1
|
Li J, Liu T, Xian M, Wei J. Therapeutic applications of exercise in neurodegenerative diseases: focusing on the mechanism of SIRT1. Mol Cell Biochem 2025:10.1007/s11010-025-05299-8. [PMID: 40358811 DOI: 10.1007/s11010-025-05299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
Neurodegenerative diseases comprise a group of central nervous system disorders marked by progressive neuronal degeneration and dysfunction. Their pathogenesis is multifactorial, involving oxidative stress, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. Recent research has highlighted the potential of exercise as a non-pharmacological intervention for both the prevention and treatment of these disorders. In particular, exercise has received growing attention for its capacity to upregulate the expression and activity of SIRT1, a critical mediator of neuroprotection via downstream signaling pathways. SIRT1, a key member of the Sirtuin family, is a nicotinamide adenine dinucleotide (NAD +)-dependent class III histone deacetylase. It plays an essential role in regulating cellular metabolism, energy homeostasis, gene expression, and cellular longevity. In the context of neurodegenerative diseases, SIRT1 confers neuroprotection by modulating multiple signaling cascades through deacetylation, suppressing neuronal apoptosis, and promoting neural repair and regeneration. Exercise enhances SIRT1 expression and activity by increasing NAD + synthesis and utilization, improving intracellular redox balance, alleviating oxidative stress-induced inhibition of SIRT1, and thereby promoting its activation. Moreover, exercise may indirectly modulate SIRT1 function by influencing interacting molecular networks. This review summarizes recent advances in the therapeutic application of exercise for neurodegenerative diseases, with a focus on SIRT1 as a central mechanism. It examines how exercise mediates neuroprotection through the regulation of SIRT1 and its associated molecular mechanisms and signaling pathways. Finally, the paper discusses the potential applications and challenges of integrating exercise and SIRT1-targeted strategies in the management of neurodegenerative diseases, offering novel perspectives for the development of innovative treatments and improvements in patients' quality of life.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, 475004, Henan, China
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jianshe Wei
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, 475004, Henan, China.
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Chen L, Tang J, Zuo X, Li B, Liu C, Hong S, Min J, Hu M, Li S, Zhou M, Chen M, He Y, Xiao Y, Huang X, Hong L. SIRT1 Alleviates Oxidative Stress-Induced Mitochondrial Dysfunction and Mitochondria-Associated Membrane Dysregulation in Stress Urinary Incontinence. Cell Prolif 2025; 58:e70009. [PMID: 39980436 PMCID: PMC12099215 DOI: 10.1111/cpr.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/21/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025] Open
Abstract
The pathogenesis of stress urinary incontinence (SUI), a condition common in women, remains to be fully elucidated. This study revealed that the incidence of SUI is associated with mitochondrial homeostasis dysregulation following oxidative stress in the fibrous connective tissue of the pelvic floor. SIRT1 is an essential factor for maintaining mitochondrial homeostasis; however, its potential role and mechanism of action in SUI pathogenesis remain unclear. Both in vitro and in vivo, we observed that oxidative stress reduced SIRT1 expression to inhibit the PGC-1α/NRF1/TFAM and PINK1/Parkin signalling pathways, eliciting impairment of mitochondrial biogenesis and mitophagy in L929 cells and SUI mice. Decreased SIRT1 levels induced endoplasmic reticulum (ER) stress and altered the structure of mitochondria-associated membranes (MAMs), disrupting ER-mitochondrial calcium homeostasis and exacerbting ROS accumulation. SIRT1 activation can restore mitochondrial function and the structure of MAMs and alleviate ER stress in fibroblasts, promoting anterior vaginal wall repair and improving urodynamic parameters in the SUI model. Our findings provide novel insights into the role and associated mechanism of SIRT1 in ameliorating oxidative stress-induced mitochondrial dysfunction in fibroblasts of the anterior vaginal wall and propose SIRT1 as a potential therapeutic target for SUI.
