1
|
Bordoni L, Petracci I, Gabbianelli R. TMA, beyond TMAO, might contribute to vascular inflammation by disturbing mitochondrial functions in macrophages. Biochem Biophys Res Commun 2025; 754:151529. [PMID: 40020321 DOI: 10.1016/j.bbrc.2025.151529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
Emerging evidence highlights conflicting data regarding the roles of trimethylamine (TMA) and trimethylamine-N-oxide (TMAO) plasma levels in cardiovascular diseases. In this study, we investigate in THP-1 monocytes the pro-inflammatory effects of TMA and TMAO at both physiological and pathological concentrations previously measured in a human cohort, focusing on their impact on ATP production, mitochondrial gene expression, mitochondrial membrane potential (ΔΨm), and mitochondrial DNA copy number (mtDNAcn). Results show that 0.6 μM and 1.2 μM TMA as well as 40 μM TMAO increase the expression levels of the pro-inflammatory IL-8, while the anti-inflammatory cytokine IL-10 was upregulated by 1.2 μM TMA and 40 μM TMAO. An increase in the expression levels of mitochondrial genes MT-ATP6, MT-CO1, MT-CYB and MT-ND6 was measured on all conditions tested, while no significant changes in mtDNAcn were observed. Remarkably, TMA (0.6 μM and 1.2 μM), but not TMAO, decreases ATP content and increases the mitochondrial membrane potential in THP-1 cells after 24 h of incubation. In conclusion, our study suggests that not only circulating TMAO but also TMA may contribute to vascular inflammation by disturbing mitochondrial functions in monocytes. This evidence underscores the need for further investigations to better understand the effects of these metabolites on cardiovascular health.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, MC, Italy.
| | - Irene Petracci
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, MC, Italy
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, MC, Italy.
| |
Collapse
|
2
|
Mance Kristan R, Jurgec S, Potočnik U, Marhl M, Gašperšič R. The Association Between Periodontal Inflamed Surface Area (PISA), Inflammatory Biomarkers, and Mitochondrial DNA Copy Number. J Clin Med 2024; 14:24. [PMID: 39797107 PMCID: PMC11721330 DOI: 10.3390/jcm14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Periodontitis is an inflammatory disease induced by bacteria in dental plaque that can activate the host's immune-inflammatory response and invade the bloodstream. We hypothesized that a higher periodontal inflamed surface area (PISA) is associated with higher levels of inflammatory biomarkers, lower levels of antioxidants, and mitochondrial DNA copy number (mtDNAcn). Methods: Using periodontal parameters, we calculated the PISA score, measured the levels of inflammatory biomarkers and antioxidants in the serum, and took buccal swabs for mtDNA and nuclear DNA (nDNA) extraction. Results: Higher PISA was associated with higher CRP levels, higher leukocyte, neutrophil, and erythrocyte counts, and lower magnesium-to-calcium ratio, but not with mtDNAcn. A higher number of deep pockets was associated with higher leukocytes and neutrophil counts and higher uric acid levels. Conclusions: The PISA score might be an appropriate parameter to assess the inflammatory burden of periodontitis, but not to assess mitochondrial dysfunction after mtDNA isolation from buccal swabs.
