1
|
Parchem K, Baranowska M, Kościelak A, Kłosowska-Chomiczewska I, Domingues MR, Macierzanka A, Bartoszek A. Effect of oxidation and in vitro intestinal hydrolysis on phospholipid toxicity towards HT29 cell line serving as a model of human intestinal epithelium. Food Res Int 2023; 163:112227. [PMID: 36596156 DOI: 10.1016/j.foodres.2022.112227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Oxidation of food-derived phospholipids (PLs) can influence nutrient digestion and induce oxidative stress in gastrointestinal epithelium. In this study, hen egg yolk PL fraction was used to evaluate the effect of lipoxygenase (LOX)-induced PL oxidation on the rate of PL hydrolysis catalyzed by pancreatic phospholipase A2 (PLA2) in the presence of bile salts (BSs). Then, PL/BS solutions containing native or oxidized PLs were used in in vitro intestinal digestion to assess the effect of PL oxidation and hydrolysis on the toxicity towards HT29 cell line. Based on the obtained results, we suggest that hexanal and (E)-2-nonenal, formed by the decomposition of PL hydroperoxides, inhibited PLA2 activity. The cell exposure to simulated intestinal fluid (SIF) containing BSs decreased HT29 cell viability and significantly damaged cellular DNA. However, the genotoxic effect was reversed in the presence of all tested PL samples, while the protective effect against the BS-induced cytotoxicity was observed for native non-hydrolyzed PLs, but was not clearly visible for other samples. This can result from an overlap of other toxic effects such as lipotoxicity or disturbance of cellular redox homeostasis. Taking into account the data obtained, it was proposed that the PLA2 activity decline in the presence of PL oxidation products may be a kind of protective mechanism against rapid release of oxidized FAs characterized by high cytotoxic effect towards intestinal epithelium cells.
Collapse
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - Monika Baranowska
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - Anna Kościelak
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - Ilona Kłosowska-Chomiczewska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - Adam Macierzanka
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| |
Collapse
|
2
|
Microbiota Dysbiosis and Gut Barrier Dysfunction Associated with Non-Alcoholic Fatty Liver Disease Are Modulated by a Specific Metabolic Cofactors' Combination. Int J Mol Sci 2022; 23:ijms232213675. [PMID: 36430154 PMCID: PMC9692973 DOI: 10.3390/ijms232213675] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
The gut is a selective barrier that not only allows the translocation of nutrients from food, but also microbe-derived metabolites to the systemic circulation that flows through the liver. Microbiota dysbiosis occurs when energy imbalances appear due to an unhealthy diet and a sedentary lifestyle. Dysbiosis has a critical impact on increasing intestinal permeability and epithelial barrier deterioration, contributing to bacterial and antigen translocation to the liver, triggering non-alcoholic fatty liver disease (NAFLD) progression. In this study, the potential therapeutic/beneficial effects of a combination of metabolic cofactors (a multi-ingredient; MI) (betaine, N-acetylcysteine, L-carnitine, and nicotinamide riboside) against NAFLD were evaluated. In addition, we investigated the effects of this metabolic cofactors' combination as a modulator of other players of the gut-liver axis during the disease, including gut barrier dysfunction and microbiota dysbiosis. Diet-induced NAFLD mice were distributed into two groups, treated with the vehicle (NAFLD group) or with a combination of metabolic cofactors (NAFLD-MI group), and small intestines were harvested from all animals for histological, molecular, and omics analysis. The MI treatment ameliorated gut morphological changes, decreased gut barrier permeability, and reduced gene expression of some proinflammatory cytokines. Moreover, epithelial cell proliferation and the number of goblet cells were increased after MI supplementation. In addition, supplementation with the MI combination promoted changes in the intestinal microbiota composition and diversity, as well as modulating short-chain fatty acids (SCFAs) concentrations in feces. Taken together, this specific combination of metabolic cofactors can reverse gut barrier disruption and microbiota dysbiosis contributing to the amelioration of NAFLD progression by modulating key players of the gut-liver axis.
Collapse
|
3
|
Sulodexide Increases Glutathione Synthesis and Causes Pro-Reducing Shift in Glutathione-Redox State in HUVECs Exposed to Oxygen–Glucose Deprivation: Implication for Protection of Endothelium against Ischemic Injury. Molecules 2022; 27:molecules27175465. [PMID: 36080234 PMCID: PMC9457652 DOI: 10.3390/molecules27175465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Sulodexide (SDX), a purified glycosaminoglycan mixture used to treat vascular diseases, has been reported to exert endothelial protective effects against ischemic injury. However, the mechanisms underlying these effects remain to be fully elucidated. The emerging evidence indicated that a relatively high intracellular concentration of reduced glutathione (GSH) and a maintenance of the redox environment participate in the endothelial cell survival during ischemia. Therefore, the aim of the present study was to examine the hypothesis that SDX alleviates oxygen–glucose deprivation (OGD)-induced human umbilical endothelial cells’ (HUVECs) injury, which serves as the in vitro model of ischemia, by affecting the redox state of the GSH: glutathione disulfide (GSSG) pool. The cellular GSH, GSSG and total glutathione (tGSH) concentrations were measured by colorimetric method and the redox potential (ΔEh) of the GSSG/2GSH couple was calculated, using the Nernst equation. Furthermore, the levels of the glutamate–cysteine ligase catalytic subunit (GCLc) and the glutathione synthetase (GSS) proteins, a key enzyme for de novo GSH synthesis, were determined using enzyme-linked immunoassay (ELISA). We demonstrated that the SDX treatment in OGD conditions significantly elevated the intracellular GSH, enhanced the GSH:GSSG ratio, shifting the redox potential to a more pro-reducing status. Furthermore, SDX increased the levels of both GCLc and GSS. The results show that SDX protects the human endothelial cells against ischemic stress by affecting the GSH levels and cellular redox state. These changes suggest that the reduction in the ischemia-induced vascular endothelial cell injury through repressing apoptosis and oxidative stress associated with SDX treatment may be due to an increase in GSH synthesis and modulation of the GSH redox system.
