1
|
Iordache F, Petcu ACI, Alexandru DM. Genetic and Epigenetic Interactions Involved in Senescence of Stem Cells. Int J Mol Sci 2024; 25:9708. [PMID: 39273655 PMCID: PMC11396476 DOI: 10.3390/ijms25179708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Cellular senescence is a permanent condition of cell cycle arrest caused by a progressive shortening of telomeres defined as replicative senescence. Stem cells may also undergo an accelerated senescence response known as premature senescence, distinct from telomere shortening, as a response to different stress agents. Various treatment protocols have been developed based on epigenetic changes in cells throughout senescence, using different drugs and antioxidants, senolytic vaccines, or the reprogramming of somatic senescent cells using Yamanaka factors. Even with all the recent advancements, it is still unknown how different epigenetic modifications interact with genetic profiles and how other factors such as microbiota physiological conditions, psychological states, and diet influence the interaction between genetic and epigenetic pathways. The aim of this review is to highlight the new epigenetic modifications that are involved in stem cell senescence. Here, we review recent senescence-related epigenetic alterations such as DNA methylation, chromatin remodeling, histone modification, RNA modification, and non-coding RNA regulation outlining new possible targets for the therapy of aging-related diseases. The advantages and disadvantages of the animal models used in the study of cellular senescence are also briefly presented.
Collapse
Affiliation(s)
- Florin Iordache
- Biochemistry Disciplines, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
- Advanced Research Center for Innovative Materials, Products and Processes CAMPUS, Politehnica University, 060042 Bucharest, Romania
| | - Adriana Cornelia Ionescu Petcu
- Biochemistry Disciplines, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
| | - Diana Mihaela Alexandru
- Pharmacology and Pharmacy Disciplines, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
| |
Collapse
|
2
|
Ma L, Zheng Y, Zhou Z, Deng Z, Tan J, Bai C, Fu A, Wang Q, Zuo J. Dissection of mRNA ac 4C acetylation modifications in AC and Nr fruits: insights into the regulation of fruit ripening by ethylene. MOLECULAR HORTICULTURE 2024; 4:5. [PMID: 38369544 PMCID: PMC10875755 DOI: 10.1186/s43897-024-00082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
N4-acetylcytidine (ac4C) modification of mRNA has been shown to be present in plant RNAs, but its regulatory function in plant remains largely unexplored. In this study, we investigated the differentially expressed mRNAs, lncRNAs and acetylation modifications of mRNAs in tomato fruits from both genotypes. By comparing wild-type (AC) tomato and the ethylene receptor-mutant (Nr) tomato from mature green (MG) to six days after the breaker (Br6) stage, we identified differences in numerous key genes related to fruit ripening and observed the corresponding lncRNAs positively regulated the target genes expression. At the post-transcriptional level, the acetylation level decreased and increased in AC and Nr tomatoes from MG to Br6 stage, respectively. The integrated analysis of RNA-seq and ac4C-seq data revealed the potential positive role of acetylation modification in regulating gene expression. Furthermore, we found differential acetylation modifications of certain transcripts (ACO, ETR, ERF, PG, CesA, β-Gal, GAD, AMY, and SUS) in AC and Nr fruits which may explain the differences in ethylene production, fruit texture, and flavor during their ripening processes. The present study provides new insights into the molecular mechanisms by which acetylation modification differentially regulates the ripening process of wild-type and mutant tomato fruits deficient in ethylene signaling.
