1
|
Xie H, Xi Z, Wen S, Zhang W, Liu Y, Zheng J, Feng H, Wu D, Li Y. Associations Between Chronotype, Genetic Susceptibility and Risk of Colorectal Cancer in UK Biobank. J Epidemiol Glob Health 2025; 15:57. [PMID: 40208451 PMCID: PMC11985712 DOI: 10.1007/s44197-025-00399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Sleep problems are common in the general population, with evidence suggesting a link between circadian rhythm disruptions and various health outcomes. However, the role of chronotype in influencing colorectal cancer (CRC) risk, particularly in conjunction with genetic predisposition, remains unclear and warrants further investigation. METHODS We analyzed data from 295,729 UK Biobank participants, among whom 4305 developed colorectal cancer. Chronotype was self-reported as morning or evening type, and a polygenic risk score for chronotype was generated from 316 genome-wide significant SNPs using 23andMe effect sizes to reduce overlap bias. Colorectal cancer risk was estimated using Cox proportional hazards models adjusted for age, sex, smoking, alcohol consumption, and the Townsend index. RESULTS Late chronotype and high polygenic risk were independently associated with an increased risk of CRC. Compared to participants with an early chronotype, those with a late chronotype exhibited a 6.5% increased risk of CRC [HR 1.065, P = 0.046]. Similarly, individuals in the high genetic risk group had a 11.0% increased risk compared with those in the low genetic risk group [HR, 1.110, P = 0.032]. Stratified analyses revealed that individuals with an intermediate genetic risk who had a late chronotype showed a 17.6% higher risk of CRC [OR, 1.176, P = 0.004], whereas those with a high genetic risk had a 25.3% increase [OR, 1.253, P = 0.001]. Through analyzing the combined effects of chronotype and PRS, we found that among individuals with an early chronotype, those with intermediate PRS had a 15.4% increased risk of CRC [HR, 1.154, P = 0.005], and those with high PRS had a 14.7% increased risk [HR, 1.147, P = 0.027]. CONCLUSIONS Our findings highlight the importance of considering circadian rhythm patterns and genetic predispositions when assessing CRC risk, suggesting that chronotype may be associated with CRC risk, but further studies are needed to integrate objective circadian measurements.
Collapse
Affiliation(s)
- Huajie Xie
- Guangdong Medical University, Zhanjiang, 524000, China
- Department of Gastrointestinal Surgery, Department of Genral Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhihui Xi
- Department of Gastrointestinal Surgery, Department of Genral Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Suqi Wen
- Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, 341000, China
| | - WenRunbei Zhang
- Department of Gastrointestinal Surgery, Department of Genral Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yongfeng Liu
- Department of Gastrointestinal Surgery, Department of Genral Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of Genral Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Huolun Feng
- Department of Gastrointestinal Surgery, Department of Genral Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Deqing Wu
- Department of Gastrointestinal Surgery, Department of Genral Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yong Li
- Guangdong Medical University, Zhanjiang, 524000, China.
- Department of Gastrointestinal Surgery, Department of Genral Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
2
|
Li Y, Li S, Lin L, Li D, Zhao J, Liu S, Ma Y, Ren D, Zhou H, Wang Q, He Y. In vitro simulated digestion and fermentation characteristics of polyphenol-polysaccharide complex from Hizikia fusiforme and its effects on the human gut microbiota. Int J Biol Macromol 2025; 302:140619. [PMID: 39904444 DOI: 10.1016/j.ijbiomac.2025.140619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/18/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
This study investigated the effects of the polyphenol-polysaccharide complex (HPC) and its purified components (PC1 and PC4), obtained from Hizikia fusiforme, on the human gut microbiota during in vitro simulated digestion and fecal fermentation. Results showed a gradual increase in reducing sugar content for HPC, PC1, and PC4 during simulated digestion, accompanied by a slight decrease in molecular weight, indicating that these complexes were not completely digested during oral-gastrointestinal digestion. However, following fermentation, the molecular weights of HPC, PC1, and PC4 decreased significantly, and the molar ratios of monosaccharide compositions changed considerably compared with prefermentation values. Thus, these complexes were degraded and used by the intestinal microbiota to produce short-chain fatty acids, which decreased the pH. In addition, after fecal fermentation, beneficial bacteria such as Bacteroides, Parabacteroides, and Bifidobacterium became more abundant, whereas the amount of harmful bacteria such as Fusobacterium and Escherichia/Shigella decreased, revealing the regulation by the complex on the intestinal microbiota. In conclusion, the polyphenol-polysaccharide complex improves the composition and abundance of the human gastrointestinal microbiota, thereby supporting gut health.
