1
|
Gu C, ChenLiu Z, Wu Q, Tang D. ncRNAs as Key Regulators in Gastric Cancer: From Molecular Subtyping to Therapeutic Targets. Ann Surg Oncol 2025:10.1245/s10434-025-17368-9. [PMID: 40358781 DOI: 10.1245/s10434-025-17368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025]
Abstract
Gastric cancer (GC) poses a major global health challenge, underscoring the need for advanced diagnostic and therapeutic approaches. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have emerged as pivotal regulators in GC, with their dysregulated expression driving key processes such as tumorigenesis, metastasis, immune evasion, and chemoresistance. The functional diversity of ncRNAs across different GC molecular subtypes highlights their potential as biomarkers for improved subtype classification and patient stratification. Beyond their diagnostic value, ncRNAs demonstrate critical regulatory functions in tumor biology, establishing these RNA molecules as promising targets for therapeutic development. Strategies based on RNA hold considerable promise for addressing critical challenges such as immune escape and drug resistance by modulating key signaling pathways. These approaches can enhance immune responses, reprogram the tumor microenvironment, and reverse resistance mechanisms that compromise treatment efficacy, thereby improving clinical outcomes. Although ncRNAs represent a promising frontier in GC precision medicine, further research is required to fully harness their clinical potential.
Collapse
Affiliation(s)
- Chen Gu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhenni ChenLiu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Qihang Wu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Northern Jiangsu People's Hospital, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Xuzhou Medical University, Yangzhou, China.
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China.
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian Medical University, Yangzhou, China.
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China.
| |
Collapse
|
2
|
Xie J, Luo D, Xing P, Ding W. The Dual Roles of STAT3 in Ferroptosis: Mechanism, Regulation and Therapeutic Potential. J Inflamm Res 2025; 18:4251-4266. [PMID: 40144540 PMCID: PMC11938932 DOI: 10.2147/jir.s506964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Ferroptosis, an iron-dependent programmed mechanism of cell death that is driven by lipid peroxidation, is an important pathogenic factor in oncological and non-oncological disorders. Dysregulation of iron and lipid metabolism profoundly influences disease progression through ferroptosis modulation. Signal transducer and activator of transcription 3 (STAT3), a transcriptional regulator, regulates ferroptosis by binding to promoters of key molecules such as solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), and ferritin heavy chain 1 (FTH1). In this review, we described the role of STAT3 in supporting tumors survival by suppressing ferroptosis in malignancies, and bidirectionally regulating ferroptosis in non-tumors to regulate the development of the disease. We also reported emerging therapeutic strategies that target STAT3-mediated ferroptosis, including natural phytochemicals, inhibitors, and nanotechnology-enabled drug delivery systems. These advancements deepen the mechanistic understanding of ferroptosis regulation, and provide new theoretical bases and strategies to treat ferroptosis-related diseases.
Collapse
Affiliation(s)
- Jinghui Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Dan Luo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Pengfei Xing
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
3
|
Almouh M, Soukkarieh C, Kassouha M, Ibrahim S. Crosstalk between circular RNAs and the STAT3 signaling pathway in human cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195051. [PMID: 39121909 DOI: 10.1016/j.bbagrm.2024.195051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Circular RNAs (circRNAs) are endogenous covalently closed single-stranded RNAs produced by reverse splicing of pre-mRNA. Emerging evidence suggests that circRNAs contribute to cancer progression by modulating the oncogenic STAT3 signaling pathway, which plays key roles in human malignancies. STAT3 signaling-related circRNAs expression appears to be extensively dysregulated in diverse cancer types, where they function either as tumor suppressors or oncogenes. However, the biological effects of STAT3 signaling-related circRNAs and their associations with cancer have not been systematically studied before. Given this, shedding light on the interaction between circRNAs and STAT3 signaling pathway in human malignancies may provide several novel insights into cancer therapy. In this review, we provide a comprehensive introduction to the molecular mechanisms by which circRNAs regulate STAT3 signaling in cancer progression, and the crosstalk between STAT3 signaling-related circRNAs and other signaling pathways. We also further discuss the role of the circRNA/STAT3 axis in cancer chemotherapy sensitivity.