Collapse
Affiliation(s)
- Lili Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Zhongjing Zhou
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhiping Deng
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinjuan Tan
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chunmei Bai
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Anzhen Fu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Qing Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
| |
Collapse
|
3
|
Yang H, Li C, Che M, Liang J, Tian X, Yang G, Sun C. HDAC11 deficiency resists obesity by converting adipose-derived stem cells into brown adipocyte-like cells. Int J Biol Macromol 2024; 258:128852. [PMID: 38110164 DOI: 10.1016/j.ijbiomac.2023.128852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/17/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
Obesity, with complications such as type 2 diabetes, dyslipidemia, and even cancer, is rampant worldwide. Histone deacetylases (HDACs) have been extensively studied as key players in the epigenetic regulation of cellular metabolism. However, the function of HDAC11 has long been focused on the immune and nervous systems and cancer development, and its potential role in obesity has been poorly studied. We found that the expression of HDAC11 was highly upregulated in the white adipose tissue (WAT) of obese mice and was closely related to the progression of obesity. Knockdown of HDAC11 by lentiviral injection in high-fat diet-fed mice attenuated the development of obesity. Furthermore, knockdown of HDAC11 ameliorated WAT hypertrophy and induced WAT browning. At the cellular level, silencing of HDAC11 promoted the differentiation of adipose-derived stem cells (ADSCs) into brown adipocyte-like cells and inhibited the proliferation of ADSCs. More interestingly, HDAC11 expression was elevated in ADSCs isolated from obese mice, and silencing of HDAC11 facilitated the spontaneous differentiation of ADSCs into mesoderm, which is the source of adipocytes. This also superficially and effectively demonstrates the exciting prospect of HDAC11 silencing in obesity research and treatment, as a valve for "energy saving and flow reduction".
Collapse
Affiliation(s)
- Hong Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaowei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Che
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juntong Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Wu X, Ni Y, Li W, Yang B, Yang X, Zhu Z, Zhang J, Wu X, Shen Q, Liao Z, Yuan L, Chen Y, Du Q, Wang C, Liu P, Miao Y, Li N, Zhang S, Liao M, Hua J. Rapid conversion of porcine pluripotent stem cells into macrophages with chemically defined conditions. J Biol Chem 2024; 300:105556. [PMID: 38097188 PMCID: PMC10825052 DOI: 10.1016/j.jbc.2023.105556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
A renewable source of porcine macrophages derived from pluripotent stem cells (PSCs) would be a valuable alternative to primary porcine alveolar macrophages (PAMs) in the research of host-pathogen interaction mechanisms. We developed an efficient and rapid protocol, within 11 days, to derive macrophages from porcine PSCs (pPSCs). The pPSC-derived macrophages (pPSCdMs) exhibited molecular and functional characteristics of primary macrophages. The pPSCdMs showed macrophage-specific surface protein expression and macrophage-specific transcription factors, similar to PAMs. The pPSCdMs also exhibited the functional characteristics of macrophages, such as endocytosis, phagocytosis, porcine respiratory and reproductive syndrome virus infection and the response to lipopolysaccharide stimulation. Furthermore, we performed transcriptome sequencing of the whole differentiation process to track the fate transitions of porcine PSCs involved in the signaling pathway. The activation of transforming growth factor beta signaling was required for the formation of mesoderm and the inhibition of the transforming growth factor beta signaling pathway at the hematopoietic endothelium stage could enhance the fate transformation of hematopoiesis. In summary, we developed an efficient and rapid protocol to generate pPSCdMs that showed aspects of functional maturity comparable with PAMs. pPSCdMs could provide a broad prospect for the platforms of host-pathogen interaction mechanisms.