Collapse
Affiliation(s)
- Yutong Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shangkun Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Lidong Lin
- Dongtou District Marine Economic Science and Technology Innovation Center, Wenzhou 325700, China
| | - Di Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Jin Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yichao Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Hui Zhou
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
3
|
Godos J, Currenti W, Ferri R, Lanza G, Caraci F, Frias-Toral E, Guglielmetti M, Ferraris C, Lipari V, Carvajal Altamiranda S, Galvano F, Castellano S, Grosso G. Chronotype and Cancer: Emerging Relation Between Chrononutrition and Oncology from Human Studies. Nutrients 2025; 17:529. [PMID: 39940387 PMCID: PMC11819666 DOI: 10.3390/nu17030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Fasting-feeding timing is a crucial pattern implicated in the regulation of daily circadian rhythms. The interplay between sleep and meal timing underscores the importance of maintaining circadian alignment in order to avoid creating a metabolic environment conducive to carcinogenesis following the molecular and systemic disruption of metabolic performance and immune function. The chronicity of such a condition may support the initiation and progression of cancer through a variety of mechanisms, including increased oxidative stress, immune suppression, and the activation of proliferative signaling pathways. This review aims to summarize current evidence from human studies and provide an overview of the potential mechanisms underscoring the role of chrononutrition (including time-restricted eating) on cancer risk. Current evidence shows that the morning chronotype, suggesting an alignment between physiological circadian rhythms and eating timing, is associated with a lower risk of cancer. Also, early time-restricted eating and prolonged nighttime fasting were also associated with a lower risk of cancer. The current evidence suggests that the chronotype influences cancer risk through cell cycle regulation, the modulation of metabolic pathways and inflammation, and gut microbiota fluctuations. In conclusion, although there are no clear guidelines on this matter, emerging evidence supports the hypothesis that the role of time-related eating (i.e., time/calorie-restricted feeding and intermittent/periodic fasting) could potentially lead to a reduced risk of cancer.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
| | | | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Espíritu Santo, Samborondón 0901952, Ecuador
| | - Monica Guglielmetti
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Cinzia Ferraris
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Vivian Lipari
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidad de La Romana, La Romana 22000, Dominican Republic
- Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Stefanía Carvajal Altamiranda
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidade Internacional do Cuanza, Cuito EN250, Angola
- Fundación Universitaria Internacional de Colombia, Bogotá 111321, Colombia
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| |
Collapse
|
4
|
Singh A, Negi PS. Appraising the role of biotics and fermented foods in gut microbiota modulation and sleep regulation. J Food Sci 2025; 90:e17634. [PMID: 39750017 DOI: 10.1111/1750-3841.17634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
Sleep disturbances are increasingly prevalent, significantly impacting physical and mental health. Recent research reveals a bidirectional relationship between gut microbiota and sleep, mediated through the microbiota-gut-brain axis. This review examines the role of gut microbiota in sleep physiology and explores how biotics, including probiotics, prebiotics, synbiotics, postbiotics, and fermented foods, can enhance sleep quality. Drawing from animal and human studies, we discuss neurobiological mechanisms by which biotics may influence sleep, including modulation of neurotransmitters, immune responses, and hormonal regulation. Key microbial metabolites, such as short-chain fatty acids, are highlighted for their role in supporting sleep-related neurochemical processes. Additionally, this review presents dietary strategies and food processing technologies, like fermentation, as innovative approaches for sleep enhancement. Although promising, the available research has limitations, including small sample sizes, variability in biotic strains and dosages, and reliance on subjective sleep assessments. This review underscores the need for standardized protocols, objective assessments such as polysomnography, and personalized biotic interventions. Emerging findings highlight the therapeutic potential of gut microbiota modulation for sleep improvement, though further large-scale human trials are essential to refine strain selection, dosage, and formulation. This interdisciplinary exploration seeks to advance food-based interventions and holistic strategies for managing sleep disorders and improving quality of life.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
5
|
Lin W, Yang Y, Zhu Y, Pan R, Liu C, Pan J. Linking Gut Microbiota, Oral Microbiota, and Serum Metabolites in Insomnia Disorder: A Preliminary Study. Nat Sci Sleep 2024; 16:1959-1972. [PMID: 39664229 PMCID: PMC11633293 DOI: 10.2147/nss.s472675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
Purpose Despite recent findings suggesting an altered gut microbiota in those suffering from insomnia disorder (ID), research into the gut microbiota, oral microbiota, serum metabolites, and their interactions in patients with ID is sparse. Patients and Methods We collected a total of 114 fecal samples, 133 oral cavity samples and 20 serum samples to characterize the gut microbiota, oral microbiota and serum metabolites in a cohort of 76 ID patients (IDs) and 59 well-matched healthy controls (HCs). We assessed the microbiota as potentially biomarkers for ID for ID by 16S rDNA sequencing and elucidated the interactions involving gut microbiota, oral microbiota and serum metabolites in ID in conjunction with untargeted metabolomics. Results Gut and oral microbiota of IDs were dysbiotic. Gut and oral microbial biomarkers could be used to differentiate IDs from HCs. Eleven significantly altered serum metabolites, including adenosine, phenol, and phenol sulfate, differed significantly between groups. In multi-omics analyses, adenosine showed a positive correlation with genus_Lachnospira (p=0.029) and total sleep time (p=0.016). Additionally, phenol and phenol sulphate had a negative correlation with genus_Coprococcus (p=0.0059; p=0.0059) and a positive correlation with Pittsburgh Sleep Quality Index (p=0.006; p=0.006) and Insomnia Severity Index (p=0.021; p=0.021). Conclusion Microbiota and serum metabolite changes in IDs are strongly correlated with clinical parameters, implying mechanistic links between altered bacteria, serum metabolites and ID. This study offers novel perspective into the interaction among gut microbiota, oral microbiota, and serum metabolites for ID.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Neurology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, 523000, People’s Republic of China
- Department of Psychiatry, Sleep Medicine Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Yifan Yang
- Sleep Medicine Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Yurong Zhu
- Department of Pathology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, 523000, People’s Republic of China
| | - Rong Pan
- Department of Psychology, The Third People’s Hospital of Zhaoqing, Zhaoqing, Guangdong Province, 526060, People’s Republic of China
| | - Chaonan Liu
- Department of Psychiatry, Sleep Medicine Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Jiyang Pan
- Department of Psychiatry, Sleep Medicine Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| |
Collapse
|
6
|
Sun D, Luo J, Ye W, Wang C, Deng Q, Fang Z, Sun L, Gooneratne R. Ziziphus Jujube Polysaccharides inhibit over-abundance of fecal butyric acid in mildly stressed growing mice to ameliorate depression-like behavior. FOOD BIOSCI 2024; 62:104875. [DOI: 10.1016/j.fbio.2024.104875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Yu X, Wang X, Liu X, Li F, Bao Y, Chai Y. The Mechanism of Relieving Diarrheal Irritable Bowel Syndrome Using Polyphenols from Ribes nigrum L. Based on a Network Pharmacology Analysis and 16S rRNA Sequencing. Foods 2024; 13:3868. [PMID: 39682940 DOI: 10.3390/foods13233868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Diarrheal irritable bowel syndrome (IBS-D) is a chronic bowel condition that leads to intestinal dysfunction and is typically accompanied by diarrhea, stomach pain, and abdominal distension. Ribes nigrum L. polyphenols (RNPs), which are natural plant polyphenols, are the subject of this study, which aims to assess their potential in improving IBS-D and to explore the underlying mechanisms through a network pharmacology analysis and 16S rRNA sequencing. Next, mice models of diarrhea-predominant irritable bowel were established, and the mice with IBS-D were treated with RNPs. The effect of RNPs was then evaluated in terms of body weight, abdominal withdrawal reflex (AWR), Bristol score, fecal water percentage, diluted fecal volume, total intestinal transit time, immune index, histopathological observation, and changes in inflammatory factors. Finally, 16S rRNA sequencing and reverse q-RTPCR were utilized to evaluate the components that mediate the impact of RNPs on IBS-D. It was found that when RNP treatment was administered to mice with IBS-D, they decreased the water content in their stools, raised their immunological scores, and decreased the amount of inflammatory substances in their bodies. Moreover, through 16S rRNA sequencing, it was shown that the RNP treatment increased the relative abundances of Bacteroides, Alloprevotella, and Alistipes, which led to the remodeling of gut microbiota. In summary, RNPs significantly improved the conditions of mice with IBS-D by inhibiting the FoxO pathway and enhancing gut microbiota. This study concludes that RNPs could significantly improve the symptoms of mice with IBS-D through these means.