Collapse
Affiliation(s)
- Romana Mance Kristan
- Community Health Centre dr. Adolf Drolc Maribor, Ulica talcev 9, 2000 Maribor, Slovenia
- Department of Periodontology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Staša Jurgec
- Centre for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology & Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Centre for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology & Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Marko Marhl
- Department of Biophysics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Faculty of Education, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Rok Gašperšič
- Department of Oral Medicine and Periodontology, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Gurjar V, Nazeer N, Bhargava A, Soni N, Kaur P, Tiwari R, Mishra PK. Deep learning-enabled nanophotonic test leveraging poly-L lysine-tethered carbon quantum dots to assess the risk of cardiovascular disease. Microchem J 2024; 207:112164. [DOI: 10.1016/j.microc.2024.112164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
4
|
Bordoni L, Petracci I, Feliziani G, de Simone G, Rucci C, Gabbianelli R. Gut Microbiota-Derived Trimethylamine Promotes Inflammation with a Potential Impact on Epigenetic and Mitochondrial Homeostasis in Caco-2 Cells. Antioxidants (Basel) 2024; 13:1061. [PMID: 39334721 PMCID: PMC11428692 DOI: 10.3390/antiox13091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Trimethylamine (TMA), a byproduct of gut microbiota metabolism from dietary precursors, is not only the precursor of trimethylamine-N-oxide (TMAO) but may also affect gut health. An in vitro model of intestinal epithelium of Caco-2 cells was used to evaluate the impact of TMA on inflammation, paracellular permeability, epigenetics and mitochondrial functions. The expression levels of pro-inflammatory cytokines (IL-6, IL-1β) increased significantly after 24 h exposure to TMA 1 mM. TMA exposure was associated with an upregulation of SIRT1 (TMA 1 mM, 400 μM, 10 μM) and DNMT1 (TMA 1 mM, 400 µM) genes, while DNMT3A expression decreased (TMA 1 mM). In a cell-free model, TMA (from 0.1 µM to 1 mM) induced a dose-dependent reduction in Sirtuin enzyme activity. In Caco-2 cells, TMA reduced total ATP levels and significantly downregulated ND6 expression (TMA 1 mM). TMA excess (1 mM) reduced intracellular mitochondrial DNA copy numbers and increased the methylation of the light-strand promoter in the D-loop area of mtDNA. Also, TMA (1 mM, 400 µM, 10 µM) increased the permeability of Caco-2 epithelium, as evidenced by the reduced transepithelial electrical resistance values. Based on our preliminary results, TMA excess might promote inflammation in intestinal cells and disturb epigenetic and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| | - Irene Petracci
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| | - Giulia Feliziani
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Gaia de Simone
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Chiara Rucci
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
5
|
Reddam A, Bloomquist TR, Covell LT, Hu H, Oberfield SE, Gallagher D, Miller RL, Goldsmith J, Rundle AG, Baccarelli AA, Herbstman JB, Kupsco A. Inverse associations of cord blood mitochondrial DNA copy number with childhood adiposity. Obesity (Silver Spring) 2024; 32:989-998. [PMID: 38454311 PMCID: PMC11817725 DOI: 10.1002/oby.24005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE The objective of this study was to examine associations between umbilical cord mitochondrial DNA copy number (mtDNAcn) and adiposity across childhood. METHODS In a prospective birth cohort of Dominican and African American children from New York City, New York (1998-2006), mtDNAcn was measured in cord blood. Children (N = 336) were evaluated for their height, weight, and bioimpedance at age 5, 7, 9, and 11 years. We used linear mixed-effects models to assess associations of mtDNAcn tertiles in cord blood with child BMI, BMI z scores, fat mass index, and body fat percentage. Latent class growth models and interactions between mtDNAcn and child age or child age2 were used to assess associations between age and adiposity trajectories. RESULTS BMI was, on average, 1.5 kg/m2 higher (95% CI: 0.58, 2.5) in individuals with mtDNAcn in the low- compared with the middle-mtDNAcn tertile. Results were similar for BMI z score, fat mass index, and body fat percentage. Moreover, children in the low-mtDNAcn group had increased odds of being in an "increasing" or "high-stable" adiposity class. CONCLUSIONS Lower mtDNAcn at birth may predict greater childhood adiposity, highlighting the potential key role of perinatal mitochondrial function in adiposity during development.