Collapse
Affiliation(s)
- Mansour Almouh
- Department of Animal Production, Faculty of Veterinary Medicine, Hama University, Hama, Syria.
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Morshed Kassouha
- Department of Microbiology, Faculty of Veterinary Medicine, Hama University, Hama, Syria
| | - Samer Ibrahim
- Department of Microbiology, Faculty of Veterinary Medicine, Hama University, Hama, Syria; Faculty of Dentistry, Arab Private University of science and Technology, Hama, Syria
| |
Collapse
|
4
|
Pu J, Yan X, Zhang H. The potential of circular RNAs as biomarkers and therapeutic targets for gastric cancer: A comprehensive review. J Adv Res 2024:S2090-1232(24)00551-4. [PMID: 39617262 DOI: 10.1016/j.jare.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a global health concern, contributing significantly to cancer-related mortality rates. Early detection is vital for improving patient outcomes. Recently, circular RNAs (circRNAs) have emerged as crucial players in the development and progression of various cancers, including GC. AIM This comprehensive review underscores the promising potential of circRNAs as innovative biomarkers for the early diagnosis of GC, as well as their possible utility as therapeutic targets for this life-threatening disease. Specifically, the review focuses on recent findings, mechanistic insights, and clinical applications of circRNAs in GC. KEY SCIENTIFIC CONCEPTS OF REVIEW Dysregulation of circRNAs has been consistently observed in GC tissues, offering potential diagnostic value due to their stability in bodily fluids such as blood and urine. For instance, circPTPN22 and hsa_circ_000200. Furthermore, the expression levels of circRNAs such as circCUL2, hsa_circ_0000705 and circSHKBP1 have shown strong associations with critical clinical features of GC, including diagnosis, prognosis, tumor size, lymph node metastasis, tumor-node-metastasis (TNM) stage, and treatment response. Additionally, circRNAs such as circBGN, circLMO7, and circMAP7D1 have shown interactions with specific microRNAs (miRNAs), proteins, and other molecules that play key roles in development and progression of GC. This further highlighting their potential as therapeutic targets. Despite their potential, several challenges need to be addressed to effectively apply circRNAs as GC biomarkers. These include standardizing detection methods, establishing cutoff values for diagnostic accuracy, and validating findings in larger patient cohorts. Moreover, the functional mechanisms by which circRNAs contribute to GC pathogenesis and therapeutic resistance warrant further investigation. Advances in circRNAs research could provide valuable insights into the early detection and targeted treatment of GC, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Junlin Pu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuli Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Chen M, Wang T, Tian D, Hai C, Qiu Z. Induction, growth, drug resistance, and metastasis: A comprehensive summary of the relationship between STAT3 and gastric cancer. Heliyon 2024; 10:e37263. [PMID: 39309860 PMCID: PMC11416542 DOI: 10.1016/j.heliyon.2024.e37263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Gastric cancer is a prevalent and highly lethal malignancy that poses substantial challenges to healthcare systems globally. Owing to its often asymptomatic nature in early stages, diagnosis frequently occurs at advanced stages when surgical intervention is no longer a viable option, forcing most patients to rely on nonsurgical treatments such as chemotherapy, targeted therapies, and emerging immunotherapies. Unfortunately, the therapeutic response rates for these treatments are suboptimal, and even among responders, the eventual development of drug resistance remains a significant clinical hurdle. Signal transducer and activator of transcription 3 (STAT3) is a widely expressed cellular protein that plays crucial roles in regulating cellular processes such as growth, metabolism, and immune function. Aberrant activation of the STAT3 pathway has been implicated in the initiation, progression, and therapeutic resistance of several cancers, with gastric cancer being particularly affected. Dysregulated STAT3 signaling not only drives tumorigenesis but also facilitates the development of resistance to chemotherapy and targeted therapies, as well as promotes metastatic dissemination. In this study, we explored the critical role of the STAT3 signaling cascade in the pathogenesis of gastric cancer, its contribution to drug resistance, and its involvement in the metastatic process. Furthermore, we assess recent advances in the development of STAT3 inhibitors and their potential application as therapeutic agents in the treatment of gastric cancer. This work provides a comprehensive overview of the current understanding of STAT3 in gastric cancer and offers a foundation for future research aimed at improving therapeutic outcomes in this challenging disease.