Collapse
Affiliation(s)
- Xi Yu
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiaotian Wang
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xintong Liu
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Fangfei Li
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| | - Yihong Bao
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| | - Yangyang Chai
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
8
|
Bai B, Luo L, Yao F, Sun Q, Chen X, Zheng W, Jiang L, Wang X, Su G. The causal relationship between the human gut microbiota and pyogenic arthritis: a Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1452480. [PMID: 39660282 PMCID: PMC11629706 DOI: 10.3389/fcimb.2024.1452480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Background Recent studies have indicated the role of the gut microbiota in the progression of osteoarticular diseases, however, the causal relationship between the gut microbiota and pyogenic arthritis remains unclear. There is also a lack of theoretical basis for the application of the gut microbiota in the treatment of pyogenic arthritis. Methods In our study, we utilized the largest genome-wide association study (GWAS) data from the MiBioGen Consortium involving 13,400 participants and extracted summary statistical data of the microbiota metabolic pathways of 7,738 participants of European descent from the Dutch Microbiome Project (DMP) The data of pyogenic arthritis were derived from the FinnGen R10 database, including 1,086 patients and 147,221 controls. We employed the two-sample Mendelian randomization approach to investigate the causal association between the gut microbiota and pyogenic arthritis. Our methods comprised inverse variance weighting, Mendelian Randomization Egger regression, weighted median, and weighted modal methods. Subsequently, polygenic and heterogeneity analyses were conducted. Results At the class level, β-proteobacteria is positively correlated with the risk of pyogenic arthritis. At the order level, Burkholderia is positively associated with the disease. At the genus level, the unclassified genus of Sutterellaceae is positively correlated with the disease, while the unnamed genus of Lachnospiraceae, Rothia, and the unnamed genus of Erysipelotrichaceae are negatively correlated with the disease. In addition, Faecalibacterium and Finegoldia are also negatively correlated with the disease. Sensitivity analysis did not show any abnormal evidence. Conclusion This study indicates that β-proteobacteria, Burkholderiales, and the unclassified genus of Sutterellaceae are associated with an increased risk of the disease, while the unnamed genus of Lachnospiraceae, Rothia, the unnamed genus of Erysipelotrichaceae, Faecalibacterium, and Finegoldia are related to a reduced risk. Future studies are needed to elucidate the specific mechanisms by which these specific bacterial groups affect pyogenic arthritis.
Collapse
Affiliation(s)
- Boliang Bai
- Department of Orthopedics, Affiliated Children’s Hospital of Soochow University, Suzhou, China
| | - Longfei Luo
- Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Feng Yao
- Department of Orthopedics, Affiliated Children’s Hospital of Soochow University, Suzhou, China
| | - Qian Sun
- Department of Orthopedics, Affiliated Children’s Hospital of Soochow University, Suzhou, China
| | - Xingguang Chen
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wen Zheng
- Department of Orthopedics, Affiliated Children’s Hospital of Soochow University, Suzhou, China
| | - Lang Jiang
- Department of Orthopedics, Affiliated Children’s Hospital of Soochow University, Suzhou, China
| | - Xiaodong Wang
- Department of Orthopedics, Affiliated Children’s Hospital of Soochow University, Suzhou, China
| | - Guanghao Su
- Department of Orthopedics, Affiliated Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Song C, Liu F, Mei Y, Cai W, Cheng K, Guo D, Liu Y, Shi H, Duan DD, Liu Z. Integrated metagenomic and metabonomic mechanisms for the therapeutic effects of Duhuo Jisheng decoction on intervertebral disc degeneration. PLoS One 2024; 19:e0310014. [PMID: 39418241 PMCID: PMC11486403 DOI: 10.1371/journal.pone.0310014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent orthopedic condition with lower back pain as the predominant clinical presentation that challenges clinical treatment with few therapeutic options. Duhuo Jisheng Decoction (DHJSD) has been proven effective in the therapy of IVDD, but the precise underlying mechanisms remain not fully elucidated. The current study was designed to test our hypothesis that DHJSD may systematically correct the phenotypic disruption of the gut microbiota and changes in the serum metabolome linked to IVDD. Analysis of the active ingredients of DHJSD by ultra high performance liquid chromatography. An integrated metagenomic and metabonomic approach was used to analyze feces and blood samples from normal and IVDD rats. Compared to the control group, fiber ring pinning on the caudal 3 to caudal 5 segments of the rats caused IVDD and significantly altered the compositions of the intestinal microbiota and serum metabolites. Integrated analysis revealed commonly-altered metabolic pathways shared by both intestinal microbiota and serum metabolome of the IVDD rats. DHJSD inhibited the degenerative process and restored the compositions of the perturbed gut microbiota, particularly the relative abundance of commensal microbes of the Prevotellaceae family. DHJSD also corrected the altered metabolic pathways involved in the metabolism of glycine, serine, threonine, valine, the citric acid cycle, and biosynthesis of leucine and isoleucine. DHJSD inhibited the disc degeneration process by an integrated metagenomic and metabonomic mechanism to restore the microbiome profile and normalize the metabonomic pathways.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Fei Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yongliang Mei
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Daru Guo
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yong Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Houyin Shi
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Dayue Darrel Duan
- Center for Phenomics of Traditional Chinese Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Luzhou Longmatan District People’s Hospital, Luzhou, Sichuan Province, China
| |
Collapse
|
10
|
Rong X, Shen C, Shu Q. Interplay between traditional Chinese medicine polysaccharides and gut microbiota: The elusive "polysaccharides-bond-bacteria-enzyme" equation. Phytother Res 2024; 38:4695-4715. [PMID: 39120443 DOI: 10.1002/ptr.8284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Polysaccharides are one of the most important components of traditional Chinese medicine (TCM) and have been extensively studied for their immunomodulatory properties. The functions and effects of TCM polysaccharides are closely related to the gut microbiota, making the study of their interaction a hot topic in the field of TCM metabolism. This review follows two main inquiries: first, how the gut microbiota breaks down TCM polysaccharides to produce bioactive metabolites; and second, how TCM polysaccharides reshape the gut microbiota as a carbon source. Understanding the interaction mechanism involves a challenging equation of the structural association of TCM polysaccharides with the metabolic activities of the microbiota. This review has meticulously searched, partially organized literature spanning the past decade, that delves into the interaction mechanism between TCM polysaccharides and gut microbiota. It also gives an overview of the complex factors of the elusive "polysaccharides-bond-bacteria-enzyme" equation: the complexity of polysaccharide structures, the diversity of glycosidic bond types, the communal nature of metabolizing microbiota, the enzymes involved in functional degradation by microbiota, and the hierarchical roles of polysaccharide utilization locus and gram-positive PULs. Finally, this review aims to facilitate discussion among peers in the field of TCM microbiota and offers prospects for research in related fields, paving the way for pharmacological studies on TCM polysaccharides and gut microbiota therapeutics, and providing a reference point for further clinical research.