Collapse
Affiliation(s)
- Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Ni
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhao Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinchun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zheng Liao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liming Yuan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunlong Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengbao Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yiliang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
5
|
Silva AFB, Morais ANP, Lima LF, Ferreira ACA, Silva RF, Sá NAR, Kumar S, Oliveira AC, Alves BG, Rodrigues APR, Gastal EL, Bordignon V, Figueiredo JR. Trimethylation profile of histones H3 lysine 4 and 9 in late preantral and early antral caprine follicles grown in vivo versus in vitro in the presence of anethole. Mol Reprod Dev 2023; 90:810-823. [PMID: 37671983 DOI: 10.1002/mrd.23700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 09/07/2023]
Abstract
This study assessed the histones methylation profile (H3K4me3 and H3K9me3) in late preantral (PA) and early antral (EA) caprine follicles grown in vivo and in vitro, and the anethole effect during in vitro culture of PA follicles. Uncultured in vivo-grown follicles (PA, n = 64; EA, n = 73) were used as controls to assess the methylation profile and genes' expression related to apoptosis cascade (BAX, proapoptotic; BCL2, antiapoptotic), steroidogenesis (CYP17, CYP19A1), and demethylation (KDM1AX1, KDM1AX2, KDM3A). The isolated PA follicles (n = 174) were cultured in vitro for 6 days in α-MEM+ in either absence (control) or presence of anethole. After culture, EA follicles were evaluated for methylation, mRNA abundance, and morphometry. Follicle diameter increased after culture, regardless of treatment. The methylation profile and the mRNA abundance were similar between in vivo-grown PA and EA follicles. Anethole treatment led to higher H3K4me3 fluorescence intensity in EA follicles. The mRNA abundances of BAX, CYP17, and CYP19A1 were higher, and BCL2 and KDM3A were lower in in vitro-grown EA follicles than in vivo-grown follicles. In conclusion, in vitro follicle culture affected H3K4me3 fluorescence intensity, mRNA abundance of apoptotic genes, and steroidogenic and demethylase enzymes compared with in vivo-grown follicles.
Collapse
Affiliation(s)
- Ana F B Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Ana N P Morais
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Laritza F Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Anna C A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Renato F Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Naiza A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Satish Kumar
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Ariclécio C Oliveira
- Superior Institute of Biomedical Science, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Benner G Alves
- Postgraduate Program in Animal Bioscience, Federal University of Goiás, Jataí, Goiás, Brazil
| | - Ana P R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - José R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
6
|
Pu J, Xu Z, Huang Y, Nian J, Yang M, Fang Q, Wei Q, Huang Z, Liu G, Wang J, Wu X, Wei H. N 6 -methyladenosine-modified FAM111A-DT promotes hepatocellular carcinoma growth via epigenetically activating FAM111A. Cancer Sci 2023; 114:3649-3665. [PMID: 37400994 PMCID: PMC10475779 DOI: 10.1111/cas.15886] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023] Open
Abstract
As an epitranscriptomic modulation manner, N6 -methyladenosine (m6 A) modification plays important roles in various diseases, including hepatocellular carcinoma (HCC). m6 A modification affects the fate of RNAs. The potential contributions of m6 A to the functions of RNA still need further investigation. In this study, we identified long noncoding RNA FAM111A-DT as an m6 A-modified RNA and confirmed three m6 A sites on FAM111A-DT. The m6 A modification level of FAM111A-DT was increased in HCC tissues and cell lines, and increased m6 A level was correlated with poor survival of HCC patients. m6 A modification increased the stability of FAM111A-DT transcript, whose expression level showed similar clinical relevance to that of the m6 A level of FAM111A-DT. Functional assays found that only m6 A-modified FAM111A-DT promoted HCC cellular proliferation, DNA replication, and HCC tumor growth. Mutation of m6 A sites on FAM111A-DT abolished the roles of FAM111A-DT. Mechanistic investigations found that m6 A-modified FAM111A-DT bound to FAM111A promoter and also interacted with m6 A reader YTHDC1, which further bound and recruited histone demethylase KDM3B to FAM111A promoter, leading to the reduction of the repressive histone mark H3K9me2 and transcriptional activation of FAM111A. The expression of FAM111A was positively correlated with the m6 A level of FAM111A-DT, and the expression of methyltransferase complex, YTHDC1, and KDM3B in HCC tissues. Depletion of FAM111A largely attenuated the roles of m6 A-modified FAM111A-DT in HCC. In summary, the m6 A-modified FAM111A-DT/YTHDC1/KDM3B/FAM111A regulatory axis promoted HCC growth and represented a candidate therapeutic target for HCC.
