1
|
Kattner AA. Rhythms under tension: Circadian clocks in an Unsynced Society. Biomed J 2025; 48:100873. [PMID: 40389157 PMCID: PMC12167803 DOI: 10.1016/j.bj.2025.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025] Open
Abstract
This special issue of the Biomedical Journal centers on circadian rhythms, examining the molecular mechanisms of the circadian clock, the consequences of circadian disruption, and their implications for health and disease. Featured topics include blue light therapy for sleep disorders in myocardial infarction patients; sex-specific links between clock genes and colorectal cancer; the impact of social jetlag on blood pressure; and how irregular light-dark cycles and misaligned eating patterns affect circadian stability. A study on Stenabolic (SR9009) in mice investigates its potential to mitigate weight gain, insulin resistance, and white fat accumulation under constant light exposure. Additional reviews address the role of purinoreceptors in extracellular vesicle-mediated communication, the evolving understanding of pseudogenes and their functional derivatives, and future prospects for hyperpolarized magnetic resonance imaging. Original research highlights the influence of corticosterone on white adipose tissue expansion in mice and challenges the assumed protective role of pentoxifylline against diabetic retinopathy in patients with chronic kidney disease and diabetes. A novel application of peripheral magnetic stimulation as a treatment for overactive bladder is also explored. Two studies on hidradenitis suppurativa are included: one linking the condition to an increased risk of migraine in women, and another examining its association with alopecia areata. The issue concludes with two letters to the editor on the effects of the SARS-CoV-2 spike protein on erythrocyte biology, along with a request for further clarification, which is addressed in detail.
Collapse
|
2
|
Ren W, Wang Z, Dong Y, Cao J, Gao T, Guo Q, Chen Y. Dim blue light at night worsens high-fat diet-induced kidney damage via increasing corticosterone levels and modulating the expression of circadian clock genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117636. [PMID: 39752912 DOI: 10.1016/j.ecoenv.2024.117636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025]
Abstract
Obesity is a contributing factor that increases the likelihood of developing chronic kidney disease. In recent years, studies have found that light pollution worldwide promoted obesity, which was known to be a consequence of circadian rhythm disruption. Nevertheless, the impact of light pollution on kidney disease associated with obesity remains mostly unknown, and potential processes have been minimally investigated. Herein, we fed mice a high-fat diet and gave them dim white (dWL), blue (dBL), green (dGL), and red (dRL) light for 12 weeks. Our results showed that both dWL and dBL tended to be more susceptible to damage to kidney dysfunction caused by a high-fat diet compared to LD, with more pronounced changes in dBL. The analysis of kidney found that dBL activated the TGF-β1/Smad signaling pathway to promote epithelial-mesenchymal transition (EMT) in the kidney. Additionally, dBL activated the NF-κB signaling pathway and resulted in elevated protein levels of TLR4, p-IκB, p-P65, and TNF-α. Furthermore, dBL increased BAX protein levels and decreased BCL2 protein levels. At the same time, dBL affected the Keap1/Nrf2/HO-1 signaling pathway, elevating KEAP1 and decreasing NRF2 and HO-1 protein levels. We were surprised to find that dBL altered the expression of the circadian clock genes, resulting in a decrease in the positively regulated genes Bmal1, Clock, and an increase in the negatively regulated genes Per1, Per2, Per3. Mechanistically, dBL increased plasma CORT levels as well as decreased renal GR α expression, and in vitro experiments showed that the circadian clock genes were altered by the addition of CORT and returned to normal levels after the addition of the GR inhibitor RU486. Consequently, dBL can exacerbate renal injury by elevating plasma CORT levels and altering rhythmic changes by acting on the biological clock via GR.
Collapse
Affiliation(s)
- Wenji Ren
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Ting Gao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Qingyun Guo
- Beijing Milu Ecological Research Center, Daxing, Beijing 100076, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
3
|
Laorodphun P, Panya A, Swe MT, Arjinajarn P. Black rice bran extract exerts hepatoprotection via attenuating inflammation and apoptosis in obese-insulin-resistant rats. Heliyon 2024; 10:e38538. [PMID: 39421367 PMCID: PMC11483298 DOI: 10.1016/j.heliyon.2024.e38538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 09/06/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Global pandemic of obesity contributes to increasing the risk of diabetes and non-alcoholic fatty liver disease (NAFLD). To find an alternative approach to lower the risk caused by obesity. Aims We investigated the antidiabetic and hepatoprotective activity of black rice bran extract (BRE) in obese, insulin-resistant rats induced by a high-fat diet (HFD). Main methods After HFD feeding, the parameters related to glucose, lipid profiles, and liver injury were determined. Key findings Rats on a HFD exhibited significantly elevated plasma glucose and lipid levels, as well as increased liver enzyme activities (aspartate transaminase and alanine transaminase), relative to the control group. Interestingly, those parameters in the BRE-treated group were significantly decreased. We investigated the liver histological study, and the BRE-treated group showed to ameliorate the liver injury accompanied by lower inflammatory and apoptotic markers. Significance Our findings suggest that BRE has the potential to be used as a dietary supplement to lessen metabolic dysregulation and prevent liver impairment.
