °C for 7 h/d) to finisher broilers decreased the diversity of cecal microbiota and impaired intestinal barrier, resulting in gut leak and decreased body weight (both P < 0.05). These alterations might be related to inflammatory outbursts and the retarded proliferation of intestinal epithelial cells (IECs) according to the transcriptome analysis. Considering the potential beneficial properties of Lactobacillus on intestinal development and function, the protective effects of Lactobacillus rhamnosus (L. rhamnosus) on the intestine were investigated under HS conditions in this study. Orally supplemented L. rhamnosus improved the composition of cecal microbiota and upregulated the transcription of tight junction proteins in both duodenum and jejunum, with a consequent suppression in intestinal gene expressions of pro-inflammatory cytokines and facilitation in digestive capability. Meanwhile, the jejunal villus height of the birds that received L. rhamnosus was significantly higher compared with those treated with the broth (P < 0.05). The expression abundances of genes related to IECs proliferation and differentiation were increased by L. rhamnosus, along with upregulated mRNA levels of Wnt3a and β-catenin in jejunum. In addition, L. rhamnosus attenuated enterocyte apoptosis as indicated by decreased caspase-3 and caspase-9 gene expressions. The results indicated that oral administration with L. rhamnosus mitigated HS-induced dysfunction by promoting intestinal development and epithelial maturation in broilers and that the effects of L. rhamnosus might be dependent of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Huaiyong Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China; Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium.
| | - Herinda Pertiwi
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Yuhuang Hou
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Maryam Majdeddin
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
6
|
Lin Y, Wu J, Zhuo Y, Feng B, Fang Z, Xu S, Li J, Zhao H, Wu D, Hua L, Che L. Effects of maternal methyl donor intake during pregnancy on ileum methylation and function in an intrauterine growth restriction pig model. J Anim Sci Biotechnol 2024; 15:19. [PMID: 38310243 PMCID: PMC10838427 DOI: 10.1186/s40104-023-00970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/04/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Intrauterine growth retardation (IUGR) affects intestinal growth, morphology, and function, which leads to poor growth performance and high mortality. The present study explored whether maternal dietary methyl donor (MET) supplementation alleviates IUGR and enhances offspring's growth performance by improving intestinal growth, function, and DNA methylation of the ileum in a porcine IUGR model. METHODS Forty multiparous sows were allocated to the control or MET diet groups from mating until delivery. After farrowing, 8 pairs of IUGR and normal birth weight piglets from 8 litters were selected for sampling before suckling colostrum. RESULTS The results showed that maternal MET supplementation tended to decrease the IUGR incidence and increased the average weaning weight of piglets. Moreover, maternal MET supplementation significantly reduced the plasma concentrations of isoleucine, cysteine, urea, and total amino acids in sows and newborn piglets. It also increased lactase and sucrase activity in the jejunum of newborn piglets. MET addition resulted in lower ileal methionine synthase activity and increased betaine homocysteine S-methyltransferase activity in the ileum of newborn piglets. DNA methylation analysis of the ileum showed that MET supplementation increased the methylation level of DNA CpG sites in the ileum of newborn piglets. Down-regulated differentially methylated genes were enriched in folic acid binding, insulin receptor signaling pathway, and endothelial cell proliferation. In contrast, up-regulated methylated genes were enriched in growth hormone receptor signaling pathway and nitric oxide biosynthetic process. CONCLUSIONS Maternal MET supplementation can reduce the incidence of IUGR and increase the weaning litter weight of piglets, which may be associated with better intestinal function and methylation status.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiangnan Wu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lun Hua
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
7
|
Van Ginneken C, Ayuso M, Van Bockstal L, Van Cruchten S. Preweaning performance in intrauterine growth-restricted piglets: Characteristics and interventions. Mol Reprod Dev 2023; 90:697-707. [PMID: 35652465 DOI: 10.1002/mrd.23614] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/06/2022]
Abstract
Intrauterine growth restriction (IUGR) is frequently observed in pig production, especially when using highly prolific sows. IUGR piglets are born with low body weight and shape indicative of differences in organ growth. Insufficient uteroplacental nutrient transfer to the fetuses is the leading cause of growth restriction in the pig. Supplementing the sow's gestation diet with arginine and/or glutamine improves placenta growth and functionality and consequently is able to reduce IUGR incidence. IUGR piglets are at higher risk of dying preweaning and face higher morbidity than their normal-weight littermates. A high level of surveillance during farrowing and individual nutrient supplementation can reduce the mortality rates. Still, these do not reverse the long-term consequences of IUGR, which are induced by persistent structural deficits in different organs. Dietary interventions peri-weaning can optimize performance but these are less effective in combating the metabolic changes that occurred in IUGR, which affect reproductive performance later in life. IUGR piglets share many similarities with IUGR infants, such as a poorer outcome of males. Using the IUGR piglet as an animal model to further explore the structural and molecular basis of the long-term consequences of IUGR and the potential sex bias could aid in fully understanding the impact of prenatal undernutrition and finding solutions for both species and sexes.