Collapse
Affiliation(s)
- Jian Pu
- Department of Hepatobiliary SurgeryAffiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Zuoming Xu
- Department of Hepatobiliary SurgeryAffiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Youguan Huang
- Graduate College of Youjiang Medical University for NationalitiesBaiseChina
| | - Jiahui Nian
- Graduate College of Youjiang Medical University for NationalitiesBaiseChina
| | - Meng Yang
- Graduate College of Youjiang Medical University for NationalitiesBaiseChina
| | - Quan Fang
- Graduate College of Youjiang Medical University for NationalitiesBaiseChina
| | - Qing Wei
- Graduate College of Youjiang Medical University for NationalitiesBaiseChina
| | - Zihua Huang
- Graduate College of Youjiang Medical University for NationalitiesBaiseChina
| | - Guoman Liu
- Graduate College of Youjiang Medical University for NationalitiesBaiseChina
| | - Jianchu Wang
- Department of Hepatobiliary SurgeryAffiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Xianjian Wu
- Graduate College of Youjiang Medical University for NationalitiesBaiseChina
| | - Huamei Wei
- Department of PathologyAffiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| |
Collapse
|
7
|
Chang SLY, Lee CW, Yang CY, Lin ZC, Peng KT, Liu SC, Wang SW, Tsai HC, Fong YC, Lai CY, Huang YL, Tsai CH, Ko CY, Liu JF, Tang CH. IOX-1 suppresses metastasis of osteosarcoma by upregulating histone H3 lysine trimethylation. Biochem Pharmacol 2023; 210:115472. [PMID: 36863615 DOI: 10.1016/j.bcp.2023.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
New therapeutic approaches are needed for metastatic osteosarcoma (OS), as survival rates remain low despite surgery and chemotherapy. Epigenetic changes, such as histone H3 methylation, play key roles in many cancers including OS, although the underlying mechanisms are not clear. In this study, human OS tissue and OS cell lines displayed lower levels of histone H3 lysine trimethylation compared with normal bone tissue and osteoblast cells. Treating OS cells with the histone lysine demethylase inhibitor 5-carboxy-8-hydroxyquinoline (IOX-1) dose-dependently increased histone H3 methylation and inhibited cellular migratory and invasive capabilities, suppressed matrix metalloproteinase expression, reversed epithelial-to-mesenchymal transition by increasing levels of epithelial markers E-cadherin and ZO-1 and decreasing the expression of mesenchymal markers N-cadherin, vimentin, and TWIST, and also reduced stemness properties. An analysis of cultivated MG63 cisplatin-resistant (MG63-CR) cells revealed lower histone H3 lysine trimethylation levels compared with levels in MG63 cells. Exposing MG63-CR cells to IOX-1 increased histone H3 trimethylation and ATP-binding cassette transporter expression, potentially sensitizing MG63-CR cells to cisplatin. In conclusion, our study suggests that histone H3 lysine trimethylation is associated with metastatic OS and that IOX-1 or other epigenetic modulators present promising strategies to inhibit metastatic OS progression.
Collapse
Affiliation(s)
- Sunny Li-Yun Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Taiwan; Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Taiwan; Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Chen-Yu Yang
- Division of Pediatric Orthopedics, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Zih-Chan Lin
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Taiwan
| | - Shih-Chia Liu
- Division of Pediatric Orthopedics, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Wei Wang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung, Taiwan, Kaohsiung, Taiwan
| | - Hsiao-Chi Tsai
- School of Medicine, China Medical University, Taichung, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Yang Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Peng J, Zhang WJ, Zhang Q, Su YH, Tang LP. The dynamics of chromatin states mediated by epigenetic modifications during somatic cell reprogramming. Front Cell Dev Biol 2023; 11:1097780. [PMID: 36727112 PMCID: PMC9884706 DOI: 10.3389/fcell.2023.1097780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023] Open
Abstract
Somatic cell reprogramming (SCR) is the conversion of differentiated somatic cells into totipotent or pluripotent cells through a variety of methods. Somatic cell reprogramming also provides a platform to investigate the role of chromatin-based factors in establishing and maintaining totipotency or pluripotency, since high expression of totipotency- or pluripotency-related genes usually require an active chromatin state. Several studies in plants or mammals have recently shed light on the molecular mechanisms by which epigenetic modifications regulate the expression of totipotency or pluripotency genes by altering their chromatin states. In this review, we present a comprehensive overview of the dynamic changes in epigenetic modifications and chromatin states during reprogramming from somatic cells to totipotent or pluripotent cells. In addition, we illustrate the potential role of DNA methylation, histone modifications, histone variants, and chromatin remodeling during somatic cell reprogramming, which will pave the way to developing reliable strategies for efficient cellular reprogramming.