Collapse
Affiliation(s)
- Liying Chen
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Jianming Tang
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Xiaohu Zuo
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Bingshu Li
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Cheng Liu
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Shasha Hong
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Jie Min
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Ming Hu
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Suting Li
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Min Zhou
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Mao Chen
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Yong He
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Ya Xiao
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Xiaoyu Huang
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Li Hong
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| |
Collapse
|
3
|
Zhang W, Zhou R, Lei X, Wang M, Duan Q, Miao Y, Zhang T, Li X, Zutong Z, Wang L, Jones OD, Xu M, Bryant J, Ma J, Liu Y, Xu X. Molecular mechanism on autophagy associated cardiovascular dysfunction in Drosophila melanogaster. Front Cell Dev Biol 2025; 13:1512341. [PMID: 40099194 PMCID: PMC11911378 DOI: 10.3389/fcell.2025.1512341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 03/19/2025] Open
Abstract
As a highly conserved cellular process, autophagy has been the focus of extensive research due to its critical role in maintaining cellular homeostasis and its implications in cardiovascular pathogenesis. The decline in muscular function, along with the neuronal system, and increased sensitivity to stress have been recognized in multiple animal models. Autophagic defects in cardiovascular architecture and cellular dysfunction have been linked to both physiological and pathological conditions of the heart in mammals and Drosophila. In this review, we systematically analyze the autophagy-associated pathways in the hearts of fruit flies and aim to provide a comprehensive understanding for developing potential treatments for patients and effective strategies for agricultural applications. This analysis elucidates the molecular mechanisms of autophagy in cardiovascular function under both physiological and pathological conditions in Drosophila, offering significant insights into the development of cardiovascular diseases. The loss of key autophagy-associated proteins, including the transmembrane protein Atg9 and its partners Atg2 or Atg18, along with DmSestrin, leads to cardiac hypertrophy and structural abnormalities in Drosophila, resembling the age-dependent deterioration of cardiac function. Members of the autophagy-related (Atg) gene family, cellular or nuclear skeletal lamins, and the mechanistic or mammalian target of rapamycin (mTOR) signaling pathways are critically influential in heart function in Drosophila, with autophagy activation shown to suppress cardiac laminopathy. The mTORC1/C2 complexes, along with axis of Atg2-AMPK/Sirt1/PGC-1α pathway, are essential in the hearts of both mammals and fruit flies, governing cardiac development, growth, maturation, and the maintenance of cardiac homeostasis. The beneficial effects of several interventions that enhance cardiac function, including exercise and cold stress, can influence autophagy-dependent TOR activity of the serine/threonine protein kinase signaling in both mammals and Drosophila. Exercise has been shown to increase autophagy when it is deficient and to inhibit it when it is excessive, highlighting the dual role of autophagy in cardiac health. This review evaluates the functional significance of autophagy in the heart, particularly in the context of Drosophila, in relation to mTORC-associated autophagy and the axis of Atg2-AMPK/Sirt1/PGC-1α pathways. It systematically contrasts the molecular mechanisms underlying autophagy-related cardiovascular physiological and pathological conditions in both fruit flies and mammals. The evolutionary conservation of autophagy underscores the value of Drosophila as a model for understanding broader mechanisms of autophagy across species. This study not only deepens our understanding of autophagy's role in cardiovascular function but also provides a theoretical foundation for the potential application of autophagy in agricultural pest control.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Rong Zhou
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Xinjuan Lei
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Mofei Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Yuanlin Miao
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Tingting Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Xinjie Li
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Zhang Zutong
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Liyang Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Odell D Jones
- University Laboratory Animal Resources (ULAR), University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Mengmeng Xu
- Department of Pediatrics, Morgan Stanley Children's Hospital, Columbia University, New York, NY, United States