Collapse
Affiliation(s)
- Chris Van Ginneken
- Comparative Perinatal Development (CoPeD), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Miriam Ayuso
- Comparative Perinatal Development (CoPeD), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Lieselotte Van Bockstal
- Comparative Perinatal Development (CoPeD), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Steven Van Cruchten
- Comparative Perinatal Development (CoPeD), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Arnaud EA, Gardiner GE, Lawlor PG. Selected Nutrition and Management Strategies in Suckling Pigs to Improve Post-Weaning Outcomes. Animals (Basel) 2023; 13:1998. [PMID: 37370508 PMCID: PMC10294848 DOI: 10.3390/ani13121998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Weaning is a critical period in a pig's life. Piglets are confronted with abrupt changes to their physical and social environment, as well as management and nutritional changes. Weaning has always been associated with a growth check and is frequently accompanied by post-weaning diarrhoea in piglets. However, rapid increases in litter size in the last decade have increased within-litter piglet weight variation, with piglets now generally lighter at weaning, making the challenges associated with weaning even greater. Many interventions can be employed during the suckling period to ease the weaning transition for piglets. Pre-weaning strategies such as supervised farrowing (assistance with suckling and oxytocin provision), the provision of pain relief to sows around farrowing, split-suckling, early oral supplementation with glucose, bovine colostrum, faecal microbiota transplantation, feed additives and solid and liquid creep feeding (milk and liquid feed) have all been investigated. The objective of these strategies is to stimulate earlier maturation of the digestive tract, improve immunity, reduce latency to the first feed post-weaning and increase early post-weaning feed intake and growth. This review focuses in particular on: (1) pain relief provision to sows around farrowing, (2)split-suckling of piglets, (3) pre-weaning provision of supplementary milk and/or liquid feed, (4) other strategies to stimulate earlier enzyme production (e.g., enzyme supplementation), (5) other nutritional strategies to promote improved gut structure and function (e.g., L-glutamine supplementation), and (6) other strategies to modulate gut microbiota (e.g., probiotics and prebiotics). Correctly implementing these strategies can, not only increase post-weaning growth and reduce mortality, but also maximise lifetime growth in pigs.
Collapse
Affiliation(s)
- Elisa A. Arnaud
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland;
- Eco-Innovation Research Centre, Department of Science, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland;
| | - Gillian E. Gardiner
- Eco-Innovation Research Centre, Department of Science, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland;
| | - Peadar G. Lawlor
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland;
| |
Collapse
|
9
|
Mielke F, Van Ginneken C, Aerts P. A workflow for automatic, high precision livestock diagnostic screening of locomotor kinematics. Front Vet Sci 2023; 10:1111140. [PMID: 36960143 PMCID: PMC10028250 DOI: 10.3389/fvets.2023.1111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
Locomotor kinematics have been challenging inputs for automated diagnostic screening of livestock. Locomotion is a highly variable behavior, and influenced by subject characteristics (e.g., body mass, size, age, disease). We assemble a set of methods from different scientific disciplines, composing an automatic, high through-put workflow which can disentangle behavioral complexity and generate precise individual indicators of non-normal behavior for application in diagnostics and research. For this study, piglets (Sus domesticus) were filmed from lateral perspective during their first 10 h of life, an age at which maturation is quick and body mass and size have major consequences for survival. We then apply deep learning methods for point digitization, calculate joint angle profiles, and apply information-preserving transformations to retrieve a multivariate kinematic data set. We train probabilistic models to infer subject characteristics from kinematics. Model accuracy was validated for strides from piglets of normal birth weight (i.e., the category it was trained on), but the models infer the body mass and size of low birth weight (LBW) piglets (which were left out of training, out-of-sample inference) to be "normal." The age of some (but not all) low birth weight individuals was underestimated, indicating developmental delay. Such individuals could be identified automatically, inspected, and treated accordingly. This workflow has potential for automatic, precise screening in livestock management.