Collapse
|
4
|
Yu QQ, Zhang H, Guo Y, Han B, Jiang P. The Intestinal Redox System and Its Significance in Chemotherapy-Induced Intestinal Mucositis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7255497. [PMID: 35585883 PMCID: PMC9110227 DOI: 10.1155/2022/7255497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a significant dose-limiting adverse reaction brought on by the cancer treatment. Multiple studies reported that reactive oxygen species (ROS) is rapidly produced during the initial stages of chemotherapy, when the drugs elicit direct damage to intestinal mucosal cells, which, in turn, results in necrosis, mitochondrial dysfunction, and ROS production. However, the mechanism behind the intestinal redox system-based induction of intestinal mucosal injury and necrosis of CIM is still undetermined. In this article, we summarized relevant information regarding the intestinal redox system, including the composition and regulation of redox enzymes, ROS generation, and its regulation in the intestine. We innovatively proposed the intestinal redox "Tai Chi" theory and revealed its significance in the pathogenesis of CIM. We also conducted an extensive review of the English language-based literatures involving oxidative stress (OS) and its involvement in the pathological mechanisms of CIM. From the date of inception till July 31, 2021, 51 related articles were selected. Based on our analysis of these articles, only five chemotherapeutic drugs, namely, MTX, 5-FU, cisplatin, CPT-11, and oxaliplatin were shown to trigger the ROS-based pathological mechanisms of CIM. We also discussed the redox system-mediated modulation of CIM pathogenesis via elaboration of the relationship between chemotherapeutic drugs and the redox system. It is our belief that this overview of the intestinal redox system and its role in CIM pathogenesis will greatly enhance research direction and improve CIM management in the future.
Collapse
Affiliation(s)
- Qing-Qing Yu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| | - Heng Zhang
- Department of Laboratory, Shandong Daizhuang Hospital, Jining 272051, China
| | - Yujin Guo
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| |
Collapse
|
5
|
Malesza IJ, Malesza M, Walkowiak J, Mussin N, Walkowiak D, Aringazina R, Bartkowiak-Wieczorek J, Mądry E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021; 10:cells10113164. [PMID: 34831387 PMCID: PMC8619527 DOI: 10.3390/cells10113164] [Citation(s) in RCA: 374] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is responsible for recovering energy from food, providing hosts with vitamins, and providing a barrier function against exogenous pathogens. In addition, it is involved in maintaining the integrity of the intestinal epithelial barrier, crucial for the functional maturation of the gut immune system. The Western diet (WD)—an unhealthy diet with high consumption of fats—can be broadly characterized by overeating, frequent snacking, and a prolonged postprandial state. The term WD is commonly known and intuitively understood. However, the strict digital expression of nutrient ratios is not precisely defined. Based on the US data for 1908–1989, the calory intake available from fats increased from 32% to 45%. Besides the metabolic aspects (hyperinsulinemia, insulin resistance, dyslipidemia, sympathetic nervous system and renin-angiotensin system overstimulation, and oxidative stress), the consequences of excessive fat consumption (high-fat diet—HFD) comprise dysbiosis, gut barrier dysfunction, increased intestinal permeability, and leakage of toxic bacterial metabolites into the circulation. These can strongly contribute to the development of low-grade systemic inflammation. This narrative review highlights the most important recent advances linking HFD-driven dysbiosis and HFD-related inflammation, presents the pathomechanisms for these phenomena, and examines the possible causative relationship between pro-inflammatory status and gut microbiota changes.
Collapse
Affiliation(s)
- Ida Judyta Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (I.J.M.); (J.W.)
| | - Michał Malesza
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.M.); (J.B.-W.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (I.J.M.); (J.W.)
| | - Nadiar Mussin
- Department of General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan;
| | - Dariusz Walkowiak
- Department of Organization and Management in Health Care, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Raisa Aringazina
- Department of Internal Diseases No. 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan;
| | | | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.M.); (J.B.-W.)
- Correspondence:
| |
Collapse
|
6
|
Welboren AC, Hatew B, Renaud JB, Leal LN, Martín-Tereso J, Steele MA. Intestinal adaptations to energy source of milk replacer in neonatal dairy calves. J Dairy Sci 2021; 104:12079-12093. [PMID: 34454754 DOI: 10.3168/jds.2021-20516] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
Most milk replacers (MR) contain more lactose compared with whole milk, which, when fed at a large meal size, could influence gut barrier function in calves. This study evaluated how replacing lactose in MR with fat (on a wt/wt basis) affects intestinal histomorphology and permeability in neonatal dairy calves. Thirty-four Holstein-Friesian bull calves were blocked by dam parity and randomly assigned to 1 of 2 treatments (n = 17): a high-lactose (46.1% lactose, 18.0% crude fat, and 23.9% crude protein of dry matter) or a high-fat MR (HF; 39.9% lactose, 24.6% crude fat, and 24.0% crude protein of dry matter). Calves were individually housed and fed pooled colostrum at 1.5 h and 12 h postnatally, at 18 and 9% of metabolic body weight (BW0.75), respectively. From 24 h postnatally until the end of the study (d 7), calves were transitioned to be fed MR (prepared at 15% solids) at 18% of BW0.75 twice daily at 0700 and 1900 h. During postprandial sampling on d 6, intestinal permeability was assessed by mixing lactulose (1.03 g/kg of BW0.75) and d-mannitol (0.31 g/kg of BW0.75) into the morning meal without altering total meal volume. Sequential blood samples were collected via jugular catheter, and total urine was collected for 12 h to measure the marker content. Calves were euthanized 3 h after the morning meal on d 7, and gastrointestinal tract tissues and digesta were collected for analysis of histomorphology, digesta osmolality, and gene expression. The empty gastrointestinal tracts of HF calves were heavier, although length did not differ and differences in histomorphology were minor. Digesta osmolality changed along the tract without differences between treatments. Plasma lactulose was greater in HF, although plasma d-mannitol and the recovery of both markers in urine were unaffected. No significant differences were detected in gene expression, although HF calves tended to have lower expression of TJP1 and CLDN2 and higher expression of proinflammatory cytokine IL1B in ileum tissue. In conclusion, partially replacing lactose in MR with fat resulted in a heavier and more permeable gut, with minor histomorphological differences.
