1
|
Liu Y, Zhao W, Lv X, Wu G, Zhou X, Tian H, Qv X, Sun H, He Y, Zhang Y, Wang C, Tian J. Herkinorin ameliorates neuronal damage in a pentylenetetrazol-induced epilepsy rat model through altering microglial and astrocytic activation by inhibiting PARP1 and NF-κB. Int Immunopharmacol 2025; 155:114588. [PMID: 40209309 DOI: 10.1016/j.intimp.2025.114588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Altered astrocytic and microglial functions have been shown to mediate inflammation and oxidative stress in epilepsy. Herkinorin, a novel mu opioid receptor (MOR) agonist, has a neuroprotective role in ischemic brain injury. In this report, we sought to explore the effects and mechanism of herkinorin in the treatment of epilepsy and neuronal damage. METHODS SH-SY5Y cells were treated with pentylenetetrazol (PTZ) and herkinorin. The viability, reactive oxygen species (ROS) release, and apoptosis of the cells were detected. A rat epilepsy model was induced via PTZ injection, and herkinorin was used for pretreatment. Immunofluorescence staining and immunohistochemistry were used to observe neuronal damage and microglial and astrocyte activation in the hippocampal CA1/3 region. Western blotting was used to determine the expression profiles of PARP1 and NF-κB. RESULTS PTZ substantially facilitated SH-SY5Y cell apoptosis, induced oxidative stress and promoted NLRP3-ASC-Caspase-1 inflammasome activation. Herkinorin attenuated SH-SY5Y cell damage mediated by PTZ and suppressed PARP1 and NF-κB. The activation of PARP1 by lipopolysaccharide (LPS) aggravated SH-SY5Y cell injury, and herkinorin treatment reversed these LPS-mediated effects. In in vivo experiments, herkinorin hampered epileptic seizures in rats and weakened PTZ-induced neuronal damage in the hippocampus. Moreover, herkinorin reduced PTZ-induced neuroinflammation, resulting in "M1" to "M2" polarization of microglia and "A1" to "A2" polarization of astrocytes. Moreover, herkinorin inhibited the expression of PARP1 and NF-κB phosphorylation in the hippocampus. CONCLUSION Herkinorin ameliorates PTZ-induced neuroinflammation in epileptic rats by inhibiting PARP1 and NF-κB and regulating microglial and astrocytic activation.
Collapse
Affiliation(s)
- Yun Liu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine,Guiyang, Guizhou 550001, China; Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Wenmei Zhao
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China; Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xia Lv
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Guangjie Wu
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Xia Zhou
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Helan Tian
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Xiang Qv
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Hongpeng Sun
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Yingying He
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - YingYue Zhang
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Chuan Wang
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China; Guizhou Medical University, Guiyang 550025, China
| | - Jinyong Tian
- Department of Neurophysiology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China.
| |
Collapse
|
2
|
Heiskanen M, Ndode-Ekane XE, Ali I, Santana-Gomez C, Puhakka N, Gupta SD, Andrade P, Immonen R, Casillas-Espinosa P, Manninen E, Smith G, Brady RD, Silva J, Braine E, Hudson M, Yamakawa GR, Jones NC, Shultz SR, Harris NG, Wright DK, Gröhn O, Staba RJ, O'Brien TJ, Pitkänen A. Plasma microRNAs as prognostic biomarkers for development of severe epilepsy after experimental traumatic brain injury-EpiBioS4Rx Project 1 study. Epilepsia 2025; 66:870-885. [PMID: 39661396 PMCID: PMC11908664 DOI: 10.1111/epi.18219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVE To test a hypothesis that acutely regulated plasma microRNAs (miRNAs) can serve as prognostic biomarkers for the development of post-traumatic epilepsy (PTE). METHODS Adult male Sprague-Dawley rats (n = 245) were randomized to lateral fluid-percussion-induced traumatic brain injury (TBI) or sham operation at three study sites (Finland, Australia, United States). Video-electroencephalography (vEEG) was performed on the seventh post-injury month to detect spontaneous seizures. Tail vein plasma collected 48 h after TBI for miRNA analysis was available from 209 vEEG monitored animals (45 sham, 164 TBI [32 with epilepsy]). Based on small RNA sequencing and previous data, the seven most promising brain enriched miRNAs (miR-183-5p, miR-323-3p, miR-434-3p, miR-9a-3p, miR-124-3p, miR-132-3p, and miR-212-3p) were validated by droplet digital polymerase chain reaction (ddPCR). RESULTS All seven plasma miRNAs differentiated between TBI and sham-operated rats. None of the seven miRNAs differentiated TBI rats that did and did not develop epilepsy (p > .05), or rats with ≥3 vs <3 seizures in a month (p > .05). However, miR-212-3p differentiated rats that developed epilepsy with seizure clusters (i.e., ≥3 seizures within 24 h) from those without seizure clusters (.34 ± .14 vs .60 ± .34, adj. p < .05) with an area under the curve (AUC) of .81 (95% confidence interval [CI] .65-.97, p < .01, 64% sensitivity, 95% specificity). Lack of elevation in miR-212-3p also differentiated rats that developed epilepsy with seizure clusters from all other TBI rats (n = 146, .34 ± .14 vs .55 ± .31, p < .01) with an AUC of .74 (95% CI .61-.87, p < .01, 82% sensitivity, 62% specificity). Glmnet analysis identified a combination of miR-212-3p and miR-132-3p as an optimal set to differentiate TBI rats with vs without seizure clusters (cross-validated AUC .75, 95% CI .47-.92, p < .05). SIGNIFICANCE miR-212-3p alone or in combination with miR-132-3p shows promise as a translational prognostic biomarker for the development of severe PTE with seizure clusters.