Collapse
Affiliation(s)
- Falk Mielke
- Functional Morphology, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Aerts
- Functional Morphology, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Rodrigues LA, Panisson JC, Kpogo LA, González-Vega JC, Htoo JK, Van Kessel AG, Columbus DA. Functional amino acid supplementation postweaning mitigates the response of normal birth weight more than for low birth weight pigs to a subsequent Salmonella challenge. Animal 2022; 16:100566. [PMID: 35714386 DOI: 10.1016/j.animal.2022.100566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022] Open
Abstract
Previous work has shown that dietary supplementation with key functional amino acids (FAA) improves growth performance and immune status of disease-challenged normal birth weight (NBW) pigs. It is not known whether FAA supplementation attenuates the effects of a subsequent disease challenge or whether this response is similar in low birth weight (LBW) pigs. The objective was to determine the effects of birth weight and FAA supplementation during the postweaning period in Salmonella-challenged pigs. Thirty-two LBW (1.08 ± 0.11 kg) and NBW (1.58 ± 0.11 kg) pigs were assigned to a nursery feeding program at weaning (25 d) for 31 days in a 2 × 2 factorial arrangement. Factors were birth weight category (LBW vs. NBW) and basal (FAA-) or supplemented FAA profile (FAA+; Thr, Met, and Trp at 120% of requirements). At d 31, pigs were placed onto a common grower diet and, after a 7-d adaptation period, were inoculated with Salmonella Typhimurium (ST; 2.2 × 109 colony-forming units/mL) and monitored for 7-d postinoculation. Growth performance, rectal temperature, fecal score, indicators of gut health, ST shedding score in feces, intestinal ST colonization and translocation, and blood parameters of acute-phase response and antioxidant balance were measured pre- and postinoculation. Inoculation with ST increased temperature and fecal score, and the overall rectal temperature was higher in LBW compared to NBW pigs (P < 0.05). Postinoculation (d 7), reduced:oxidized glutathione was increased in NBW compared to LBW pigs (P < 0.05). Salmonella shedding and translocation to spleen were lower in NBW-FAA+ compared to NBW-FAA- pigs (P < 0.05). Postinoculation average daily gain was higher in NBW-FAA+ (P < 0.05) compared to the other groups. Postinoculation haptoglobin, superoxide dismutase, and colonic myeloperoxidase were increased in LBW-FAA- pigs (P < 0.05). Ileal alkaline phosphatase was decreased in LBW compared to NBW (P < 0.05). Overall, FAA supplementation represents a potential strategy to mitigate the effect of enteric disease challenge in NBW, but not LBW pigs.
Collapse
Affiliation(s)
- L A Rodrigues
- Prairie Swine Centre, Inc., Box 21057, Saskatoon S7H 5N9, SK, Canada; Department of Animal and Poultry Science, College of Agriculture and Bioresources - University of Saskatchewan, Saskatoon S7N 5A8, SK, Canada
| | - J C Panisson
- Prairie Swine Centre, Inc., Box 21057, Saskatoon S7H 5N9, SK, Canada; Department of Animal and Poultry Science, College of Agriculture and Bioresources - University of Saskatchewan, Saskatoon S7N 5A8, SK, Canada
| | - L A Kpogo
- Department of Animal and Poultry Science, College of Agriculture and Bioresources - University of Saskatchewan, Saskatoon S7N 5A8, SK, Canada; Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine - University of Saskatchewan, Saskatoon S7N 5B4, SK, Canada
| | | | - J K Htoo
- Evonik Operations GmbH, Hanau-Wolfgang 63457, Germany
| | - A G Van Kessel
- Department of Animal and Poultry Science, College of Agriculture and Bioresources - University of Saskatchewan, Saskatoon S7N 5A8, SK, Canada
| | - D A Columbus
- Prairie Swine Centre, Inc., Box 21057, Saskatoon S7H 5N9, SK, Canada; Department of Animal and Poultry Science, College of Agriculture and Bioresources - University of Saskatchewan, Saskatoon S7N 5A8, SK, Canada.