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA, United States
| | - Yingli Liu
- Department of Internal Medicine, University Hospital Shaanxi Normal University, Xi'an, China
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, China
| |
Collapse
|
4
|
Yin XY, Wen DT, Li HY, Gao ZQ, Gao Y, Hao W. Endurance exercise attenuates Gαq-RNAi induced hereditary obesity and skeletal muscle dysfunction via improving skeletal muscle Srl/MRCC-I pathway in Drosophila. Sci Rep 2024; 14:28207. [PMID: 39548180 PMCID: PMC11568267 DOI: 10.1038/s41598-024-79415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
G protein alpha q subunit (Gαq) can binds to the G protein-coupled receptor (GPCR) for signaling and is closely related to lipid metabolism. Endurance exercise is an effective means of combating acquired obesity and its complications, but the mechanisms by which endurance exercise modulates hereditary obesity and its complications are unknown. In this study, we achieved knockdown of Gαq in drosophila adipose tissue and skeletal muscle by constructing the Gαq-UAS-RNAi/Ppl-Gal4 and Gαq-UAS-RNAi/Mef2-GAl4 systems. Drosophila were subjected a three-week endurance exercise intervention, and changes in relevant indicators were detected and observed by RT-PCR, ELISA, oil red staining, immunofluorescence staining, and transmission electron microscopy. The results showed that knockdown of Gαq in both adipose tissue and skeletal muscle induced a significant increase in triglycerides accompanied by a decrease in rapid climbing ability, a decrease in Superoxide Dismutase (SOD) activity level, and a decrease in Mitochondrial respiratory chain complexI (MRCC I) content in Drosophila whole body and skeletal muscle, and down-regulated the expression of the G protein alpha q subunit (Gαq), the skeletal muscle myosin heavy chain expression gene (Mhc), mitochondrial biogenesis gene Spargal(the PGC-1alpha homologue in Drosophila). Endurance exercise significantly improved the triglyceride levels in the whole body and skeletal muscle of drosophila with Gαq knockdown in adipose tissue and skeletal muscle, as well as their ability to climb, increased SOD activity level and MRCCI content level, and up-regulated the expression of Gαq, Mhc, and Spargal(Srl). Thus, the present findings suggest that genetic defects in the Gαq gene in adipose and skeletal muscle tissues induce hereditary obesity and skeletal muscle dysfunction, and that endurance exercise attenuates this hereditary obesity and concomitant skeletal muscle dysfunction in drosophila by improving skeletal muscle fiber contractile proteins, mitochondrial function and function, and antioxidant capacity via mediating the Gαq/Mhc, Gαq/Srl/MRCC-I, and Gαq/SOD pathways.
Collapse
Affiliation(s)
- Xin-yuan Yin
- College of Physical Education, Ludong University, Yantai, 264025 Shandong People’s Republic of China
| | - Deng-tai Wen
- College of Physical Education, Ludong University, Yantai, 264025 Shandong People’s Republic of China
| | - Han-yu Li
- College of Physical Education, Ludong University, Yantai, 264025 Shandong People’s Republic of China
| | - Zhao-qing Gao
- College of Physical Education, Ludong University, Yantai, 264025 Shandong People’s Republic of China
| | - YuZe Gao
- College of Physical Education, Ludong University, Yantai, 264025 Shandong People’s Republic of China
| | - WeiJia Hao
- College of Physical Education, Ludong University, Yantai, 264025 Shandong People’s Republic of China
| |
Collapse
|
5
|
Yang L, Liu D, Jiang S, Li H, Chen L, Wu Y, Essien AE, Opoku M, Naranmandakh S, Liu S, Ru Q, Li Y. SIRT1 signaling pathways in sarcopenia: Novel mechanisms and potential therapeutic targets. Biomed Pharmacother 2024; 177:116917. [PMID: 38908209 DOI: 10.1016/j.biopha.2024.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024] Open
Abstract
Sarcopenia is an aging-related skeletal disease characterized by decreased muscle mass, strength, and physical function, severely affecting the quality of life (QoL) of the elderly population. Sirtuin 1 (SIRT1), as a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, has been reported to participate in various aging-related signaling pathways and exert protective effect on many human diseases. SIRT1 functioned as an important role in the occurrence and progression of sarcopenia through regulating key pathways related to protein homeostasis, apoptosis, mitochondrial dysfunction, insulin resistance and autophagy in skeletal muscle, including SIRT1/Forkhead Box O (FoxO), AMP-activated protein kinase (AMPK)/SIRT1/nuclear factor κB (NF-κB), SIRT1/p53, AMPK/SIRT1/peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and SIRT1/live kinase B1 (LKB1)/AMPK pathways. However, the specific mechanisms of these processes have not been fully illuminated. Currently, several SIRT1-mediated interventions on sarcopenia have been preliminarily developed, such as SIRT1 activator polyphenolic compounds, exercising and calorie restriction. In this review, we summarized the predominant mechanisms of SIRT1 involved in sarcopenia and therapeutic modalities targeting the SIRT1 signaling pathways for the prevention and prognosis of sarcopenia.