Collapse
Affiliation(s)
- A C Welboren
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - B Hatew
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - J B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada, N5V 4T3
| | - L N Leal
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - J Martín-Tereso
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.
| |
Collapse
|
7
|
Faizo N, Narasimhulu CA, Forsman A, Yooseph S, Parthasarathy S. Peroxidized Linoleic Acid, 13-HPODE, Alters Gene Expression Profile in Intestinal Epithelial Cells. Foods 2021; 10:foods10020314. [PMID: 33546321 PMCID: PMC7913489 DOI: 10.3390/foods10020314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/20/2022] Open
Abstract
Lipid peroxides (LOOHs) abound in processed food and have been implicated in the pathology of diverse diseases including gut, cardiovascular, and cancer diseases. Recently, RNA Sequencing (RNA-seq) has been widely used to profile gene expression. To characterize gene expression and pathway dysregulation upon exposure to peroxidized linoleic acid, we incubated intestinal epithelial cells (Caco-2) with 100 µM of 13-hydroperoxyoctadecadienoic acid (13-HPODE) or linoleic acid (LA) for 24 h. Total RNA was extracted for library preparation and Illumina HiSeq sequencing. We identified 3094 differentially expressed genes (DEGs) in 13-HPODE-treated cells and 2862 DEGs in LA-treated cells relative to untreated cells. We show that 13-HPODE enhanced lipid metabolic pathways, including steroid hormone biosynthesis, PPAR signaling, and bile secretion, which alter lipid uptake and transport. 13-HPODE and LA treatments promoted detoxification mechanisms including cytochrome-P450. Conversely, both treatments suppressed oxidative phosphorylation. We also show that both treatments may promote absorptive cell differentiation and reduce proliferation by suppressing pathways involved in the cell cycle, DNA synthesis/repair and ribosomes, and enhancing focal adhesion. A qRT-PCR analysis of representative DEGs validated the RNA-seq analysis. This study provides insights into mechanisms by which 13-HPODE alters cellular processes and its possible involvement in mitochondrial dysfunction-related disorders and proposes potential therapeutic strategies to treat LOOH-related pathologies.
Collapse
Affiliation(s)
- Nisreen Faizo
- Burnett School of Biomedical Sciences, Genomics and Bioinformatics Cluster, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
| | - Chandrakala Aluganti Narasimhulu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA; (C.A.N.); (S.P.)
| | - Anna Forsman
- Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA;
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA
- Correspondence: ; Tel.: +1-407-823-5307
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA; (C.A.N.); (S.P.)
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to assess whether dietary fish oil supplements can be appropriate for patients with elevated triglycerides and cardiovascular risk based on a comprehensive analysis of their composition, and level of regulatory oversight. RECENT FINDINGS Approximately 19 million people in the United States take fish oil supplements, many for the purpose of treating or preventing heart disease. Unlike prescription products, fish oil supplements are classified as food by the Food and Drug Administration (FDA) and are not required to undergo manufacturing oversight or clinical testing. Analysis of widely used dietary fish oil supplements show that they may have lower amounts of ω-3 than advertised as well as significant levels of saturated fat and oxidized oils which actually may contribute to dyslipidemia. Clinical outcome trials have failed to show a consistent cardiovascular benefit with fish oil supplements and other low-dose mixed ω-3 fatty acids. SUMMARY In light of limited regulatory oversight and evidence of quality concerns, dietary fish oil supplements are not an appropriate substitute for FDA approved prescription ω-3 fatty acids for their indicated use in treatment of elevated triglycerides or the prevention of cardiovascular events.
Collapse
Affiliation(s)
| | - Michael Lero
- Elucida Research LLC, Beverly, MA, USA
- University of Massachusetts School of Medicine, Worcester, MA, USA
| | - R. Preston Mason
- Elucida Research LLC, Beverly, MA, USA
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Kunnel SG, Subramanya S, Satapathy P, Sahoo I, Zameer F. Acrylamide Induced Toxicity and the Propensity of Phytochemicals in Amelioration: A Review. Cent Nerv Syst Agents Med Chem 2020; 19:100-113. [PMID: 30734688 DOI: 10.2174/1871524919666190207160236] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/19/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
Abstract
Acrylamide is widely found in baked and fried foods, produced in large amount in industries and is a prime component in toxicity. This review highlights various toxicities that are induced due to acrylamide, its proposed mode of action including oxidative stress cascades and ameliorative mechanisms using phytochemicals. Acrylamide formation, the mechanism of toxicity and the studies on the role of oxidative stress and mitochondrial dysfunctions are elaborated in this paper. The various types of toxicities caused by Acrylamide and the modulation studies using phytochemicals that are carried out on various type of toxicity like neurotoxicity, hepatotoxicity, cardiotoxicity, immune system, and skeletal system, as well as embryos have been explored. Lacunae of studies include the need to explore methods for reducing the formation of acrylamide in food while cooking and also better modulators for alleviating the toxicity and associated dysfunctions along with identifying its molecular mechanisms.