Collapse
Affiliation(s)
- XinQian Rong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - CanTing Shen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - QingLong Shu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
11
|
Sejbuk M, Siebieszuk A, Witkowska AM. The Role of Gut Microbiome in Sleep Quality and Health: Dietary Strategies for Microbiota Support. Nutrients 2024; 16:2259. [PMID: 39064702 PMCID: PMC11279861 DOI: 10.3390/nu16142259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary components, including dietary fiber, unsaturated fatty acids, and polyphenols, along with meal timing and spacing, significantly affect the microbiota's capacity to produce various metabolites essential for quality sleep and overall health. This review explores the role of gut microbiota in regulating sleep through various metabolites such as short-chain fatty acids, tryptophan, serotonin, melatonin, and gamma-aminobutyric acid. A balanced diet rich in plant-based foods enhances the production of these sleep-regulating metabolites, potentially benefiting overall health. This review aims to investigate how dietary habits affect gut microbiota composition, the metabolites it produces, and the subsequent impact on sleep quality and related health conditions.
Collapse
Affiliation(s)
- Monika Sejbuk
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| | - Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| |
Collapse
|
12
|
Zeng W, Wu Y, Liang X, Cun D, Ma L, Zhang J, Huang F, Jiang Z. Causal associations between human gut microbiota and osteomyelitis: a Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1338989. [PMID: 38655282 PMCID: PMC11035795 DOI: 10.3389/fcimb.2024.1338989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Background Recent studies have emphasized the role of gut microbiota in the onset and progression of osteomyelitis. However, the exact types of gut microbiota and their mechanisms of action remain unclear. Additionally, there is a lack of theoretical support for treatments that improve osteomyelitis by altering the gut microbiota. Methods In our study, we utilized the largest genome-wide association study (GWAS) meta-analysis to date from the MiBioGen consortium, involving 13,400 participants. The GWAS data for osteomyelitis were sourced from the UK Biobank, which included 4,836 osteomyelitis cases and 486,484 controls. We employed a two-sample Mendelian randomization framework for a detailed investigation into the causal relationship between gut microbiota and osteomyelitis. Our methods included inverse variance weighting, MR-Egger, weighted median, and weighted mode approaches. Additionally, we applied Cochran's Q statistic to assess the heterogeneity of the instrumental variable. Results At the class level, Bacilli and Bacteroidia were positively correlated with the risk of osteomyelitis. At the order level, only Bacteroidales showed a positive association with osteomyelitis. At the genus level, an increased abundance of Butyricimonas, Coprococcus3, and Tyzzerella3 was positively associated with the risk of osteomyelitis, whereas Lachnospira was negatively associated. Sensitivity analyses showed no evidence of heterogeneity or pleiotropy. Conclusion This study reveals that classes Bacilli and Bacteroidia, order Bacteroidales, and genera Butyricimonas, Coprococcus3, and Tyzzerella3 are implicated in increasing the risk of osteomyelitis, while the genus Lachnospira is associated with a reduced risk. Future investigations are warranted to elucidate the precise mechanisms through which these specific bacterial groups influence the pathophysiology of osteomyelitis.
Collapse
Affiliation(s)
- Wenxing Zeng
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuheng Wu
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaoye Liang
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dejun Cun
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Luyao Ma
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingtao Zhang
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Huang
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Traumatology and Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwei Jiang
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Traumatology and Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Yan W, Zhuang Z, Gao Y, Wang Y, He D. A Mendelian randomization investigation of the causal association between the gut microbiota and sleep disorders. Front Microbiol 2024; 15:1372827. [PMID: 38585691 PMCID: PMC10995228 DOI: 10.3389/fmicb.2024.1372827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Background Increasing numbers of people are suffering from sleep disorders. The gut microbiota of these individuals differs significantly. However, no reports are available on the causal associations between specific gut microbiota and sleep disorders. Methods Data on gut genera were obtained from the MiBioGen consortium. Twenty-four cohorts with 18,340 individuals of European origin were included. Sleep disorder data, which included 216,454 European individuals, were retrieved from the FinnGen Biobank. Subsequently, two-sample Mendelian randomization was performed to analyze associations between sleep disorders and specific components of the gut microbiota. Results Inverse variance weighting (IVW) revealed a negative correlation between Coprobacter and sleep disorders (OR = 0.797, 95% CI = 0.66-0.96, and p = 0.016), a positive correlation between Lachnospiraceae and sleep disorders (OR = 1.429, 95% CI = 1.03-1.98, and p = 0.032), a negative association between Oscillospira and sleep disorders (OR = 0.745, 95% CI = 0.56-0.98, and p = 0.038), and a negative association between Peptococcus and sleep disorders (OR = 0.858, 95% CI = 0.74-0.99, p = 0.039). Conclusion A significant causal relationship was found between four specific gut microbiota and sleep disorders. One family, Lachnospiraceae, was observed to increase the risk of sleep disorders, while three genera, namely, Coprobacter, Oscillospira, and Peptococcus, could reduce the risk of sleep disorders. However, further investigations are needed to confirm the specific mechanisms by which the gut microbiota affects sleep.