Collapse
Affiliation(s)
- Aalekhya Reddam
- Department of Environmental Health Sciences; Mailman School
of Public Health, Columbia University, New York, NY
| | - Tessa R Bloomquist
- Department of Environmental Health Sciences; Mailman School
of Public Health, Columbia University, New York, NY
| | - Lindsey T Covell
- Department of Environmental Health Sciences; Mailman School
of Public Health, Columbia University, New York, NY
| | - Heng Hu
- Department of Environmental Health Sciences; Mailman School
of Public Health, Columbia University, New York, NY
| | - Sharon E Oberfield
- Department of Pediatrics, New York-Presbyterian Hospital,
Columbia University Medical Center, New York, NY
| | - Dympna Gallagher
- Nutrition Obesity Research Center, Columbia University
Medical Center, New York, NY
| | - Rachel L. Miller
- Division of Clinical Immunology, Department of Medicine,
Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public
Health, Columbia University, New York, NY
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public
Health, Columbia University, New York, NY
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences; Mailman School
of Public Health, Columbia University, New York, NY
| | - Julie B Herbstman
- Department of Environmental Health Sciences; Mailman School
of Public Health, Columbia University, New York, NY
| | - Allison Kupsco
- Department of Environmental Health Sciences; Mailman School
of Public Health, Columbia University, New York, NY
| |
Collapse
|
6
|
Wang Q, Ma L, Sun B, Zhang A. Reduced Peripheral Blood Mitochondrial DNA Copy Number as Identification Biomarker of Suspected Arsenic-Induced Liver Damage. Biol Trace Elem Res 2023; 201:5083-5097. [PMID: 36720785 DOI: 10.1007/s12011-023-03584-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/24/2023] [Indexed: 02/02/2023]
Abstract
Arsenic (As) can cause liver damage and liver cancer and is capable of seriously affecting human health. Therefore, it is important to identify biomarkers of arsenic-induced liver damage. Mitochondria are key targets of hepatotoxicity caused by arsenic. The mitochondrial DNA copy number (mtDNAcn) is the number of mitochondrial DNA (mtDNA) copies in the genome. mtDNA is vulnerable to exogenous chemical attacks, thus causing mtDNAcn to change after exposure to environmental pollutants. Therefore, mtDNAcn can serve as a potential marker to identify and assess the risk of diseases caused by exposure to environmental pollutants. In this study, we selected 272 arsenicosis patients (155 cases without liver damage and 117 cases with liver damage) and 218 participants not exposed to arsenic (155 cases without liver damage and 63 cases with liver damage) as subjects to investigate the correlation between peripheral blood mtDNAcn and arsenic-induced liver damage, as well as the ability of peripheral blood mtDNAcn to identify and assess the risk of arsenic-induced liver damage. Peripheral blood mtDNAcn in patients with arsenic-induced liver damage is significantly decreased and negatively correlated with serum ALT, AST, and GGT levels. The decrease of peripheral blood mtDNAcn was associated with an increased risk of arsenic-induced liver damage. The receiver operating characteristic (ROC) curve analysis indicated that peripheral blood mtDNAcn could specifically identify patients with liver damage in the arsenicosis group. The decision tree C5.0 model was established to identify arsenicosis in all patients with liver damage. Peripheral blood mtDNAcn was included in the model and played the most important role in the identification of arsenic-induced liver damage. This study provided a basis for the identification and evaluation of arsenic-induced liver damage by peripheral blood mtDNAcn, indicating that peripheral blood mtDNAcn is expected to be a potential biomarker of arsenic-induced liver damage, and provides clues for exploring the mechanism of arsenic-induced liver damage from mitochondria damage.
Collapse
Affiliation(s)
- Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
7
|
Rehman A, Kumari R, Kamthan A, Tiwari R, Srivastava RK, van der Westhuizen FH, Mishra PK. Cell-free circulating mitochondrial DNA: An emerging biomarker for airborne particulate matter associated with cardiovascular diseases. Free Radic Biol Med 2023; 195:103-120. [PMID: 36584454 DOI: 10.1016/j.freeradbiomed.2022.12.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The association of airborne particulate matter exposure with the deteriorating function of the cardiovascular system is fundamentally driven by the impairment of mitochondrial-nuclear crosstalk orchestrated by aberrant redox signaling. The loss of delicate balance in retrograde communication from mitochondria to the nucleus often culminates in the methylation of the newly synthesized strand of mitochondrial DNA (mtDNA) through DNA methyl transferases. In highly metabolic active tissues such as the heart, mtDNA's methylation state alteration impacts mitochondrial bioenergetics. It affects transcriptional regulatory processes involved in biogenesis, fission, and fusion, often accompanied by the integrated stress response. Previous studies have demonstrated a paradoxical role of mtDNA methylation in cardiovascular pathologies linked to air pollution. A pronounced alteration in mtDNA methylation contributes to systemic inflammation, an etiological determinant for several co-morbidities, including vascular endothelial dysfunction and myocardial injury. In the current article, we evaluate the state of evidence and examine the considerable promise of using cell-free circulating methylated mtDNA as a predictive biomarker to reduce the more significant burden of ambient air pollution on cardiovascular diseases.