Collapse
Affiliation(s)
- Pongrapee Laorodphun
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Myat Theingi Swe
- Department of Physiology, University of Medicine 2, Yangon, Myanmar
| | - Phatchawan Arjinajarn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Zhong C, Li N, Wang S, Li D, Yang Z, Du L, Huang G, Li H, Yeung WS, He S, Ma S, Wang Z, Jiang H, Zhang H, Li Z, Wen X, Xue S, Tao X, Li H, Xie D, Zhang Y, Chen Z, Wang J, Yan J, Liang Z, Zhang Z, Zhong Z, Wu Z, Wan C, Liang C, Wang L, Yu S, Ma Y, Yu Y, Li F, Chen Y, Zhang B, Lyu A, Ren F, Zhou H, Liu J, Zhang G. Targeting osteoblastic 11β-HSD1 to combat high-fat diet-induced bone loss and obesity. Nat Commun 2024; 15:8588. [PMID: 39362888 PMCID: PMC11449908 DOI: 10.1038/s41467-024-52965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
Excessive glucocorticoid (GC) action is linked to various metabolic disorders. Recent findings suggest that disrupting skeletal GC signaling prevents bone loss and alleviates metabolic disorders in high-fat diet (HFD)-fed obese mice, underpinning the neglected contribution of skeletal GC action to obesity and related bone loss. Here, we show that the elevated expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), the enzyme driving local GC activation, and GC signaling in osteoblasts, are associated with bone loss and obesity in HFD-fed male mice. Osteoblast-specific 11β-HSD1 knockout male mice exhibit resistance to HFD-induced bone loss and metabolic disorders. Mechanistically, elevated 11β-HSD1 restrains glucose uptake and osteogenic activity in osteoblast. Pharmacologically inhibiting osteoblastic 11β-HSD1 by using bone-targeted 11β-HSD1 inhibitor markedly promotes bone formation, ameliorates glucose handling and mitigated obesity in HFD-fed male mice. Taken together, our study demonstrates that osteoblastic 11β-HSD1 directly contributes to HFD-induced bone loss, glucose handling impairment and obesity.
Collapse
Affiliation(s)
- Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Nanxi Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dijie Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, College of Life Sciences, Guangxi Normal University, Gui Lin, China
| | - Zhihua Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Guangxin Huang
- Department of Joint Surgery, The Third Affiliated Hospital of Southern Medical University, The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haitian Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wing Sze Yeung
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shan He
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuting Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhuqian Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarui Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhanghao Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaoxin Wen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Song Xue
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaohui Tao
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Haorui Li
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Duoli Xie
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yihao Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zefeng Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Junqin Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianfeng Yan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhengming Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhigang Zhong
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zeting Wu
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chao Wan
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sifan Yu
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yang Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Baoting Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Hong Kong, China.
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, Australia.