Collapse
Affiliation(s)
- Wei Yan
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhenzhen Zhuang
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuhao Gao
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuntao Wang
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
| | - Daikun He
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Li Z, Zhao Y, Wang H, Zhang W, Zhang C, Xie J, Ma X. High-fibre diets regulate antioxidative capacity and promote intestinal health by regulating bacterial microbiota in growing pigs. J Anim Physiol Anim Nutr (Berl) 2024; 108:357-365. [PMID: 37899710 DOI: 10.1111/jpn.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
This experiment was conducted to investigate the effects of a high-fibre diet on growth performance, nutrients digestibility, intestinal health, and intestinal microbiota composition of growing pigs. Twelve healthy "Duroc × Landrace × Yorkshire" castrates (49 ± 1.35 kg) were randomly divided into two groups with six replicates and one pig per replicate. The two diet treatments were fed the basal diet (CON) based on corn and soybean meal and high fibre diet (HF) respectively. The nutritional levels of the two treatments were the same. The experiment lasted 28 days. The results showed that the addition of 16% wheat bran fibre to the diet of growing pigs did not affect growth performance (p > 0.05). Compared with the CON, contents of isobutyric and butyric acid, GSH-PX and T-AOC in serum were increased in the HF. It decreased the gross energy digestibility and acetic acid content in feces of growing pigs (p < 0.05), the contents of GSH-PX and T-AOC in serum. It decreased the gross energy digestibility and acetic acid content in feces of growing pigs (p < 0.05). Compared with the CON, the Shannon, and Chao1 indexes of the HF were increased (p < 0.05). At the phylum level, the abundance of g_Lactobacillus increased in the HF (p < 0.05). Correlation analysis showed that a total of 18 microbial genera were correlated with antioxidant capacity and volatile fatty acid levels (p < 0.05). In summary, this study showed that adding 16% wheat bran to the diet of growing pigs had no effect on growth performance but helped to improve the richness and stability of intestinal microbiota, promote posterior intestinal fermentation and increase serum antioxidant capacity.
Collapse
Affiliation(s)
- Zhiqing Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yujie Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hao Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Wenxi Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Junyan Xie
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiaokang Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
15
|
Wang X, Wang C, Liu K, Wan Q, Wu W, Liu C. Association between sleep-related phenotypes and gut microbiota: a two-sample bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1341643. [PMID: 38371937 PMCID: PMC10869596 DOI: 10.3389/fmicb.2024.1341643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Background An increasing body of evidence suggests a profound interrelation between the microbiome and sleep-related concerns. Nevertheless, current observational studies can merely establish their correlation, leaving causality unexplored. Study objectives To ascertain whether specific gut microbiota are causally linked to seven sleep-related characteristics and propose potential strategies for insomnia prevention. Methods The study employed an extensive dataset of gut microbiota genetic variations from the MiBioGen alliance, encompassing 18,340 individuals. Taxonomic classification was conducted, identifying 131 genera and 196 bacterial taxa for analysis. Sleep-related phenotype (SRP) data were sourced from the IEU OpenGWAS project, covering traits such as insomnia, chronotype, and snoring. Instrumental variables (IVs) were selected based on specific criteria, including locus-wide significance, linkage disequilibrium calculations, and allele frequency thresholds. Statistical methods were employed to explore causal relationships, including inverse variance weighted (IVW), MR-Egger, weighted median, and weighted Mode. Sensitivity analyses, pleiotropy assessments, and Bonferroni corrections ensured result validity. Reverse causality analysis and adherence to STROBE-MR guidelines were conducted to bolster the study's rigor. Results Bidirectional Mendelian randomization (MR) analysis reveals a causative interplay between selected gut microbiota and sleep-related phenotypes. Notably, outcomes from the rigorously Bonferroni-corrected examination illuminate profound correlations amid precise compositions of the intestinal microbiome and slumber-associated parameters. Elevated abundance within the taxonomic ranks of class Negativicutes and order Selenomonadales was markedly associated with heightened susceptibility to severe insomnia (OR = 1.03, 95% CI: 1.02-1.05, p = 0.0001). Conversely, the augmented representation of the phylum Lentisphaerae stands in concord with protracted sleep duration (OR = 1.02, 95% CI: 1.01-1.04, p = 0.0005). Furthermore, heightened exposure to the genus Senegalimassilia exhibits the potential to ameliorate the manifestation of snoring symptoms (OR = 0.98, 95% CI: 0.96-0.99, p = 0.0001). Conclusion This study has unveiled the causal relationship between gut microbiota and SRPs, bestowing significant latent value upon future endeavors in both foundational research and clinical therapy.