Collapse
Affiliation(s)
- Shinomol George Kunnel
- Department of Biotechnology, Dayananda Sagar College of Engineering (An Autonomous Institute Affiliated to VTU, Belagavi), Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru - 560 078, Karnataka, India
| | - Sunitha Subramanya
- Department of Biotechnology, Dayananda Sagar College of Engineering (An Autonomous Institute Affiliated to VTU, Belagavi), Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru - 560 078, Karnataka, India
| | - Pankaj Satapathy
- Department of Biological Sciences, School of Basic and Applied Sciences, Dayananda Sagar University, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560 078, Karnataka, India
| | - Ishtapran Sahoo
- Molecular Biology, Thermo Fisher Scientific, Bangalore- 560066, India
| | - Farhan Zameer
- Department of Biological Sciences, School of Basic and Applied Sciences, Dayananda Sagar University, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560 078, Karnataka, India
| |
Collapse
|
10
|
Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, Parthasarathy S. Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Adv Nutr 2020; 11:77-91. [PMID: 31268137 PMCID: PMC7442371 DOI: 10.1093/advances/nmz061] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/16/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
The intestinal tract is the largest barrier between a person and the environment. In this role, the intestinal tract is responsible not only for absorbing essential dietary nutrients, but also for protecting the host from a variety of ingested toxins and microbes. The intestinal barrier system is composed of a mucus layer, intestinal epithelial cells (IECs), tight junctions (TJs), immune cells, and a gut microbiota, which are all susceptible to external factors such as dietary fats. When components of this barrier system are disrupted, intestinal permeability to luminal contents increases, which is implicated in intestinal pathologies such as inflammatory bowel disease, necrotizing enterocolitis, and celiac disease. Currently, there is mounting evidence that consumption of excess dietary fats can enhance intestinal permeability differentially. For example, dietary fat modulates the expression and distribution of TJs, stimulates a shift to barrier-disrupting hydrophobic bile acids, and even induces IEC oxidative stress and apoptosis. In addition, a high-fat diet (HFD) enhances intestinal permeability directly by stimulating proinflammatory signaling cascades and indirectly via increasing barrier-disrupting cytokines [TNFα, interleukin (IL) 1B, IL6, and interferon γ (IFNγ)] and decreasing barrier-forming cytokines (IL10, IL17, and IL22). Finally, an HFD negatively modulates the intestinal mucus composition and enriches the gut microflora with barrier-disrupting species. Although further research is necessary to understand the precise role HFDs play in intestinal permeability, current data suggest a stronger link between diet and intestinal disease than was first thought to exist. Therefore, this review seeks to highlight the various ways an HFD disrupts the gut barrier system and its many implications in human health.
Collapse
Affiliation(s)
- Michael W Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Chandrakala A Narasimhulu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Trina A Rudeski-Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
11
|
Surai P. Selenium in poultry nutrition 1. Antioxidant properties, deficiency and toxicity. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps20020026] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- P.F. Surai
- Avian Science Research Centre, SAC, Auchincruive, Ayr, KA6 SHW, Scotland,
| |
Collapse
|
12
|
Das UN. Can Bioactive Lipids Augment Anti-cancer Action of Immunotherapy and Prevent Cytokine Storm? Arch Med Res 2019; 50:342-349. [DOI: 10.1016/j.arcmed.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022]
|
13
|
Abstract
The question of whether heated fats in the diet may be detrimental to health is nowadays of the upmost concern, but finding an answer is not easy and requires careful consideration of different aspects of lipid oxidation. This review is divided into two sections. The first part deals with the nature of the new compounds formed at high temperature in the frying process as well as their occurrence in the diet while the second part focuses on their possible nutritional and physiological effects. Oxidation products present in abused frying fats and oils are the compounds most suspected of impairing the nutritional properties of the oils or involving adverse physiological effects. The recent studies on their health implications include those related to their fate and those focused on their effects in metabolic pathways and the most prevalent diseases.
Collapse
|
14
|
Maestre R, Douglass JD, Kodukula S, Medina I, Storch J. Alterations in the intestinal assimilation of oxidized PUFAs are ameliorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells. J Nutr 2013; 143:295-301. [PMID: 23325921 PMCID: PMC3713019 DOI: 10.3945/jn.112.160101] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The (n-3) PUFAs 20:5 (n-3) (EPA) and 22:6 (n-3) (DHA) are thought to benefit human health. The presence of prooxidant compounds in foods, however, renders them susceptible to oxidation during both storage and digestion. The development of oxidation products during digestion and the potential effects on intestinal PUFA uptake are incompletely understood. In the present studies, we examined: (1) the development and bioaccessibility of lipid oxidation products in the gastrointestinal lumen during active digestion of fatty fish using the in vitro digestive tract TNO Intestinal Model-1 (TIM-1); (2) the mucosal cell uptake and metabolism of oxidized compared with unoxidized PUFAs using Caco-2 intestinal cells; and 3) the potential to limit the development of oxidation products in the intestine by incorporating antioxidant polyphenols in food. We found that during digestion, the development of oxidation products occurs in the stomach compartment, and increased amounts of oxidation products became bioaccessible in the jejunal and ileal compartments. Inclusion of a polyphenol-rich grape seed extract (GSE) during the digestion decreased the amounts of oxidation products in the stomach compartment and intestinal dialysates (P < 0.05). In Caco-2 intestinal cells, the uptake of oxidized (n-3) PUFAs was ~10% of the uptake of unoxidized PUFAs (P < 0.05) and addition of GSE or epigallocatechin gallate protected against the development of oxidation products, resulting in increased uptake of PUFAs (P < 0.05). These results suggest that addition of polyphenols during active digestion can limit the development of (n-3) PUFA oxidation products in the small intestine lumen and thereby promote intestinal uptake of the beneficial, unoxidized, (n-3) PUFAs.