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
5
|
Dong X, Xiong YT, He T, Zheng C, Li J, Zhuang Y, Xu Y, Xiu Y, Wu Z, Zhao X, Xiao X, Bai Z, Gao L. Protective effects of Nogo-B deficiency in NAFLD mice and its multiomics analysis of gut microbiology and metabolism. GENES & NUTRITION 2024; 19:17. [PMID: 39182019 PMCID: PMC11344411 DOI: 10.1186/s12263-024-00754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver ailment that can lead to serious conditions such as cirrhosis and hepatocellular carcinoma. Hepatic Nogo-B regulates glucose and lipid metabolism, and its inhibition has been shown to be protective against metabolic syndrome. Increasing evidence suggests that imbalances in the gut microbiota (GM) and lipid metabolism disorders are significant contributors to NAFLD progression. Nevertheless, it is not yet known whether Nogo-B can affect NAFLD by influencing the gut microbiota and metabolites. Hence, the aim of the present study was to characterize this process and explore its possible underlying mechanisms. METHODS A NAFLD model was constructed by administering a high-fat diet (HFD) to Nogo-B-/- and WT mice from the same litter, and body weight was measured weekly in each group. The glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to assess blood glucose levels. At the end of the 12-week period, samples of serum, liver, and intestinal contents were collected and used for serum biochemical marker and inflammatory factor detection; pathology evaluation; and gut microbiome and metabolomics analysis. Spearman's correlation analysis was performed to determine possible correlations between differential gut microbiota and differential serum metabolites between groups. RESULTS Nogo-B deficiency attenuated the effects of the HFD, including weight gain, liver weight gain, impaired glucose tolerance, hepatic steatosis, elevated serum lipid biochemicals levels, and liver function. Nogo-B deficiency suppressed M1 polarization and promoted M2 polarization, thus inhibiting inflammatory responses. Furthermore, Nogo-B-/--HFD-fed mice presented increased gut microbiota richness and diversity, decreased Firmicutes/Bacteroidota (F/B) ratios, and altered serum metabolites compared with those of WT-HFD-fed mice. During analysis, several differential gut microbiota, including Lachnoclostridium, Harryflintia, Odoribacter, UCG-009, and unclassified_f_Butyricoccaceae, were screened between groups. These microbiota were found to be positively correlated with upregulated purine metabolism and bile acid metabolites in Nogo-B deficiency, while they were negatively correlated with downregulated corticosterone and tricarboxylic acid cyclic metabolites in Nogo-B deficiency. CONCLUSION Nogo-B deficiency delayed NAFLD progression, as demonstrated by reduced hepatocellular lipid accumulation, attenuated inflammation and liver injury, and ameliorated gut microbiota dysbiosis and metabolic disorders. Importantly, Odoribacter was strongly positively correlated with ALB and taurodeoxycholic acid, suggesting that it played a considerable role in the influence of Nogo-B on the progression of NAFLD, a specific feature of NAFLD in Nogo-B-/- mice. The regulation of bile acid metabolism by the gut microbiota may be a potential target for Nogo-B deficiency to ameliorate NAFLD.
Collapse
Affiliation(s)
- Xu Dong
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yu-Ting Xiong
- 307 Clinical Medical College of PLA, Anhui Medical University, Beijing, China
| | - Tingting He
- Department of Hepatology Medicine of Traditional Chinese Medicine, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Congyang Zheng
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junjie Li
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Chengde Medical University, Chengdeshi, China
| | - Yingjie Zhuang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingjie Xu
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ye Xiu
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhixin Wu
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaomei Zhao
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
- China Military Institute of Chinese Materia, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
- China Military Institute of Chinese Materia, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Lili Gao
- Medical School of Chinese PLA, Beijing, China.
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Martinez GJ, Kipp ZA, Lee WH, Bates EA, Morris AJ, Marino JS, Hinds TD. Glucocorticoid resistance remodels liver lipids and prompts lipogenesis, eicosanoid, and inflammatory pathways. Prostaglandins Other Lipid Mediat 2024; 173:106840. [PMID: 38830399 PMCID: PMC11199073 DOI: 10.1016/j.prostaglandins.2024.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