Collapse
Affiliation(s)
- Afreen Rehman
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Arunika Kamthan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | | | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
8
|
Memon AA, Vats S, Sundquist J, Li Y, Sundquist K. Mitochondrial DNA Copy Number: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1168-1190. [PMID: 36169625 DOI: 10.1089/ars.2022.0100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent Advances: Various studies have suggested that mitochondrial DNA copy number (mtDNA-CN), a surrogate biomarker of mitochondrial dysfunction, is an easily quantifiable biomarker for chronic diseases, including diabetes and cancer. However, current knowledge is limited, and the results are controversial. This has been attributed mainly to methodology and study design. Critical Issues: The incidence of diabetes and cancer has increased significantly in recent years. Moreover, type 2 diabetes (T2D) has been shown to be a risk factor for cancer. mtDNA-CN has been associated with both T2D and cancer. However, it is not known whether mtDNA-CN plays any role in the association between T2D and cancer. Significance: In this review, we have discussed mtDNA-CN in diabetes and cancer, and reviewed the literature and methodology used in published studies so far. Based on the literature review, we have speculated how mtDNA-CN may act as a link between diabetes and cancer. Furthermore, we have provided some recommendations for reliable translation of mtDNA-CN as a biomarker. Future Directions: Further research is required to elucidate the role of mtDNA-CN in the association between T2D and cancer. If established, early lifestyle interventions, such as physical activity and diet control that improve mitochondrial function, may help preventing cancer in patients with T2D. Antioxid. Redox Signal. 37, 1168-1190.
Collapse
Affiliation(s)
- Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Sakshi Vats
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Yanni Li
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
9
|
Tao LC, Wang TT, Zheng L, Hua F, Li JJ. The Role of Mitochondrial Biogenesis Dysfunction in Diabetic Cardiomyopathy. Biomol Ther (Seoul) 2022; 30:399-408. [PMID: 35410981 PMCID: PMC9424338 DOI: 10.4062/biomolther.2021.192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is described as abnormalities of myocardial structure and function in diabetic patients without other well-established cardiovascular factors. Although multiple pathological mechanisms involving in this unique myocardial disorder, mitochondrial dysfunction may play an important role in its development of DCM. Recently, considerable progresses have suggested that mitochondrial biogenesis is a tightly controlled process initiating mitochondrial generation and maintaining mitochondrial function, appears to be associated with DCM. Nonetheless, an outlook on the mechanisms and clinical relevance of dysfunction in mitochondrial biogenesis among patients with DCM is not completely understood. In this review, hence, we will summarize the role of mitochondrial biogenesis dysfunction in the development of DCM, especially the molecular underlying mechanism concerning the signaling pathways beyond the stimulation and inhibition of mitochondrial biogenesis. Additionally, the evaluations and potential therapeutic strategies regarding mitochondrial biogenesis dysfunction in DCM is also presented.
Collapse
Affiliation(s)
- Li-Chan Tao
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou 213000, China
| | - Ting-ting Wang
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou 213000, China
| | - Lu Zheng
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou 213000, China
| | - Fei Hua
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou 213000, China
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
10
|
Bordoni L, Malinowska AM, Petracci I, Szwengiel A, Gabbianelli R, Chmurzynska A. Diet, Trimethylamine Metabolism, and Mitochondrial DNA: An Observational Study. Mol Nutr Food Res 2022; 66:e2200003. [PMID: 35490412 DOI: 10.1002/mnfr.202200003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/14/2022] [Indexed: 12/11/2022]
Abstract
SCOPE Mitochondrial DNA copy number (mtDNAcn) and its methylation level in the D-loop area have been correlated with metabolic health and are suggested to vary in response to environmental stimuli, including diet. Circulating levels of trimethylamine-n-oxide (TMAO), which is an oxidative derivative of the trimethylamine (TMA) produced by the gut microbiome from dietary precursors, have been associated with chronic diseases and are suggested to have an impact on mitochondrial dynamics. This study is aimed to investigate the relationship between diet, TMA, TMAO, and mtDNAcn, as well as DNA methylation. METHODS AND RESULTS Two hundred subjects with extreme (healthy and unhealthy) dietary patterns are recruited. Dietary records are collected to assess their nutrient intake and diets' quality (Healthy Eating Index). Blood levels of TMA and TMAO, circulating levels of TMA precursors and their dietary intakes are measured. MtDNAcn, nuclear DNA methylation long interspersed nuclear element 1 (LINE-1), and strand-specific D-loop methylation levels are assessed. There is no association between dietary patterns and mtDNAcn. The TMAO/TMA ratio is negatively correlated with d-loop methylation levels but positively with mtDNAcn. CONCLUSIONS These findings suggest a potential association between TMA metabolism and mitochondrial dynamics (and mtDNA), indicating a new avenue for further research.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, 62032, MC, Italy