Collapse
Affiliation(s)
| | | | | | - Ying Hua Su
- *Correspondence: Ying Hua Su, ; Li Ping Tang,
| | | |
Collapse
|
9
|
The Role of Epigenetics in Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:119-136. [PMID: 36587385 DOI: 10.1007/978-3-031-14732-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Identification of distinct genetic and epigenetic profiles in various neuroepithelial tumors has improved the classification and uncovered novel diagnostic, prognostic, and predictive molecular biomarkers for improved prediction of treatment response and outcome. Especially, in pediatric high-grade brain tumors, such as diffuse midline glioma, H3K27M-altered and posterior fossa group A-ependymoma, epigenetic changes predominate, along with changes in expression of known oncogenes and tumor suppressor genes induced by histone modifications and DNA methylation. The precise role of epigenetic abnormalities is important for understanding tumorigenesis and the establishment of brain tumor treatment strategies. Using powerful epigenetic-based therapies for cancer cells, the aberrantly regulated epigenome can be restored to a more normal state through epigenetic reprogramming. Combinations of agents targeting DNA methylation and/or other epigenetic modifications may be a promising cancer treatment. Therefore, the integration of multi-omics data including epigenomics is now important for classifying primary brain tumors and predicting their biological behavior. Recent advances in molecular genetics and epigenetic integrated diagnostics of brain tumors influence new strategies for targeted therapy.
Collapse
|
10
|
Super-enhancers conserved within placental mammals maintain stem cell pluripotency. Proc Natl Acad Sci U S A 2022; 119:e2204716119. [PMID: 36161929 DOI: 10.1073/pnas.2204716119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite pluripotent stem cells sharing key transcription factors, their maintenance involves distinct genetic inputs. Emerging evidence suggests that super-enhancers (SEs) can function as master regulatory hubs to control cell identity and pluripotency in humans and mice. However, whether pluripotency-associated SEs share an evolutionary origin in mammals remains elusive. Here, we performed comprehensive comparative epigenomic and transcription factor binding analyses among pigs, humans, and mice to identify pluripotency-associated SEs. Like typical enhancers, SEs displayed rapid evolution in mammals. We showed that BRD4 is an essential and conserved activator for mammalian pluripotency-associated SEs. Comparative motif enrichment analysis revealed 30 shared transcription factor binding motifs among the three species. The majority of transcriptional factors that bind to identified motifs are known regulators associated with pluripotency. Further, we discovered three pluripotency-associated SEs (SE-SOX2, SE-PIM1, and SE-FGFR1) that displayed remarkable conservation in placental mammals and were sufficient to drive reporter gene expression in a pluripotency-dependent manner. Disruption of these conserved SEs through the CRISPR-Cas9 approach severely impaired stem cell pluripotency. Our study provides insights into the understanding of conserved regulatory mechanisms underlying the maintenance of pluripotency as well as species-specific modulation of the pluripotency-associated regulatory networks in mammals.
Collapse
|
11
|
KDM4C Contributes to Trophoblast-Like Stem Cell Conversion from Porcine-Induced Pluripotent Stem Cells (piPSCs) Via Regulating CDX2. Int J Mol Sci 2022; 23:ijms23147586. [PMID: 35886932 PMCID: PMC9323581 DOI: 10.3390/ijms23147586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Studies on ESRRB-regulating porcine-induced pluripotent stem cells (piPSCs) converted to trophoblast-like stem cells (TLSCs) contribute to the understanding of early embryo development. However, the epigenetic modification regulation network during the conversion is poorly understood. Here, the global change in histone H3 Lysine 4, 9, 27, 36 methylation and Lysine 27 acetylation was investigated in piPSCs and TLSCs. We found a high modification profile of H3K36me2 in TLSCs compared to that of piPSCs, whereas the profiles of other modifications remained constant. KDM4C, a H3K36me3/2 demethylase, whose gene body region was combined with ESRRB, was upregulated in TLSCs. Moreover, KDM4 inhibitor supplementation rescued the AP-negative phenotype observed in TLSCs, confirming that KDM4C could regulate the pluripotency of TLSCs. Subsequently, KDM4C replenishment results show the significantly repressed proliferation and AP-positive staining of TLSCs. The expressions of CDX2 and KRT8 were also upregulated after KDM4C overexpression. In summary, these results show that KDM4C replaced the function of ESRRB. These findings reveal the unique and crucial role of KDM4C-mediated epigenetic chromatin modifications in determination of piPSCs’ fate and expand the understanding of the connection between piPSCs and TSCs.