Collapse
Affiliation(s)
| | | | | | | | - Wenzhong Wu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chengyong Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Wang S, Yin F, Guo Z, Li R, Sun W, Wang Y, Geng Y, Sun C, Sun D. Association between gut microbiota and glioblastoma: a Mendelian randomization study. Front Genet 2024; 14:1308263. [PMID: 38239850 PMCID: PMC10794655 DOI: 10.3389/fgene.2023.1308263] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
Background: Glioblastoma (GBM) is the most prevalent malignant brain tumor, significantly impacting the physical and mental wellbeing of patients. Several studies have demonstrated a close association between gut microbiota and the development of GBM. In this investigation, Mendelian randomization (MR) was employed to rigorously evaluate the potential causal relationship between gut microbiota and GBM. Methods: We utilized summary statistics derived from genome-wide association studies (GWAS) encompassing 211 gut microbiota and GBM. The causal association between gut microbiota and GBM was scrutinized using Inverse Variance Weighted (IVW), MR-Egger, and Weighted Median (WM) methods. Cochrane's Q statistic was employed to conduct a heterogeneity test. MR-Pleiotropic Residuals and Outliers (MR-PRESSO) were applied to identify and eliminate SNPs with horizontal pleiotropic outliers. Additionally, Reverse MR was employed to assess the causal relationship between GBM and pertinent gut microbiota. Results: The MR study estimates suggest that the nine gut microbiota remain stable, considering heterogeneity and sensitivity methods. Among these, the family.Peptostreptococcaceae and genus.Eubacterium brachy group were associated with an increased risk of GBM, whereas family.Ruminococcaceae, genus.Anaerostipes, genus.Faecalibacterium, genus.LachnospiraceaeUCG004, genus.Phascolarctobacterium, genus.Prevotella7, and genus.Streptococcus were associated with a reduced risk of GBM. Following Benjamini and Hochberg (BH) correction, family.Ruminococcaceae (OR = 0.04, 95% CI: 0.01-0.19, FDR = 0.003) was identified as playing a protective role against GBM. Conclusion: This groundbreaking study is the first to demonstrate that family.Ruminococcaceae is significantly associated with a reduced risk of GBM. The modulation of family_Ruminococcaceae for the treatment of GBM holds considerable potential clinical significance.
Collapse
Affiliation(s)
- Song Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Fangxu Yin
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zheng Guo
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Li
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuchao Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yichen Geng
- Nursing College of Binzhou Medical University, Yantai, Shandong, China
| | - Chao Sun
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
Chen M, Wang Z, Tan DS, Wang X, Ye Z, Xie Z, Zhang D, Wu D, Zhao Y, Qu Y, Jiang Y. The Causal Relationship between the Morning Chronotype and the Gut Microbiota: A Bidirectional Two-Sample Mendelian Randomization Study. Nutrients 2023; 16:46. [PMID: 38201876 PMCID: PMC10780629 DOI: 10.3390/nu16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Numerous observational studies have documented an association between the circadian rhythm and the composition of the gut microbiota. However, the bidirectional causal effect of the morning chronotype on the gut microbiota is unknown. METHODS A two-sample Mendelian randomization study was performed, using the summary statistics of the morning chronotype from the European Consortium and those of the gut microbiota from the largest available genome-wide association study meta-analysis, conducted by the MiBioGen consortium. The inverse variance-weighted (IVW), weighted mode, weighted median, MR-Egger regression, and simple mode methods were used to examine the causal association between the morning chronotype and the gut microbiota. A reverse Mendelian randomization analysis was conducted on the gut microbiota, which was identified as causally linked to the morning chronotype in the initial Mendelian randomization analysis. Cochran's Q statistics were employed to assess the heterogeneity of the instrumental variables. RESULTS Inverse variance-weighted estimates suggested that the morning chronotype had a protective effect on Family Bacteroidaceae (β = -0.072; 95% CI: -0.143, -0.001; p = 0.047), Genus Parabacteroides (β = -0.112; 95% CI: -0.184, -0.039; p = 0.002), and Genus Bacteroides (β = -0.072; 95% CI: -0.143, -0.001; p = 0.047). In addition, the gut microbiota (Family Bacteroidaceae (OR = 0.925; 95% CI: 0.857, 0.999; p = 0.047), Genus Parabacteroides (OR = 0.915; 95% CI: 0.858, 0.975; p = 0.007), and Genus Bacteroides (OR = 0.925; 95% CI: 0.857, 0.999; p = 0.047)) demonstrated positive effects on the morning chronotype. No significant heterogeneity in the instrumental variables, or in horizontal pleiotropy, was found. CONCLUSION This two-sample Mendelian randomization study found that Family Bacteroidaceae, Genus Parabacteroides, and Genus Bacteroides were causally associated with the morning chronotype. Further randomized controlled trials are needed to clarify the effects of the gut microbiota on the morning chronotype, as well as their specific protective mechanisms.
Collapse
Affiliation(s)
- Manman Chen
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhenghe Wang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Din Son Tan
- Vanke School of Public Health and Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Xijie Wang
- Vanke School of Public Health and Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Zichen Ye
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhilan Xie
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Daqian Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dandan Wu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuankai Zhao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yimin Qu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
18
|
Yang J, Su T, Zhang Y, Jia M, Yin X, Lang Y, Cui L. A bidirectional Mendelian randomization study investigating the causal role between gut microbiota and insomnia. Front Neurol 2023; 14:1277996. [PMID: 38145126 PMCID: PMC10740168 DOI: 10.3389/fneur.2023.1277996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Background It has emerged that disturbances of the gut microbiota (GM) are linked to insomnia. However, the causality of the observed associations remains uncertain. Methods We conducted a two-sample Mendelian randomization analysis based on genome-wide association study data to explore the possible causal link between GM and insomnia. The GM data were from the MiBioGen consortium, while the summary statistics of insomnia were obtained from the FinnGen consortium R9 release data. Cochran's Q statistics were used to analyze instrumental variable heterogeneity. Results According to the inverse variance weighted estimates, the family Ruminococcaceae (odds ratio = 1.494, 95% confidence interval:1.004-2.223, p = 0.047) and the genus Lachnospiraceae (odds ratio = 1.726, 95% confidence interval: 1.191-2.501, p = 0.004) play a role in insomnia risk. In contrast, the genus Flavonifractor (odds ratio = 0.596, 95% confidence interval: 0.374-0.952, p = 0.030) and the genus Olsenella (odds ratio = 0.808, 95% confidence interval: 0.666-0.980, p = 0.031) tended to protect against insomnia. According to the reverse MR analysis, insomnia can also alter GM composition. Instrumental variables were neither heterogeneous nor horizontal pleiotropic. Conclusion In conclusion, our Mendelian randomization study provides evidence of a causal relationship between GM and insomnia. The identified GM may be promising gut biomarkers and new therapeutic targets for insomnia. This investigation also provides a foundation for future studies examining the influence of GM on sleep disorders beyond insomnia, with potential implications for redefining the mechanisms governing sleep regulation.