| | - Anna M Malinowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, 60-624, Poland
| | - Irene Petracci
- School of Advanced Studies, University of Camerino, Camerino, 62032, MC, Italy
| | - Artur Szwengiel
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, 60-624, Poland
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, 62032, MC, Italy
| | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, 60-624, Poland
| |
Collapse
|
11
|
Loo RL, Chan Q, Nicholson JK, Holmes E. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine- N-oxide. J Proteome Res 2022; 21:560-589. [PMID: 35142516 DOI: 10.1021/acs.jproteome.1c00851] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trimethylamine (TMA) and its N-oxide (TMAO) are ubiquitous in prokaryote and eukaryote organisms as well as in the environment, reflecting their fundamental importance in evolutionary biology, and their diverse biochemical functions. Both metabolites have multiple biological roles including cell-signaling. Much attention has focused on the significance of serum and urinary TMAO in cardiovascular disease risk, yet this is only one of the many facets of a deeper TMA-TMAO partnership that reflects the significance of these metabolites in multiple biological processes spanning animals, plants, bacteria, and fungi. We report on analytical methods for measuring TMA and TMAO and attempt to critically synthesize and map the global functions of TMA and TMAO in a systems biology framework.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, United Kingdom
| | - Jeremy K Nicholson
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Institute of Global Health Innovation, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, United Kingdom
| | - Elaine Holmes
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Nutrition Research, Department of Metabolism, Nutrition and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| |
Collapse
|
12
|
Wang J, Wu S, Cui J, Ding Z, Meng Q, Sun H, Li B, Teng J, Dong Y, Aschner M, Wu S, Li X, Chen R. The influences of ambient fine particulate matter constituents on plasma hormones, circulating TMAO levels and blood pressure: A panel study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118746. [PMID: 34968616 DOI: 10.1016/j.envpol.2021.118746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Considerable investigations have been carried out to address the relationship between ambient fine particulate matter (PM2.5) and blood pressure (BP) in patients with hypertension. However, few studies have explored the influence of PM2.5 and its constituents on Trimethylamine N-oxide (TMAO), an established risk factor for hypertension and cardiovascular disease (CVD), particularly in severely air-polluted areas. To explore the potential impact of PM2.5 constituents on BP, plasma hormones, and TMAO, a panel study was conducted to investigate changes in BP, plasma hormones, and TMAO in response to ambient air pollution exposure in stage 1 hypertensive young adults. Linear mixed effect models were used to estimate the cumulative effects of fine particulate matters (PM2.5) and its constituents on BP, plasma hormones and TMAO. We found that one interquartile range (IQR) (35 μg/m3) increase in 0-1 day moving-average PM2.5 concentrations was statistically significantly associated with elevated systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) with estimated values of 0.13 (95% confidence interval (CI): 0.03 to 0.23) mmHg, 0.18 (95% CI: 0.08 to 0.28) mmHg, and 0.17 (95% CI: 0.09 to 0.26) mmHg, respectively. Hormone disturbance in the renin-angiotensin-aldosterone system was also associated with PM2.5 exposure. Elevated TMAO levels with an IQR increase for 0-4, 0-5, 0-6 moving-average concentrations of PM2.5 were found, and the increased values ranged from 26.28 (95% CI: 2.92 to 49.64) to 60.78 (31.95-89.61) ng/ml. More importantly, the PM2.5-bound metal constituents, such as manganese (Mn), titanium (Ti), and selenium (Se) showed robust associations with elevated BP and plasma TMAO levels. This study demonstrates associations between PM2.5 metal constituents and increased BP, changes in plasma hormones and TMAO, in stage 1 hypertensive young adults. Source control, aiming to reduce the emission of PM2.5-bound metals should be implemented to reduce the risk of hypertension and CVD.