Collapse
Affiliation(s)
- Rodrigo Maestre
- Department of Seafood Chemistry, Instituto de Investigaciones Marinas, Vigo, Spain.
| | - John D. Douglass
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Sarala Kodukula
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Isabel Medina
- Department of Seafood Chemistry, Instituto de Investigaciones Marinas, Vigo, Spain; and
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
15
|
Lecithin in mixed micelles attenuates the cytotoxicity of bile salts in Caco-2 cells. Toxicol In Vitro 2013; 27:714-20. [DOI: 10.1016/j.tiv.2012.11.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/23/2012] [Accepted: 11/28/2012] [Indexed: 11/23/2022]
|
16
|
Grape antioxidant dietary fibre reduced apoptosis and induced a pro-reducing shift in the glutathione redox state of the rat proximal colonic mucosa. Br J Nutr 2009; 103:1110-7. [DOI: 10.1017/s0007114509992996] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Grape antioxidant dietary fibre (GADF) is a grape product rich in dietary fibre and natural antioxidants. We showed previously that the GADF intake induced an epithelial hypoplasia in the rat colonic mucosa. In the present study, we propose that the antioxidant effect of GADF could modulate mucosal apoptosis via modulation of the cellular redox environment. Male Wistar rats (n20) were fed with diets containing either cellulose (control diet group) or GADF (GADF diet group) as fibre for 4 weeks. The GSH:GSSG ratio, the redox state of the GSSG/2GSH couple (Ehc), the mitochondrial and/or cytosolic antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)), lipid peroxidation (LPO) and apoptosis were evaluated. GADF enhanced the cytosolic GSH:GSSG ratio, shifting the redox potential (Ehc) to a more pro-reducing status. Decreased Cu,ZnSOD:CAT, Cu,ZnSOD:GPx and MnSOD:GPx ratios could indicate an enhanced capacity for reducing H2O2, contributing to decreased cytosolic LPO. Reduced apoptosis in GADF-treated mucosa was inversely related to MnSOD activity. Furthermore, apoptosis increased directly as GSSG content increased. These results suggest that the reduction in apoptosis associated with GADF intake may be due to a modulation of the glutathione redox system and endogenous antioxidant enzymes.
Collapse
|
17
|
Circu ML, Stringer S, Rhoads CA, Moyer MP, Aw TY. The role of GSH efflux in staurosporine-induced apoptosis in colonic epithelial cells. Biochem Pharmacol 2009; 77:76-85. [PMID: 18840413 PMCID: PMC2610527 DOI: 10.1016/j.bcp.2008.09.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/05/2008] [Accepted: 09/09/2008] [Indexed: 12/16/2022]
Abstract
Staurosporine (STP) was shown to induce cell apoptosis through formation of reactive oxygen species, but a role for cellular redox has not been defined. In this study, we report that STP (2 microM) caused apoptosis (24+/-3% at 24 h) of human colon adenocarcinoma epithelial cell line HT29 that was preceded by significant glutathione (GSH) and glutathione disulfide (GSSG) efflux (6 h), but independent of changes in cellular glutathione/glutathione disulfide (GSH/GSSG) redox status. The blockade of GSH efflux by gamma-glutamyl glutamate (gamma-GG) or ophthalmic acid was associated with apoptosis attenuation; however, gamma-GG administration after peak GSH efflux (8 h) did not confer cytoprotection. Moreover, lowering cellular GSH through inhibition of its synthesis prevented extracellular GSH accumulation and cell apoptosis, thus validating a link between cellular GSH export and the trigger of cell apoptosis. Inhibition of gamma-glutamyl transferase (GGT1, EC 2.3.2.2)-catalyzed extracellular GSH degradation with acivicin significantly blocked GSH efflux, suggesting that GSH breakdown is a driving force for GSH export. Interestingly, acivicin treatment enhanced extracellular GSSG accumulation, consistent with GSH oxidation. STP-induced HT29 cell apoptosis was associated with caspase-3 activation independent of caspase-8 or caspase-9 activity; accordingly, inhibitors of the latter caspases were without effect on STP-induced apoptosis. STP similarly induced GSH efflux and apoptosis in a non-malignant human NCM460 colonic cell line in association with caspase-3 activation. Collectively, our results demonstrate that STP induction of apoptosis in malignant and non-malignant colonic cells is temporally linked to the export of cellular GSH and the activation of caspase-3 without caspase-8 or -9 involvement.
Collapse
Affiliation(s)
- Magdalena L. Circu
- Department of Molecular & Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA 71130
| | - Sarah Stringer
- Department of Molecular & Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA 71130
| | - Carol Ann Rhoads
- Department of Molecular & Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA 71130
| | | | - Tak Yee Aw
- Department of Molecular & Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA 71130
| |
Collapse
|
18
|
Márquez-Ruiz G, García-Martínez M, Holgado F. Changes and Effects of Dietary Oxidized Lipids in the Gastrointestinal Tract. Lipid Insights 2008. [DOI: 10.4137/lpi.s904] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This paper is focused on the present state-of-the art of modifications and effects of dietary oxidized lipids during their transit along the gastrointestinal tract. A survey of the literature reporting changes and effects of oxidized lipids before absorption, first in the stomach and then during enzymatic lipolysis in the small intestine, are addressed. Also, the fate of non-absorbed compounds and their potential implications at the colorectal level are discussed. Among the results found, it is shown that acidic gastric conditions and the influence of other dietary components may lead to either further oxidation or antioxidative effects in the stomach. Also, changes in oxidized functions, especially of hydroperoxy and epoxy groups, seem likely to occur. Enzymatic hydrolysis by pancreatic lipase is not effective for triacylglycerol polymers, and hence they can be found as non-absorbed oxidized lipids in the large intestine. Interactions of oxidized lipids with cholesterol absorption in the small intestine and with microflora metabolism have been also observed.