Collapse
|
12
|
Zhang R, Yu S, Shen Q, Zhao W, Zhang J, Wu X, Zhu Z, Wu X, Li N, Peng S, Hua J. AXIN2 Reduces the Survival of Porcine Induced Pluripotent Stem Cells (piPSCs). Int J Mol Sci 2021; 22:ijms222312954. [PMID: 34884759 PMCID: PMC8658036 DOI: 10.3390/ijms222312954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
The establishment of porcine pluripotent stem cells (piPSCs) is critical but remains challenging. All piPSCs are extremely sensitive to minor perturbations of culture conditions and signaling network. Inhibitors, such as CHIR99021 and XAV939 targeting the WNT signaling pathway, have been added in a culture medium to modify the cell regulatory network. However, potential side effects of inhibitors could confine the pluripotency and practicability of piPSCs. This study aimed to investigate the roles of AXIN, one component of the WNT pathway in piPSCs. Here, porcine AXIN1 and AXIN2 genes were knocked-down or overexpressed. Digital RNA-seq was performed to explore the mechanism of cell proliferation and apoptosis. We found that (1) overexpression of the porcine AXIN2 gene significantly reduced survival and negatively impacted the pluripotency of piPSCs, and (2) knockdown of AXIN2, a negative effector of the WNT signaling pathway, enhanced the expression of genes involved in cell cycle but reduced the expression of genes related to cell differentiation, death, and apoptosis.
Collapse
|
13
|
Li B, Cheng X, Aierken A, Du J, He W, Zhang M, Tan N, Kou Z, Peng S, Jia W, Tang H, Hua J. Melatonin Promotes the Therapeutic Effect of Mesenchymal Stem Cells on Type 2 Diabetes Mellitus by Regulating TGF-β Pathway. Front Cell Dev Biol 2021; 9:722365. [PMID: 34722505 PMCID: PMC8554153 DOI: 10.3389/fcell.2021.722365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
Abundant evidence proves the therapeutic effect of adipose-derived mesenchymal stem cells (ADMSCs) in the treatment of diabetes mellitus. However, the problems have not been solved that viability of ADMSCs were inconsistent and the cells quickly undergo senescence after in vitro cell culture. In addition, the therapeutic effect of ADMSCs is still not satisfactory. In this study, melatonin (MLT) was added to canine ADMSC culture medium, and the treated cells were used to treat type 2 diabetes mellitus (T2DM). Our research reveals that adding MLT to ADMSC culture medium can promote the viability of ADMSCs. This effect depends on the binding of MLT and MLT receptors, which activates the transforming growth factor β (TGF-β) pathway and then changes the cell cycle of ADMSCs and improves the viability of ADMSCs. Since ADMSCs were found to be used to treat T2DM by anti-inflammatory and anti-endoplasmic reticulum (ER) stress capabilities, our data demonstrate that MLT augment several effects of ADMSCs in remission hyperglycemia, insulin resistance, and liver glycogen metabolism in T2DM patients. This suggest that ADMSCs and MLT-ADMSCs is safe and vabulable for pet clinic.