We have previously demonstrated that the glucocorticoid receptor β (GRβ) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRβ isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRβ regulates lipids that cause metabolic dysfunction. To determine the effect of GRβ on hepatic lipid classes and molecular species, we overexpressed GRβ (GRβ-Ad) and vector (Vec-Ad) using adenovirus delivery, as we previously described. We fed the mice a normal chow diet for 5 days and harvested the livers. We utilized liquid chromatography-mass spectrometry (LC-MS) analyses of the livers to determine the lipid species driven by GRβ. The most significant changes in the lipidome were monoacylglycerides and cholesterol esters. There was also increased gene expression in the GRβ-Ad mice for lipogenesis, eicosanoid synthesis, and inflammatory pathways. These indicate that GRβ-induced glucocorticoid resistance may drive hepatic fat accumulation, providing new therapeutic advantages.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, and Central Arkansas Veterans Affairs Healthcare System, Little Rock, AR 72205, USA
| | - Joseph S Marino
- Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
7
|
Tsai SF, Hsu PL, Yeh MC, Hung HC, Shih MMC, Chung BC, Wang CY, Chang CJ, Kuo YM. High-fat diet-induced increase in glucocorticoids contributes to adipogenesis in obese mice. Biomed J 2024:100772. [PMID: 39048079 DOI: 10.1016/j.bj.2024.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND This study was designed to examine how glucocorticoids (GCs) induced by a long-term ingestion of high-fat diet (HFD) mediate the HFD-induced adipose expansion and obesity. MATERIAL AND METHODS To address this goal, we used a unique L/L mouse model that fails to induce its corticosterone (CORT) level, a major type of GCs in rodents, after prolonged exposure to an HFD. RESULTS We found that, after receiving a 12-week HFD feeding, the L/L mice show less weight gain, milder adipose expansion, and higher plasma levels of triglycerides than the wild-type mice. These changes were reversed by replenishing CORT to L/L mice. When examining the expression levels of various molecules linked to lipid uptake and de novo lipogenesis in CORT-induced adipose expansion, we observed a reduction in the expression of adipose preadipocyte factor 1 (Pref-1), a key regulator in adipogenesis. In 3T3-L1 preadipocyte-like cells, dexamethasone, an agonist of the glucocorticoid receptor, also reduced expressions of Pref-1 and facilitated intracellular accumulation of lipids. CONCLUSIONS Our results suggest that fat ingestion-induced release of CORT contributes to adipose expansion and development of obesity and highlight the pathogenic role of CORT-mediated downregulation of adipose Pref-1 in diet-induced obesity.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Mei-Chen Yeh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Tainan, 710402, Taiwan
| | - Hao-Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Tainan, 710402, Taiwan
| | - Monica Meng-Chun Shih
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115021, Taiwan
| | - Bon-Chu Chung
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115021, Taiwan; Graduate Institute of Biomedical Sciences, Neuroscience and Brain Disease Center, China Medical University, Taichung, 404328, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600566, Taiwan.
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan.
| |
Collapse
|
8
|
Mezhibovsky E, Tveter KM, Villa-Rodriguez JA, Bacalia K, Kshatriya D, Desai N, Cabales A, Wu Y, Sui K, Duran RM, Bello NT, Roopchand DE. Grape Polyphenols May Prevent High-Fat Diet-Induced Dampening of the Hypothalamic-Pituitary-Adrenal Axis in Male Mice. J Endocr Soc 2023; 7:bvad095. [PMID: 37538101 PMCID: PMC10396072 DOI: 10.1210/jendso/bvad095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 08/05/2023] Open
Abstract
Context Chronic high-fat diet (HFD) consumption causes obesity associated with retention of bile acids (BAs) that suppress important regulatory axes, such as the hypothalamic-pituitary-adrenal axis (HPAA). HFD impairs nutrient sensing and energy balance due to a dampening of the HPAA and reduced production and peripheral metabolism of corticosterone (CORT). Objective We assessed whether proanthocyanidin-rich grape polyphenol (GP) extract can prevent HFD-induced energy imbalance and HPAA dysregulation. Methods Male C57BL6/J mice were fed HFD or HFD supplemented with 0.5% w/w GPs (HFD-GP) for 17 weeks. Results GP supplementation reduced body weight gain and liver fat while increasing circadian rhythms of energy expenditure and HPAA-regulating hormones, CORT, leptin, and PYY. GP-induced improvements were accompanied by reduced mRNA levels of Il6, Il1b, and Tnfa in ileal or hepatic tissues and lower cecal abundance of Firmicutes, including known BA metabolizers. GP-supplemented mice had lower concentrations of circulating BAs, including hydrophobic and HPAA-inhibiting BAs, but higher cecal levels of taurine-conjugated BAs antagonistic to farnesoid X receptor (FXR). Compared with HFD-fed mice, GP-supplemented mice had increased mRNA levels of hepatic Cyp7a1 and Cyp27a1, suggesting reduced FXR activation and more BA synthesis. GP-supplemented mice also had reduced hepatic Abcc3 and ileal Ibabp and Ostβ, indicative of less BA transfer into enterocytes and circulation. Relative to HFD-fed mice, CORT and BA metabolizing enzymes (Akr1d1 and Srd5a1) were increased, and Hsd11b1 was decreased in GP supplemented mice. Conclusion GPs may attenuate HFD-induced weight gain by improving hormonal control of the HPAA and inducing a BA profile with less cytotoxicity and HPAA inhibition, but greater FXR antagonism.