Collapse
Affiliation(s)
- Jiajia Wang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China; Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Shenshen Wu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China; Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Jian Cui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Zhen Ding
- Department of Environmental Health and Endemic Disease Control, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, PR China
| | - Qingtao Meng
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Hao Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Bin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Jun Teng
- Nanjing Xiaozhuang University, Nanjing, 211171, PR China
| | - Yanping Dong
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, PR China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an, Shaanxi, 710061, China
| | - Xiaobo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China; Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
13
|
Mitochondrial DNA and Epigenetics: Investigating Interactions with the One-Carbon Metabolism in Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9171684. [PMID: 35132354 PMCID: PMC8817841 DOI: 10.1155/2022/9171684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial DNA copy number (mtDNAcn) has been proposed for use as a surrogate biomarker of mitochondrial health, and evidence suggests that mtDNA might be methylated. Intermediates of the one-carbon cycle (1CC), which is duplicated in the cytoplasm and mitochondria, have a major role in modulating the impact of diet on the epigenome. Moreover, epigenetic pathways and the redox system are linked by the metabolism of glutathione (GSH). In a cohort of 101 normal-weight and 97 overweight/obese subjects, we evaluated mtDNAcn and methylation levels in both mitochondrial and nuclear areas to test the association of these marks with body weight, metabolic profile, and availability of 1CC intermediates associated with diet. Body composition was associated with 1CC intermediate availability. Reduced levels of GSH were measured in the overweight/obese group (p = 1.3∗10−5). A high BMI was associated with lower LINE-1 (p = 0.004) and nominally lower methylenetetrahydrofolate reductase (MTHFR) gene methylation (p = 0.047). mtDNAcn was lower in overweight/obese subjects (p = 0.004) and independently correlated with MTHFR methylation levels (p = 0.005) but not to LINE-1 methylation levels (p = 0.086). DNA methylation has been detected in the light strand but not in the heavy strand of the mtDNA. Although mtDNA methylation in the light strand did not differ between overweight/obese and normal-weight subjects, it was nominally correlated with homocysteine levels (p = 0.035) and MTHFR methylation (p = 0.033). This evidence suggests that increased body weight might perturb mitochondrial-nuclear homeostasis affecting the availability of nutrients acting as intermediates of the one-carbon cycle.
Collapse
|
14
|
Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 2021; 13:nu13114176. [PMID: 34836431 PMCID: PMC8624977 DOI: 10.3390/nu13114176] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity has become a major epidemic in the 21st century. It increases the risk of dyslipidemia, hypertension, and type 2 diabetes, which are known cardiometabolic risk factors and components of the metabolic syndrome. Although overt cardiovascular (CV) diseases such as stroke or myocardial infarction are the domain of adulthood, it is evident that the CV continuum begins very early in life. Recognition of risk factors and early stages of CV damage, at a time when these processes are still reversible, and the development of prevention strategies are major pillars in reducing CV morbidity and mortality in the general population. In this review, we will discuss the role of well-known but also novel risk factors linking obesity and increased CV risk from prenatal age to adulthood, including the role of perinatal factors, diet, nutrigenomics, and nutri-epigenetics, hyperuricemia, dyslipidemia, hypertension, and cardiorespiratory fitness. The importance of 'tracking' of these risk factors on adult CV health is highlighted and the economic impact of childhood obesity as well as preventive strategies are discussed.
Collapse
|
15
|
Krueger ES, Lloyd TS, Tessem JS. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients 2021; 13:nu13082873. [PMID: 34445033 PMCID: PMC8400152 DOI: 10.3390/nu13082873] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Since elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD), TMAO research among chronic diseases has grown exponentially. We now know that serum TMAO accumulation begins with dietary choline metabolism across the microbiome-liver-kidney axis, which is typically dysregulated during pathogenesis. While CVD research links TMAO to atherosclerotic mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease contexts across relevant tissues including the liver, kidney, brain, adipose, and muscle. Since poor blood glucose management is a hallmark of metabolic diseases, we also explore the variable TMAO effects on insulin resistance and insulin production. Among metabolic tissues, hepatic TMAO research is the most common, whereas its effects on other tissues including the insulin producing pancreatic β-cells are largely unexplored. Studies on diseases including obesity, diabetes, liver diseases, chronic kidney disease, and cognitive diseases reveal that TMAO effects are unique under pathologic conditions compared to healthy controls. We conclude that molecular TMAO effects are highly context-dependent and call for further research to clarify the deleterious and beneficial molecular effects observed in metabolic disease research.
Collapse
Affiliation(s)
- Emily S. Krueger
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
| | - Trevor S. Lloyd
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Medical Education Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jeffery S. Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Correspondence: ; Tel.: +1-801-422-9082
| |
Collapse
|