Collapse
Affiliation(s)
- Luning Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shide Jiang
- Department of Orthopedics, The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Anko Elijah Essien
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Michael Opoku
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shinen Naranmandakh
- Department of chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - ShuGuang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
6
|
Zhang Y, Deng Q, Hong H, Qian Z, Wan B, Xia M. Caffeic acid phenethyl ester inhibits neuro-inflammation and oxidative stress following spinal cord injury by mitigating mitochondrial dysfunction via the SIRT1/PGC1α/DRP1 signaling pathway. J Transl Med 2024; 22:304. [PMID: 38528569 PMCID: PMC10962082 DOI: 10.1186/s12967-024-05089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The treatment of spinal cord injury (SCI) has always been a significant research focus of clinical neuroscience, with inhibition of microglia-mediated neuro-inflammation as well as oxidative stress key to successful SCI patient treatment. Caffeic acid phenethyl ester (CAPE), a compound extracted from propolis, has both anti-inflammatory and anti-oxidative effects, but its SCI therapeutic effects have rarely been reported. METHODS We constructed a mouse spinal cord contusion model and administered CAPE intraperitoneally for 7 consecutive days after injury, and methylprednisolone (MP) was used as a positive control. Hematoxylin-eosin, Nissl, and Luxol Fast Blue staining were used to assess the effect of CAPE on the structures of nervous tissue after SCI. Basso Mouse Scale scores and footprint analysis were used to explore the effect of CAPE on the recovery of motor function by SCI mice. Western blot analysis and immunofluorescence staining assessed levels of inflammatory mediators and oxidative stress-related proteins both in vivo and in vitro after CAPE treatment. Further, reactive oxygen species (ROS) within the cytoplasm were detected using an ROS kit. Changes in mitochondrial membrane potential after CAPE treatment were detected with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide. Mechanistically, western blot analysis and immunofluorescence staining were used to examine the effect of CAPE on the SIRT1/PGC1α/DRP1 signaling pathway. RESULTS CAPE-treated SCI mice showed less neuronal tissue loss, more neuronal survival, and reduced demyelination. Interestingly, SCI mice treated with CAPE showed better recovery of motor function. CAPE treatment reduced the expression of inflammatory and oxidative mediators, including iNOS, COX-2, TNF-α, IL-1β, 1L-6, NOX-2, and NOX-4, as well as the positive control MP both in vitro and in vivo. In addition, molecular docking experiments showed that CAPE had a high affinity for SIRT1, and that CAPE treatment significantly activated SIRT1 and PGC1α, with down-regulation of DRP1. Further, CAPE treatment significantly reduced the level of ROS in cellular cytoplasm and increased the mitochondrial membrane potential, which improved normal mitochondrial function. After administering the SIRT1 inhibitor nicotinamide, the effect of CAPE on neuro-inflammation and oxidative stress was reversed.On the contrary, SIRT1 agonist SRT2183 further enhanced the anti-inflammatory and antioxidant effects of CAPE, indicating that the anti-inflammatory and anti-oxidative stress effects of CAPE after SCI were dependent on SIRT1. CONCLUSION CAPE inhibits microglia-mediated neuro-inflammation and oxidative stress and supports mitochondrial function by regulating the SIRT1/PGC1α/DRP1 signaling pathway after SCI. These effects demonstrate that CAPE reduces nerve tissue damage. Therefore, CAPE is a potential drug for the treatment of SCI through production of anti-inflammatory and anti-oxidative stress effects.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Qian Deng
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Postgraduate School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongxiang Hong
- Department of Spine Surgery, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, No. 666, ShengLi Road, Chongchuan District, Nantong, Jiangsu, China
| | - Zhanyang Qian
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| | - Bowen Wan
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China.
| | - Mingjie Xia
- Department of Spine Surgery, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, No. 666, ShengLi Road, Chongchuan District, Nantong, Jiangsu, China.
| |
Collapse
|