Collapse
Affiliation(s)
- Jie Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Tengfei Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yating Zhang
- Department of Otolaryngology, The Second Hospital of Jilin University, Changchun, China
| | - Menghan Jia
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
BaHammam AS, Pirzada A. Timing Matters: The Interplay between Early Mealtime, Circadian Rhythms, Gene Expression, Circadian Hormones, and Metabolism-A Narrative Review. Clocks Sleep 2023; 5:507-535. [PMID: 37754352 PMCID: PMC10528427 DOI: 10.3390/clockssleep5030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Achieving synchronization between the central and peripheral body clocks is essential for ensuring optimal metabolic function. Meal timing is an emerging field of research that investigates the influence of eating patterns on our circadian rhythm, metabolism, and overall health. This narrative review examines the relationship between meal timing, circadian rhythm, clock genes, circadian hormones, and metabolic function. It analyzes the existing literature and experimental data to explore the connection between mealtime, circadian rhythms, and metabolic processes. The available evidence highlights the importance of aligning mealtime with the body's natural rhythms to promote metabolic health and prevent metabolic disorders. Specifically, studies show that consuming meals later in the day is associated with an elevated prevalence of metabolic disorders, while early time-restricted eating, such as having an early breakfast and an earlier dinner, improves levels of glucose in the blood and substrate oxidation. Circadian hormones, including cortisol and melatonin, interact with mealtimes and play vital roles in regulating metabolic processes. Cortisol, aligned with dawn in diurnal mammals, activates energy reserves, stimulates appetite, influences clock gene expression, and synchronizes peripheral clocks. Consuming meals during periods of elevated melatonin levels, specifically during the circadian night, has been correlated with potential implications for glucose tolerance. Understanding the mechanisms of central and peripheral clock synchronization, including genetics, interactions with chronotype, sleep duration, and hormonal changes, provides valuable insights for optimizing dietary strategies and timing. This knowledge contributes to improved overall health and well-being by aligning mealtime with the body's natural circadian rhythm.
Collapse
Affiliation(s)
- Ahmed S. BaHammam
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11324, Saudi Arabia
| | - Abdulrouf Pirzada
- North Cumbria Integrated Care (NCIC), National Health Service (NHS), Carlisle CA2 7HY, UK;
| |
Collapse
|
20
|
Lotti S, Dinu M, Colombini B, Amedei A, Sofi F. Circadian rhythms, gut microbiota, and diet: Possible implications for health. Nutr Metab Cardiovasc Dis 2023; 33:1490-1500. [PMID: 37246076 DOI: 10.1016/j.numecd.2023.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
AIMS Over the past years, interest in chrono-nutrition has grown enormously as the fundamental role of circadian rhythms in regulating most physiological and metabolic processes has become clearer. Recently, the influence of circadian rhythms on the gut microbiota (GM) composition has also emerged, as more than half of the total microbial composition fluctuates rhythmically throughout the day. At the same time, other studies have observed that the GM itself synchronises the host's circadian biological clock through signals of a different nature. Therefore, it has been hypothesised that there is a two-way communication between the circadian rhythms of the host and the GM, but researchers have only just begun to identify some of its action mechanisms. The manuscript aim is, therefore, to gather and combine the latest evidence in the field of chrono-nutrition with the more recent research on the GM, in order to investigate their relationship and their potential impact on human health. DATA SYNTHESIS Considering current evidence, a desynchronization of circadian rhythms is closely associated with an alteration in the abundance and functionality of the gut microbiota with consequent deleterious effects on health, such as increased risk of numerous pathologies, including cardiovascular disease, cancer, irritable bowel disease, and depression. A key role in maintaining the balance between circadian rhythms and GM seems to be attributed to meal-timing and diet quality, as well as to certain microbial metabolites, in particular short-chain fatty acids. CONCLUSIONS Future studies are needed to decipher the link between the circadian rhythms and specific microbial patterns in relation to different disease frameworks.
Collapse
Affiliation(s)
- Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Italy; Unit of Clinical Nutrition, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
21
|
Linkovski O, Naftalovich H, David M, Seror Y, Kalanthroff E. The Effect of Symptom-Provocation on Inhibitory Control in Obsessive-Compulsive Disorder Patients Is Contingent upon Chronotype and Time of Day. J Clin Med 2023; 12:4075. [PMID: 37373768 DOI: 10.3390/jcm12124075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Studies have shown that alertness can affect inhibitory control, the mechanism responsible for stopping behaviors, thoughts, or emotions. Inhibitory control is particularly important for helping individuals with Obsessive-Compulsive Disorder (OCD) resisting their symptoms. Chronotype is the mechanism governing an individual's fluctuation of alertness throughout the day. Previous studies have shown that individuals with a 'morning' chronotype have worse OCD symptoms in the evening and vice versa. We administered a novel 'symptom-provocation stop signal task' (SP-SST), in which individually tailored OCD triggers were presented and inhibitory control was measured. Twenty-five treatment-seeking OCD patients completed the SP-SST three times per day for seven consecutive days. Stop signal reaction time (SSRT), which measures inhibitory control, was calculated separately for symptom-provocation trials and for neutral trials. Results yielded that: (a) stopping was significantly harder in the symptom-provocation compared to neutral trials, and (b) the chronotype by time-of-day interaction predicts inhibition for both symptom-provocation and neutral trials, indicating better inhibition in the optimal time of day. Furthermore, we concluded that individually tailored OCD triggers have a detrimental effect on inhibitory control. Most importantly, higher alertness levels, which can be predicted by the interaction of chronotype and time of day, affect inhibitory control, both in general and for OCD triggers specifically.