Collapse
Affiliation(s)
- Balun Li
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xuedi Cheng
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Aili Aierken
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jiaxin Du
- Department of Animal Engineering, Yangling Vocational and Technical College, Xianyang, China.,Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Wenlai He
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Mengfei Zhang
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ning Tan
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Zheng Kou
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Sha Peng
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Wenwen Jia
- Shanghai East Hospital, East Hospital Affiliated to Tongji University, Shanghai, China
| | - Haiyang Tang
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
14
|
Yu S, Zhang R, Shen Q, Zhu Z, Zhang J, Wu X, Zhao W, Li N, Yang F, Wei H, Hua J. ESRRB Facilitates the Conversion of Trophoblast-Like Stem Cells From Induced Pluripotent Stem Cells by Directly Regulating CDX2. Front Cell Dev Biol 2021; 9:712224. [PMID: 34616727 PMCID: PMC8488167 DOI: 10.3389/fcell.2021.712224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Porcine-induced pluripotent stem cells (piPSCs) could serve as a great model system for human stem cell preclinical research. However, the pluripotency gene network of piPSCs, especially the function for the core transcription factor estrogen-related receptor beta (ESRRB), was poorly understood. Here, we constructed ESRRB-overexpressing piPSCs (ESRRB-piPSCs). Compared with the control piPSCs (CON-piPSCs), the ESRRB-piPSCs showed flat, monolayered colony morphology. Moreover, the ESRRB-piPSCs showed greater chimeric capacity into trophectoderm than CON-piPSCs. We found that ESRRB could directly regulate the expressions of trophoblast stem cell (TSC)-specific markers, including KRT8, KRT18 and CDX2, through binding to their promoter regions. Mutational analysis proved that the N-terminus zinc finger domain is indispensable for ESRRB to regulate the TSC markers. Furthermore, this regulation needs the participation of OCT4. Accordingly, the cooperation between ESRRB and OCT4 facilitates the conversion from pluripotent state to the trophoblast-like state. Our results demonstrated a unique and crucial role of ESRRB in determining piPSCs fate, and shed new light on the molecular mechanism underlying the segregation of embryonic and extra-embryonic lineages.
Collapse
Affiliation(s)
- Shuai Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Rui Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Wenxu Zhao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Fan Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| | - Hongjiang Wei
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Shaanxi, China
| |
Collapse
|
15
|
Wu XL, Zhu ZS, Xiao X, Zhou Z, Yu S, Shen QY, Zhang JQ, Yue W, Zhang R, He X, Peng S, Zhang SQ, Li N, Liao MZ, Hua JL. LIN28A inhibits DUSP family phosphatases and activates MAPK signaling pathway to maintain pluripotency in porcine induced pluripotent stem cells. Zool Res 2021; 42:377-388. [PMID: 33998185 PMCID: PMC8175949 DOI: 10.24272/j.issn.2095-8137.2020.375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
LIN28A, an RNA-binding protein, plays an important role in porcine induced pluripotent stem cells (piPSCs). However, the molecular mechanism underlying the function of LIN28A in the maintenance of pluripotency in piPSCs remains unclear. Here, we explored the function of LIN28A in piPSCs based on its overexpression and knockdown. We performed total RNA sequencing (RNA-seq) of piPSCs and detected the expression levels of relevant genes by quantitative real-time polymerase chain reaction (qRT-PCR), western blot analysis, and immunofluorescence staining. Results indicated that piPSC proliferation ability decreased following LIN28A knockdown. Furthermore, when LIN28A expression in the shLIN28A2 group was lower (by 20%) than that in the negative control knockdown group ( shNC), the pluripotency of piPSCs disappeared and they differentiated into neuroectoderm cells. Results also showed that LIN28A overexpression inhibited the expression of DUSP (dual-specificity phosphatases) family phosphatases and activated the mitogen-activated protein kinase (MAPK) signaling pathway. Thus, LIN28A appears to activate the MAPK signaling pathway to maintain the pluripotency and proliferation ability of piPSCs. Our study provides a new resource for exploring the functions of LIN28A in piPSCs.
Collapse
Affiliation(s)
- Xiao-Long Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhen-Shuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xia Xiao
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shuai Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qiao-Yan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ju-Qing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wei Yue
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Rui Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shi-Qiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| | - Ming-Zhi Liao
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|