| |
Collapse
|
11
|
Wellington MO, Rodrigues LA, Li Q, Dong B, Panisson JC, Yang C, Columbus DA. Birth Weight and Nutrient Restriction Affect Jejunal Enzyme Activity and Gene Markers for Nutrient Transport and Intestinal Function in Piglets. Animals (Basel) 2021; 11:ani11092672. [PMID: 34573638 PMCID: PMC8469232 DOI: 10.3390/ani11092672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Birth weight and nutrient utilization are thought to have significant effects on intestinal development in neonatal pigs. The present study evaluated the impact of low and normal birth weight with and without nutrient restriction during the neonatal period on jejunal development. The results observed suggest that during the first 28 d of life, birth weight had greater effects on intestinal development than nutrient level, however, at d 56, the nutrient level was a significant contributor to intestinal function and enzyme activity compared to birth weight. Taken together, both birth weight and nutrient restriction have effects on intestinal development, but may have a greater impact in early life (d 28). Abstract Significant variation in the birth weight of piglets has arisen due to increased sow prolificacy. Intestinal development and function may be affected by birth weight. Low birth weight (LBW) pigs may also have reduced feed intake, leading to further impairment of intestinal development. The objective of this study was to examine the intestinal development pattern of LBW and normal birth weight (NBW) piglets with normal nutrition (NN) or restricted nutrition (RN) in the pre-weaning period. Jejunal intestinal samples were analyzed for target gene expression and enzyme activity at d 28 (weaning) and d 56 (post-weaning). At d 28, excitatory amino acid transporter (EAAC1) and sodium-dependent neutral amino acid transporter (B0AT1) were downregulated in LBW compared to NBW pigs (p < 0.05). On d 56, B0AT1 and ASCT2 (glutamine transporter) were downregulated in RN compared to NN pigs (p < 0.05), regardless of birth weight. Peptide transporter 1 (PepT1) expression was downregulated in LBW compared to NBW pigs at 28 d (p < 0.05), with no effects of treatments at 56 d. Sodium-glucose transporter-1 (SGLT1) was upregulated in NBW-NN compared to LBW-NN pigs (p < 0.05) at 28 d. Alkaline phosphatase (ALP) was upregulated in LBW-RN at d 28. At d 56, claudin-3 (CLDN-3) and Zonular occludin-1 (ZO-1) were upregulated in NN compared to RN pigs (p < 0.05). There were no treatment effects on ALP, maltase, or sucrase activity at 28 d. However, at 56 d, ALP was upregulated in NBW-NN pigs while sucrase activity was upregulated in NN pigs (p < 0.05). The results demonstrate differences in jejunal gene expression associated with birth weight, with reduced gene expression of amino acid transporters (PepT1, EAAC1, B0AT1) in LBW compared to NBW pigs (p < 0.05). While neonatal nutrient restriction had minimal effects at 28 d and d 56 for tight junction protein transcript abundance, neutral amino acid transporter abundance was upregulated in NN pigs compared to RN piglets (p < 0.05).
Collapse
Affiliation(s)
- Michael O. Wellington
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada; (M.O.W.); (L.A.R.); (J.C.P.)
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Lucas A. Rodrigues
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada; (M.O.W.); (L.A.R.); (J.C.P.)
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Qiao Li
- Department of Animal Science, University of Manitoba, Winnipeg, MB RT3 2N2, Canada; (Q.L.); (B.D.); (C.Y.)
| | - Bingqi Dong
- Department of Animal Science, University of Manitoba, Winnipeg, MB RT3 2N2, Canada; (Q.L.); (B.D.); (C.Y.)
| | - Josiane C. Panisson
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada; (M.O.W.); (L.A.R.); (J.C.P.)
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB RT3 2N2, Canada; (Q.L.); (B.D.); (C.Y.)
| | - Daniel A. Columbus
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada; (M.O.W.); (L.A.R.); (J.C.P.)
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Correspondence:
| |
Collapse
|
12
|
Reyes-Camacho D, Pérez JF, Vinyeta E, Aumiller T, Criado-Mesas L, Folch JM, Van der Klis JD, Solà-Oriol D. Phytogenic Compounds Supplemented to Gestating Hyperprolific Sows Affects the Gut Health-Related Gene Expression and Histological Responses in Neonate Piglets. Front Vet Sci 2021; 8:639719. [PMID: 34195241 PMCID: PMC8237712 DOI: 10.3389/fvets.2021.639719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
This research aims to determine whether a specific blend of phytogenic compounds (BPC) supplemented in gestating hyperprolific sow diets can promote prenatal maternal effects in terms of piglet gut function and morphology. Twenty-eight (Landrace × Yorkshire) gilts and sows (parity 0 to 7) were randomly distributed by parity number and body weight into two dietary treatments: unsupplemented Control (CON) (n = 14) or CON diet supplemented with 1 g/kg feed of BPC during gestation (n = 14). The BPC supplementation during gestation of sows downregulated the neonate piglets' jejunal genes involved in oxidation (SOD2) and nutrient transport (SLC16A1/MCT1, SLC11A2/DMT1, and SLC39A/ZIP4), while IFNG and CLDN4 related to immune response and barrier function, respectively, were upregulated (q < 0.10). In addition, the jejunal villus height and the ratio of the villus height to crypt depth tended to increase (p < 0.10), while goblet cell volume density was higher (p < 0.05) in BPC compared to CON. In conclusion, dietary supplementation of BPC in gestating diets for hyperprolific sows influences neonatal histomorphology and expression of genes related to the intestinal function and health.
Collapse
Affiliation(s)
- David Reyes-Camacho
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - José Francisco Pérez
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | - Lourdes Criado-Mesas
- Department of Animal Genomics, Centre for Research in Agricultural Genomics, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Josep Maria Folch
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Animal Genomics, Centre for Research in Agricultural Genomics, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - David Solà-Oriol
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|