Collapse
Affiliation(s)
- G. Márquez-Ruiz
- Instituto del Frío (CSIC), José Antonio Novais 10, 28040 Madrid
| | | | - F. Holgado
- Instituto del Frío (CSIC), José Antonio Novais 10, 28040 Madrid
| |
Collapse
|
19
|
Turner R, McLean CH, Silvers KM. Are the health benefits of fish oils limited by products of oxidation? Nutr Res Rev 2007; 19:53-62. [DOI: 10.1079/nrr2006117] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human clinical trials have shown that fish oils reduce the risk of a variety of disorders including CVD. Despite this, results have been inconsistent. Fish oils are easily oxidised and some fish oils contain higher than recommended levels of oxidised products, but their effects have not been investigated. Recent evidence indicates that dietary oxidised fats can contribute to the development of atherosclerosis and thrombosis. This review summarises findings from cellular, animal and human trials that have examined the effects of oxidised lipids and their potential to affect health outcomes, and proposes that oxidised products in fish oils may attenuate their beneficial effects. More research is required to determine the magnitude of negative effects of fish oil on health outcomes in clinical trials.
Collapse
|
20
|
Manzano M, Bueno P, Rueda R, Ramirez-Tortosa CL, Prieto PA, Lopez-Pedrosa JM. Intestinal toxicity induced by 5-fluorouracil in pigs: a new preclinical model. Chemotherapy 2007; 53:344-55. [PMID: 17785971 DOI: 10.1159/000107724] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 08/06/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND The goal of this study was to develop an animal model of intestinal injury induced by 5-fluorouracil (5-FU) in pigs. METHODS Six domestic pigs were used as control (healthy group) and another 6 malnourished pigs orally received 5-FU (treated group). After 4 weeks of treatment, pigs were sacrificed and jejunum, ileum and colon were isolated for histological, immunological and biochemical analyses. RESULTS 5-FU caused a decrease in the intestinal mass. Disaccharidase, and phosphate alkaline activities, and glutathione redox cycle were disrupted by 5-FU. Histopathological alterations in the crypts and villous were greater in the small intestine than in the colon. 5-FU decreased the number of peripheral and intestinal leukocytes, promoting an increase in T-cytotoxic cells and a decrease in T-helper and B cells. CONCLUSION This pig model of intestinal dysfunction closely mimics the common side effects of cancer chemotherapy in humans, and provides a useful tool for evaluating novel antimucotoxic agents.
Collapse
Affiliation(s)
- M Manzano
- Strategic R&D Department, Abbott Nutrition International, Granada, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Giovannini C, Scazzocchio B, Matarrese P, Varì R, D'Archivio M, Di Benedetto R, Casciani S, Dessì MR, Straface E, Malorni W, Masella R. Apoptosis induced by oxidized lipids is associated with up-regulation of p66Shc in intestinal Caco-2 cells: protective effects of phenolic compounds. J Nutr Biochem 2007; 19:118-28. [PMID: 17588737 DOI: 10.1016/j.jnutbio.2007.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 12/22/2006] [Accepted: 01/10/2007] [Indexed: 11/20/2022]
Abstract
In this study, we investigated the alterations of the redox balance induced by the lipid fraction of oxLDL in Caco-2 intestinal cells, and the effects of tyrosol and protocatechuic acid, two dietary phenolic compounds. We found that oxidized lipids extracted from oxLDL (LipE) induced oxidative stress by determining, 6 h after treatment, ROS overproduction (about a 100% and a 43% increase of O*2 and H2O2 production, respectively, P<.05: LipE vs. control) and, 12 h after treatment, GSH depletion (about a 26% decrease, P<.05: LipE vs. control), and by impairing the activities of superoxide dismutase, catalase and glutathione peroxidase. In response to the induced oxidative stress, we observed significant overexpression of glutathione peroxidase (6 h after treatment: P<.05), glutathione reductase and gamma-glutamylcysteine synthetase (12 h after treatment: P<.05). Notably, when GSH depletion occurred, p66Shc protein expression increased by about 300% with respect to control (P<.001; LipE vs. control). These effects were fully counteracted by dietary phenolics which inhibited ROS overproduction and GSH consumption, rendered the reactive transcription of glutathione-associated enzymes unnecessary and blocked the intracellular signals leading to the overexpression and rearrangement of p66Shc signalling molecule. Altogether, these results suggest that the impairment of the antioxidant system hijacks intestinal cells towards an apoptotic-prone phenotype via the activation of p66Shc molecule. They also propose a reappraisal of dietary polyphenols as intestinal protecting agents, indicating the antiapoptotic effect as a further mechanism of action of these antioxidant compounds.
Collapse
Affiliation(s)
- Claudio Giovannini
- National Centre for Food Quality and Risk Assessment, Istituto Superiore di Sanità, 299-00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ekshyyan O, Aw TY. Decreased susceptibility of differentiated PC12 cells to oxidative challenge: relationship to cellular redox and expression of apoptotic protease activator factor-1. Cell Death Differ 2005; 12:1066-77. [PMID: 15877105 DOI: 10.1038/sj.cdd.4401650] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We previously showed that tert-butyl hydroperoxide (TBH) induced apoptosis in naïve rat pheochromocytoma (nPC12) cells that correlated with cellular redox imbalance and mitochondrial apoptotic signaling. In this study, we tested the hypothesis that differentiation of nPC12 cells results in altered susceptibility to TBH utilizing a model of differentiated PC12 (dPC12) cells induced by nerve growth factor. TBH (100 microM) induced dPC12 apoptosis (12% at 24 h) at levels lower than naïve cells (35%). This resistance was associated with elevated GSH, NADPH (reduced nicotinamide adenine dinucleotide phosphate), TBH metabolism, redox enzyme activities, reduced cellular GSH/GSSG (glutathione disulfide) status and preservation of mitochondrial membrane potential. Altering cellular GSH with ethacrynic acid or N-acetylcysteine, respectively, exacerbated or protected against dPC12 apoptosis. dPC12 apoptosis was mediated by caspase-9 and -3 activation and apoptosis protease activator protein-1 (Apaf-1) expression. These results show that nPC12 transition to dPC12 cells afforded protection against oxidative challenge due to maintenance of reduced GSH/GSSG and decreased Apaf-1 expression.