Collapse
Affiliation(s)
- Mette Heiskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Idrish Ali
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine, the Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Cesar Santana-Gomez
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Shalini Das Gupta
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pedro Andrade
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Immonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pablo Casillas-Espinosa
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine, the Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Eppu Manninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gregory Smith
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, & UCLA Intellectual and Developmental Disabilities Research Center, University of California at Los Angeles, Los Angeles, California, USA
| | - Rhys D Brady
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine, the Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Juliana Silva
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine, the Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Emma Braine
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine, the Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Matt Hudson
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine, the Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Glen R Yamakawa
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine, the Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Nigel C Jones
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine, the Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, & UCLA Intellectual and Developmental Disabilities Research Center, University of California at Los Angeles, Los Angeles, California, USA
| | - David K Wright
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine, the Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Richard J Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine, the Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Wang H, Zhao Y, Zhang D, Li J, Yang K, Yang J, Li B. Neuroprotective effects of quinpirole on lithium chloride pilocarpine-induced epilepsy in rats and its underlying mechanisms. Eur J Med Res 2024; 29:121. [PMID: 38355613 PMCID: PMC10865707 DOI: 10.1186/s40001-024-01694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Epilepsy is a common neurological disorder that presents with challenging mechanisms and treatment strategies. This study investigated the neuroprotective effects of quinpirole on lithium chloride pilocarpine-induced epileptic rats and explored its potential mechanisms. METHODS Lithium chloride pilocarpine was used to induce an epileptic model in rats, and the effects of quinpirole on seizure symptoms and cognitive function were evaluated. The Racine scoring method, electroencephalography, and Morris water maze test were used to assess seizure severity and learning and memory functions in rats in the epileptic group. Additionally, immunohistochemistry and Western blot techniques were used to analyze the protein expression levels and morphological changes in glutamate receptor 2 (GluR2; GRIA2), BAX, and BCL2 in the hippocampi of rats in the epileptic group. RESULTS First, it was confirmed that the symptoms in rats in the epileptic group were consistent with features of epilepsy. Furthermore, these rats demonstrated decreased learning and memory function in the Morris water maze test. Additionally, gene and protein levels of GluR2 in the hippocampi of rats in the epileptic group were significantly reduced. Quinpirole treatment significantly delayed seizure onset and decreased the mortality rate after the induction of a seizure. Furthermore, electroencephalography showed a significant decrease in the frequency of the spike waves. In the Morris water maze test, rats from the quinpirole treatment group demonstrated a shorter latency period to reach the platform and an increased number of crossings through the target quadrant. Network pharmacology analysis revealed a close association between quinpirole and GluR2 as well as its involvement in the cAMP signaling pathway, cocaine addiction, and dopaminergic synapses. Furthermore, immunohistochemistry and Western blot analysis showed that quinpirole treatment resulted in a denser arrangement and a more regular morphology of the granule cells in the hippocampi of rats in the epileptic group. Additionally, quinpirole treatment decreased the protein expression of BAX and increased the protein expression of BCL2. CONCLUSION The current study demonstrated that quinpirole exerted neuroprotective effects in the epileptic rat model induced by lithium chloride pilocarpine. Additionally, it was found that the treatment not only alleviated the rats' seizure symptoms, but also improved their learning and memory abilities. This improvement was linked to the modulation of protein expression levels of GLUR2, BAX, and BCL2. These findings provided clues that would be important for further investigation of the therapeutic potential of quinpirole and its underlying mechanisms for epilepsy treatment.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Pediatrics, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Yongheng Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dongqing Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Kun Yang
- Department of Pediatrics, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Junli Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Rashidi SK, Kalirad A, Rafie S, Behzad E, Dezfouli MA. The role of microRNAs in neurobiology and pathophysiology of the hippocampus. Front Mol Neurosci 2023; 16:1226413. [PMID: 37727513 PMCID: PMC10506409 DOI: 10.3389/fnmol.2023.1226413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding and well-conserved RNAs that are linked to many aspects of development and disorders. MicroRNAs control the expression of genes related to different biological processes and play a prominent role in the harmonious expression of many genes. During neural development of the central nervous system, miRNAs are regulated in time and space. In the mature brain, the dynamic expression of miRNAs continues, highlighting their functional importance in neurons. The hippocampus, as one of the crucial brain structures, is a key component of major functional connections in brain. Gene expression abnormalities in the hippocampus lead to disturbance in neurogenesis, neural maturation and synaptic formation. These disturbances are at the root of several neurological disorders and behavioral deficits, including Alzheimer's disease, epilepsy and schizophrenia. There is strong evidence that abnormalities in miRNAs are contributed in neurodegenerative mechanisms in the hippocampus through imbalanced activity of ion channels, neuronal excitability, synaptic plasticity and neuronal apoptosis. Some miRNAs affect oxidative stress, inflammation, neural differentiation, migration and neurogenesis in the hippocampus. Furthermore, major signaling cascades in neurodegeneration, such as NF-Kβ signaling, PI3/Akt signaling and Notch pathway, are closely modulated by miRNAs. These observations, suggest that microRNAs are significant regulators in the complicated network of gene regulation in the hippocampus. In the current review, we focus on the miRNA functional role in the progression of normal development and neurogenesis of the hippocampus. We also consider how miRNAs in the hippocampus are crucial for gene expression mechanisms in pathophysiological pathways.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ata Kalirad
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shahram Rafie
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Behzad
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|