Collapse
Affiliation(s)
- Muyang Chen
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Tongshan Wang
- Gastric Cancer Center, Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dianzhe Tian
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaorui Hai
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zixuan Qiu
- School of Public Health, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
6
|
Huang M, Luo S, Yang J, Xiong H, Lu X, Ma X, Zeng J, Efferth T. Optimized therapeutic potential of Sijunzi-similar formulae for chronic atrophic gastritis via Bayesian network meta-analysis. EXCLI JOURNAL 2024; 23:1185-1207. [PMID: 39421026 PMCID: PMC11484511 DOI: 10.17179/excli2024-7618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Chronic atrophic gastritis (CAG) is considered as a significant risk factor for triggering gastric cancer incidence, if not effectively treated. Sijunzi decoction (SD) is a well-known classic formula for treating gastric disorders, and Sijunzi-similar formulae (SF) derived from SD have also been highly regarded by Chinese clinical practitioners for their effectiveness in treating chronic atrophic gastritis. Currently, there is a lack of meta-analysis for these formulae, leaving unclear which exhibits optimal efficacy. Therefore, we employed Bayesian network meta-analysis (BNMA) to evaluate the efficacy and safety of SF as an intervention for CAG and to establish a scientific foundation for the clinical utilization of SF. The result of meta-analysis demonstrated that the combination of SF and basic therapy outperformed basic therapy alone in terms of clinical efficacy rate, eradication rate of H. pylori, and incidence of adverse events. As indicated by the SUCRA value, Chaishao Liujunzi decoction (CLD) demonstrated superior efficacy in enhancing clinical effectiveness and ameliorating H. pylori infection, and it also showed remarkable effectiveness in minimizing the occurrence of adverse events. Comprehensive analysis of therapeutic efficacy suggests that CLD is most likely the optimal choice among these six formulations, holding potential value for optimizing clinical treatment strategies. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Meilan Huang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayue Yang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Huiling Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- TCM Regulating Metabolic Disease Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
7
|
Ma Q, Yang F, Xiao B, Guo X. Emerging roles of circular RNAs in tumorigenesis, progression, and treatment of gastric cancer. J Transl Med 2024; 22:207. [PMID: 38414006 PMCID: PMC10897999 DOI: 10.1186/s12967-024-05001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
With an estimated one million new cases reported annually, gastric cancer (GC) ranks as the fifth most diagnosed malignancy worldwide. The early detection of GC remains a major challenge, and the prognosis worsens either when patients develop resistance to chemotherapy or radiotherapy or when the cancer metastasizes. The precise pathogenesis underlying GC is not well understood, which further complicates its treatment. Circular RNAs (circRNAs), a recently discovered class of noncoding RNAs that originate from parental genes through "back-splicing", have been shown to play a key role in various biological processes in both eukaryotes and prokaryotes. CircRNAs have been linked to cardiovascular diseases, diabetes, hypertension, Alzheimer's disease, and the occurrence and progression of tumors. Prior studies have established that circRNAs play a crucial role in GC, impacting tumorigenesis, diagnosis, progression, and therapy resistance. This review aims to summarize how circRNAs contribute to GC tumorigenesis and progression, examine their roles in the development of drug resistance, discuss their potential as biotechnological drugs, and summarize their response to therapeutic drugs and microorganism in GC.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- Translational Medicine Research Center & School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Feifei Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
- Translational Medicine Research Center & School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
| |
Collapse
|
8
|