Collapse
Affiliation(s)
- O Ekshyyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | |
Collapse
|
23
|
Kojima M, Iwakiri R, Wu B, Fujise T, Watanabe K, Lin T, Amemori S, Sakata H, Shimoda R, Oguzu T, Ootani A, Tsunada S, Fujimoto K. Effects of antioxidative agents on apoptosis induced by ischaemia-reperfusion in rat intestinal mucosa. Aliment Pharmacol Ther 2003; 18 Suppl 1:139-45. [PMID: 12925152 DOI: 10.1046/j.1365-2036.18.s1.16.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM We have previously demonstrated that ischaemia-reperfusion induces apoptosis in the intestinal mucosa. To evaluate that reactive oxygen species enhanced intestinal apoptosis after ischaemia-reperfusion, we examined whether antioxidants reduced apoptosis. METHODS Rats were infused through a duodenal tube with antioxidative agents, glutathione, rebamipide and dymethylsulfoxide during 2 h before an ischaemic insult. The superior mesenteric artery was occluded for 60 min, followed by 60 min reperfusion. Apoptosis was evaluated by percentage fragmented DNA (fragmented DNA/total DNA) and immunochemical staining. RESULTS Increase in apoptosis in the intestinal mucosa after ischaemia-reperfusion was attenuated by intraduodenal infusion of antioxidative agents, but was not completely abolished. CONCLUSION Scavenging effects of the antioxidative agents attenuated increases in intestinal apoptosis, indicating that oxidative stress after ischaemia-reperfusion plays an important role in induction of apoptosis in the intestinal mucosa.
Collapse
Affiliation(s)
- M Kojima
- Department of Internal Medicine and Gastrointestinal Endoscopy, Saga Medical School, Saga, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Miyamoto S, Dupas C, Murota K, Terao J. Phospholipid hydroperoxides are detoxified by phospholipase A2 and GSH peroxidase in rat gastric mucosa. Lipids 2003; 38:641-9. [PMID: 12934674 DOI: 10.1007/s11745-003-1109-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to determine the metabolic fate of phospholipid hydroperoxides (PLOOH) in rat gastric mucosa. Here we report evidence concerning the mechanism for PLOOH detoxification in gastric mucosa homogenate. Analysis by the TLC blot technique showed that the gastric mucosa has the highest potential to eliminate 1-palmitoyl-2-linoleoyl-phosphatidylcholine hydroperoxides (PL-PtdChoOOH) compared with the intestinal mucosa and liver. Major products detected after incubation with gastric mucosa were the partially reduced linoleic acid hydroperoxides (LAOOH) and lysophosphatidylcholine, indicating the involvement of phospholipase A2 (PLA2) in the elimination pathway. Using unilamellar vesicles, we demonstrated that gastric mucosal PLA2 does not distinguish between PLOOH and intact phospholipids. Although gastric mucosal PLA2 activity efficiently eliminated excess amounts of PLOOH, the complete reduction of LAOOH was dependent on the supply of exogenous GSH. In a separate experiment, administration of egg yolk PtdChoOOH to rats for 6 d significantly elevated GSH peroxidase (GPx) activity in the gastric mucosa. We concluded that excess amounts of PLOOH are efficiently eliminated through the hydrolysis by PLA2, and the subsequent reduction of FA hydroperoxide by GPx is the critical step for complete detoxification of oxidized phospholipids in the stomach.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Department of Nutrition, School of Medicine, The University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | |
Collapse
|
25
|
Giovannini C, Matarrese P, Scazzocchio B, Varí R, D'Archivio M, Straface E, Masella R, Malorni W, De Vincenzi M. Wheat gliadin induces apoptosis of intestinal cells via an autocrine mechanism involving Fas-Fas ligand pathway. FEBS Lett 2003; 540:117-24. [PMID: 12681494 DOI: 10.1016/s0014-5793(03)00236-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Wheat gliadin and other cereal prolamins have been said to be involved in the pathogenic damage of the small intestine in celiac disease via the apoptosis of epithelial cells. In the present work we investigated the mechanisms underlying the pro-apoptotic activity exerted by gliadin-derived peptides in Caco-2 intestinal cells, a cell line which retains many morphological and enzymatic features typical of normal human enterocytes. We found that digested peptides from wheat gliadins (i) induce apoptosis by the CD95/Fas apoptotic pathway, (ii) induce increased Fas and FasL mRNA levels, (iii) determine increased FasL release in the medium, and (iv) that gliadin digest-induced apoptosis can be blocked by Fas cascade blocking agents, i.e. targeted neutralizing antibodies. This favors the hypothesis that gliadin could activate an autocrine/paracrine Fas-mediated cell death pathway. Finally, we found that (v) a small peptide (1157 Da) from durum wheat, previously proposed for clinical practice, exerted a powerful protective activity against gliadin digest cytotoxicity.
Collapse
Affiliation(s)
- Claudio Giovannini
- Department of Metabolism and Pathological Biochemistry, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pias EK, Aw TY. Early redox imbalance mediates hydroperoxide-induced apoptosis in mitotic competent undifferentiated PC-12 cells. Cell Death Differ 2002; 9:1007-16. [PMID: 12181751 DOI: 10.1038/sj.cdd.4401064] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2001] [Revised: 02/22/2002] [Accepted: 03/11/2002] [Indexed: 11/09/2022] Open
Abstract
Our recent study has demonstrated that cellular redox imbalance can directly initiate apoptosis in a mitotic competent PC-12 cell line without the involvement of reactive oxygen species (ROS). However, whether cell apoptosis induced by ROS is, in fact, mediated by a loss of redox balance caused by the oxidant is unresolved. The linkage between oxidant-mediated apoptosis and the induction of cellular redox was examined in PC-12 cells using the oxidant, tert-butylhydroperoxide (TBH). TBH caused cell apoptosis in 24 h that was preceded by an early increase (30 min) in oxidized glutathione (GSSG). Pretreatment with N-acetyl cysteine prevented TBH-induced GSSG increases and cell apoptosis. Altered Bax/BcL-2 expression and release of mitochondrial cytochrome c occurred post-redox imbalance and was kinetically linked to caspase-3 activation and poly ADP-ribose polymerase cleavage. Moreover, cell apoptosis was attenuated by inhibition of caspase-9, but not caspase-8, and blockade of mitochondrial ROS generation and permeability transition pore attenuated caspase 3 activation and cell apoptosis. Collectively, these results show that TBH-induced GSSG elevation is associated with the disruption of mitochondrial integrity, activation of caspase-3 and cell apoptosis. This redox induction of the apoptotic cascade was dissociated from cellular GSH efflux.