Collapse
Affiliation(s)
- Omer Linkovski
- Department of Psychology, Bar-Ilan University, Ramat-Gan 52900, Israel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Hadar Naftalovich
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Mor David
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Yuval Seror
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Eyal Kalanthroff
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
22
|
Chen W, Du L, Cai C, Huang L, Zheng Q, Chen J, Wang L, Zhang X, Fang X, Wang L, Zhong Q, Zhong W, Wang J, Liao Z. Take chicks as an example: Rummeliibacillus stabekisii CY2 enhances immunity and regulates intestinal microbiota by degrading LPS to promote organism growth and development. J Funct Foods 2023; 105:105583. [DOI: 10.1016/j.jff.2023.105583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
23
|
Yuan S, Mason AM, Titova OE, Vithayathil M, Kar S, Chen J, Li X, Burgess S, Larsson SC. Morning chronotype and digestive tract cancers: Mendelian randomization study. Int J Cancer 2023; 152:697-704. [PMID: 36093575 PMCID: PMC7613990 DOI: 10.1002/ijc.34284] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 02/01/2023]
Abstract
Morning chronotype has been associated with a reduced risk of prostate and breast cancer. However, few studies have examined whether chronotype is associated with digestive tract cancer risk. We conducted a Mendelian randomization (MR) study to assess the associations of chronotype with major digestive tract cancers. A total of 317 independent genetic variants associated with chronotype at the genome-wide significance level (P < 5 × 10-8 ) were used as instrumental variables from a genome-wide meta-analysis of 449 734 individuals. Summary-level data on overall and six digestive tract cancers, including esophageal, stomach, liver, biliary tract, pancreatic and colorectal cancers, were obtained from the UK Biobank (11 952 cases) and FinnGen (7638 cases) study. Genetic liability to morning chronotype was associated with reduced risk of overall digestive tract cancer and cancers of stomach, biliary tract and colorectum in UK Biobank. The associations for the overall digestive tract, stomach and colorectal cancers were directionally replicated in FinnGen. In the meta-analysis of the two sources, genetic liability to morning chronotype was associated with a decreased risk of overall digestive tract cancer (odds ratio [OR] 0.94, 95% confidence interval [CI]: 0.90-0.98), stomach cancer (OR 0.84, 95% CI: 0.73-0.97) and colorectal cancer (OR 0.92, 95% CI: 0.87-0.98), but not with the other studied cancers. The associations were consistent in multivariable MR analysis with adjustment for genetically predicted sleep duration, short sleep, insomnia and body mass index. The study provided MR evidence of inverse associations of morning chronotype with digestive tract cancer, particularly stomach and colorectal cancers.
Collapse
Affiliation(s)
- Shuai Yuan
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Amy M Mason
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olga E Titova
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jie Chen
- Centre for Global Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.,Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Hao SR, Zhou YY, Zhang X, Jiang HY. Gut microbiome profiles may be related to atypical antipsychotic associated overweight in Asian children with psychiatric disorder: a preliminary study. Front Cell Infect Microbiol 2023; 13:1124846. [PMID: 37207186 PMCID: PMC10189138 DOI: 10.3389/fcimb.2023.1124846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Objective Atypical antipsychotics (APs) modify the gut microbiome, and weight gain in response to AP could be mediated by the gut microbiome. Thus, the present study aimed to explore the changes in the gut bacterial microbiome in AP-exposed children with obesity. Methods To rule out the confounder of AP indication, the gut bacterial microbiome was compared between healthy controls (Con) and AP-exposed individuals with overweight (APO) or normal weight (APN). Fifty-seven AP-treated outpatients (21 APO and 36 APN) and 25 Con were included in this cross-sectional microbiota study. Results AP users, regardless of body mass index, exhibited decreased microbial richness and diversity and a distinct metagenomic composition compared to the Con. Although no differences in the microbiota structure were observed between APO and APN groups, the APO group was characterised by a higher abundance of Megamonas and Lachnospira. Additionally, the differences in the microbial functions were observed between APO and APN groups. Conclusions The gut bacterial microbiota of APO children revealed taxonomic and functional differences compared to Con and APN. Further studies are needed to verify these findings and to explore the temporal and causal relationships between these variables.
Collapse
Affiliation(s)
- Shao-rui Hao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan-yue Zhou
- Department of Medical Psychology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
- Department of Child Psychiatry, Hangzhou Seventh People’s Hospital, Hangzhou, Zhejiang, China
| | - Xue Zhang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, The Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hai-yin Jiang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Hai-yin Jiang, ;
| |
Collapse
|
25
|
The microbiota-gut-brain axis in sleep disorders. Sleep Med Rev 2022; 65:101691. [DOI: 10.1016/j.smrv.2022.101691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022]
|
26
|
Muscogiuri G, Zanata I, Barrea L, Cozzolino A, Filice E, Messina E, Colao A, Faggiano A. A practical nutritional guideline to manage neuroendocrine neoplasms through chronotype and sleep. Crit Rev Food Sci Nutr 2022; 63:7546-7563. [PMID: 35285728 DOI: 10.1080/10408398.2022.2047882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chronotype is the attitude of subjects to carry out their daily activities mainly in the morning ("lark") or in the evening ("owl"). The intermediate chronotype is located between these two categories. It has been demonstrated that chronotype can influence the incidence, course and response to treatments of tumors. In particular patients diagnosed with gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) and evening chronotype are characterized by unhealthy lifestyle, obesity, metabolic syndrome, a worsen cardiometabolic profile, a poor prognosis with a progressive disease and the development of metastasis. In addition, evening chronotype has been associated with sleep disturbances, which in turn have been related to tumor development and progression of tumors. There is a strict connection between sleep disturbances and NENs because of the hyperactivation of proangiogenic factors that caused aberrant neoangiogenesis. A nutritional tailored approach could represent a tool to align subjects with evening chronotype to physiological biological rhythms based on the properties of some macro and micronutrients of being substrate for melatonin synthesis. Thus, we aimed to provide an overview on the association of chronotype categories and sleep disturbances with NENs and to provide nutritional advices to manage subjects with NENs and these disturbances of circadian rhythm.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile,", Università Federico II di Napoli, Naples, Italy
| | - Isabella Zanata
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Luigi Barrea
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Naples, Italy
| | - Alessia Cozzolino
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emanuele Filice
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Erika Messina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile,", Università Federico II di Napoli, Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
27
|
The interplay between Sleep and Gut Microbiota. Brain Res Bull 2022; 180:131-146. [DOI: 10.1016/j.brainresbull.2021.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
|