Collapse
Affiliation(s)
- Esther Mezhibovsky
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Kevin M Tveter
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jose A Villa-Rodriguez
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Karen Bacalia
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Dushyant Kshatriya
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nikhil Desai
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Alrick Cabales
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ke Sui
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Rocio M Duran
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nicholas T Bello
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
9
|
Shift work and nonalcoholic fatty liver disease incidence among Chinese rail workers: a 4-year longitudinal cohort study. Int Arch Occup Environ Health 2023; 96:179-190. [PMID: 35989361 DOI: 10.1007/s00420-022-01913-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/10/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Occupational harmful factors, such as shift work, are attracting increasing attention as a potential cause of nonalcoholic fatty liver disease (NAFLD). In this study, we aimed to identify the association between shift work and NAFLD incidence in Chinese rail population. METHODS A cohort study was conducted among 14,112 rail workers for 4-year follow-up. Shift work frequency and other potential variables were recorded by questionnaires, including demographic, lifestyle, and occupation information. Besides, body mass index, blood pressure, fasting blood glucose, total cholesterol, triglyceride, alanine aminotransferase, and aspartate aminotransferase were measured by anthropometric measurement and blood test. Diagnosis of new NAFLD case was based on abdominal ultrasonography. Cox proportional hazards regression model was used to determine whether shift work has effect on occurrence of NAFLD. RESULTS The incidence of NAFLD was 30.43% in total subjects. After adjustment for possible confounders, the RRs of NAFLD were 1.069 (95% CI 0.998-1.146) and 1.179 (95% CI 1.059-1.312) in occasionally shift work group and frequently shift work group respectively, compared to the seldom shift work group. In stratified analyses, the RRs of NAFLD incidence linked to shift work exposure seems increase among female and elder. The results of three sensitivity analyses were similar with main analysis. CONCLUSIONS This research provided further evidence of positive harmful effect of shift work on NAFLD incidence in Chinese rail workers, particularly in frequently shift work population. The risk estimate of shift work on NAFLD was higher in female and elder.
Collapse
|
10
|
Hassan HM, Li J. Prospect of Animal Models for Acute-on-chronic Liver Failure: A Mini-review. J Clin Transl Hepatol 2022; 10:995-1003. [PMID: 36304511 PMCID: PMC9547251 DOI: 10.14218/jcth.2022.00086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 12/04/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a clinical syndrome that develops in patients with chronic liver diseases following a precipitating event and associated with a high mortality rate due to systemic multiorgan failure. Establishing a suitable and stable animal model to precisely elucidate the molecular basis of ACLF pathogenesis is essential for the development of effective early diagnostic and treatment strategies. In this context, this article provides a concise and inclusive review of breakthroughs in ACLF animal model development.
Collapse
Affiliation(s)
- Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Li
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Correspondence to: Jun Li, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, Zhejiang 310003. China. ORCID: https://orcid.org/0000-0002-7236-8088. Tel/Fax: +86-571-87236425, E-mail:
| |
Collapse
|
11
|
Lockridge A, Hanover JA. A nexus of lipid and O-Glcnac metabolism in physiology and disease. Front Endocrinol (Lausanne) 2022; 13:943576. [PMID: 36111295 PMCID: PMC9468787 DOI: 10.3389/fendo.2022.943576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although traditionally considered a glucose metabolism-associated modification, the O-linked β-N-Acetylglucosamine (O-GlcNAc) regulatory system interacts extensively with lipids and is required to maintain lipid homeostasis. The enzymes of O-GlcNAc cycling have molecular properties consistent with those expected of broad-spectrum environmental sensors. By direct protein-protein interactions and catalytic modification, O-GlcNAc cycling enzymes may provide both acute and long-term adaptation to stress and other environmental stimuli such as nutrient availability. Depending on the cell type, hyperlipidemia potentiates or depresses O-GlcNAc levels, sometimes biphasically, through a diversity of unique mechanisms that target UDP-GlcNAc synthesis and the availability, activity and substrate selectivity of the glycosylation enzymes, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA). At the same time, OGT activity in multiple tissues has been implicated in the homeostatic regulation of systemic lipid uptake, storage and release. Hyperlipidemic patterns of O-GlcNAcylation in these cells are consistent with both transient physiological adaptation and feedback uninhibited obesogenic and metabolic dysregulation. In this review, we summarize the numerous interconnections between lipid and O-GlcNAc metabolism. These links provide insights into how the O-GlcNAc regulatory system may contribute to lipid-associated diseases including obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Amber Lockridge
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|