Zhang P, Chen Z, Lin X, Yu S, Yu X, Chen Z. Unravelling diagnostic clusters and immune landscapes of disulfidptosis patterns in gastric cancer through bioinformatic assay. Aging (Albany NY) 2023; 15:15434-15450. [PMID: 38154092 PMCID: PMC10781506 DOI: 10.18632/aging.205365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
Disulfidptosis is a novel type of cell death mediated by SLC7A11-induced disulfide stress. Gastric cancer (GC) is a common malignant gastrointestinal tumor. Existing evidence shows that SLC7A11 can regulate cell death and improve the progression of GC, suggesting disulfidptosis may exist in the pathological process of GC. However, the underlying functions of disulfidptosis regulators in GC remain unknown. The dataset of GSE54129 was screened to comprehensively investigate the disulfidptosis-related diagnostic clusters and immune landscapes in GC. Totally 15 significant disulfidptosis regulators were identified via difference analysis between GC samples and controls. Then random forest model was utilized to assess their importance score (mean decrease Gini). Then a nomogram model was constructed, which could offer benefit to patients based on our subsequent decision curve analysis. All the included GC patients were divided into 2 disulfidptosis subgroups (clusterA and clusterB) according to the significant disulfidptosis regulators in virtue of consensus clustering analysis. The disulfidptosis score of each sample was calculated through PCA algorithms to quantify the disulfidptosis subtypes. Patients from clusterB exhibited lower disulfidptosis scores than those of patients in clusterA. In addition, we found that the cases in clusterB were closely associated with the immunity of activated CD4 T cell, etc., while clusterA was linked to immature dendritic cell, mast cell, natural killer T cell, natural killer cell, etc., which has a higher disulfidptosis score. Therefore, disulfidptosis regulators play an important role in the pathological process of GC, providing a promising marker and an immunotherapeutic strategy for future GC therapy.
Collapse
Affiliation(s)
- Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhuofeng Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | | | - Siyao Yu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiang Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510405, China
| | - Zhuoqun Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
9
|
Matsuoka T, Yashiro M. Molecular Insight into Gastric Cancer Invasion-Current Status and Future Directions. Cancers (Basel) 2023; 16:54. [PMID: 38201481 PMCID: PMC10778111 DOI: 10.3390/cancers16010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. There has been no efficient therapy for stage IV GC patients due to this disease's heterogeneity and dissemination ability. Despite the rapid advancement of molecular targeted therapies, such as HER2 and immune checkpoint inhibitors, survival of GC patients is still unsatisfactory because the understanding of the mechanism of GC progression is still incomplete. Invasion is the most important feature of GC metastasis, which causes poor mortality in patients. Recently, genomic research has critically deepened our knowledge of which gene products are dysregulated in invasive GC. Furthermore, the study of the interaction of GC cells with the tumor microenvironment has emerged as a principal subject in driving invasion and metastasis. These results are expected to provide a profound knowledge of how biological molecules are implicated in GC development. This review summarizes the advances in our current understanding of the molecular mechanism of GC invasion. We also highlight the future directions of the invasion therapeutics of GC. Compared to conventional therapy using protease or molecular inhibitors alone, multi-therapy targeting invasion plasticity may seem to be an assuring direction for the progression of novel strategies.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
10
|
Hashemi M, Sabouni E, Rahmanian P, Entezari M, Mojtabavi M, Raei B, Zandieh MA, Behroozaghdam M, Mirzaei S, Hushmandi K, Nabavi N, Salimimoghadam S, Ren J, Rashidi M, Raesi R, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Deciphering STAT3 signaling potential in hepatocellular carcinoma: tumorigenesis, treatment resistance, and pharmacological significance. Cell Mol Biol Lett 2023; 28:33. [PMID: 37085753 PMCID: PMC10122325 DOI: 10.1186/s11658-023-00438-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200032, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|