Collapse
Affiliation(s)
- E K Pias
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | |
Collapse
|
27
|
Wu T, Geigerman C, Lee YS, Wander RC. Enrichment of LDL with EPA and DHA decreased oxidized LDL-induced apoptosis in U937 cells. Lipids 2002; 37:789-96. [PMID: 12371750 DOI: 10.1007/s11745-002-0962-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidized LDL (oxLDL) may contribute to the accumulation of apoptotic cells in atherosclerotic plaques. Although it is well established in monophasic chemical systems that the highly unsaturated EPA and DHA will oxidize more readily than FA that contain fewer double bonds, our previous studies showed that enrichment of LDL, which has discrete polar and nonpolar phases, with these FA did not increase oxidation. The objective of this study was to compare the extent of apoptosis induced by EPA/DHA-rich oxLDL to that induced by EPA/DHA-non-rich oxLDL in U937 cells. LDL was obtained from one healthy subject three times before and after supplementation for 5 wk with 15 g/d of fish oil (FO), an amount easily obtainable from a diet that contains fatty fish. After supplementation, an EPA/DHA-rich LDL was obtained. Oxidative susceptibility of LDL, as determined by measuring the formation of conjugated dienes and the accumulation of cholesteryl ester hydroperoxides, was not higher in EPA/DHA-rich LDL. The oxLDL-induced cell apoptosis was detected by the activation of caspase-3, the translocation of PS to the outer surface of the plasma membrane using the Annexin V-fluorescein isothiocyanate binding assay, and the presence of chromatin condensation and nuclear fragmentation using the 4,6-diamidino-2-phenylindole staining assay. All three measures showed that after FO supplementation, EPA/DHA-rich oxLDL-induced cell apoptosis decreased. The decrease was not related to the concentration of lipid hydroperoxides. This study suggests that a possible protective effect of EPA/DHA-rich diets on atherosclerosis may be through lessening cell apoptosis in the arterial wall.
Collapse
Affiliation(s)
- Tianying Wu
- Human Nutrition Research Laboratory, University of North Carolina at Greensboro, 27402-6170, USA
| | | | | | | |
Collapse
|
28
|
Gotoh Y, Noda T, Iwakiri R, Fujimoto K, Rhoads CA, Aw TY. Lipid peroxide-induced redox imbalance differentially mediates CaCo-2 cell proliferation and growth arrest. Cell Prolif 2002; 35:221-35. [PMID: 12153614 PMCID: PMC6496176 DOI: 10.1046/j.1365-2184.2002.00241.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dietary oxidants like lipid hydroperoxides (LOOH) can perturb cellular glutathione/glutathione disulphide (GSH/GSSG) status and disrupt mucosal turnover. This study examines the effect of LOOH on GSH/GSSG balance and phase transitions in the human colon cancer CaCo-2 cell. LOOH at 1 or 5 micro m were noncytotoxic, but disrupted cellular GSH/GSSG and stimulated proliferative activity at 6 h that paralleled increases in ornithine decarboxylase activity, thymidine incorporation, expression of cyclin D1/cyclin-dependent kinase 4, phosphorylation of retinoblastoma protein, and cell progression from G0/G1 to S. At 24 h, LOOH-induced sustained GSH/GSSG imbalance mediated growth arrest at G0/G1 that correlated with suppression of proliferative activity and enhanced oxidative DNA damage. LOOH-induced cell transitions were effectively blocked by N-acetylcysteine. Collectively, the study shows that subtoxic LOOH levels induce CaCo-2 GSH/GSSG imbalance that elicits time-dependent cell proliferation followed by growth arrest. These results provide insights into the mechanism of hydroperoxide-induced disruption of mucosal turnover with implications for understanding oxidant-mediated genesis of gut pathology.
Collapse
Affiliation(s)
- Yudai Gotoh
- Department of Molecular and Cellular Physiology, Louisiana State University Medical Center, Shreveport, LA, USA and
| | - Takahiro Noda
- Department of Internal Medicine, Saga Medical School, Saga, Japan
| | - Ryuichi Iwakiri
- Department of Internal Medicine, Saga Medical School, Saga, Japan
| | - Kazuma Fujimoto
- Department of Internal Medicine, Saga Medical School, Saga, Japan
| | - Carol A. Rhoads
- Department of Molecular and Cellular Physiology, Louisiana State University Medical Center, Shreveport, LA, USA and
| | - Tak Yee Aw
- Department of Molecular and Cellular Physiology, Louisiana State University Medical Center, Shreveport, LA, USA and
| |
Collapse
|
29
|
Noda T, Iwakiri R, Fujimoto K, Rhoads CA, Aw TY. Exogenous cysteine and cystine promote cell proliferation in CaCo-2 cells. Cell Prolif 2002; 35:117-29. [PMID: 11952646 PMCID: PMC6495955 DOI: 10.1046/j.1365-2184.2002.00229.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2001] [Accepted: 09/05/2001] [Indexed: 01/06/2023] Open
Abstract
Previous studies have shown that intracellular glutathione, a ubiquitous intracellular thiol, is related to cell proliferation and that cysteine or its disulphide form, cystine, also induces cell proliferation. Cysteine is a thiol containing amino acid and a rate-limiting precursor of glutathione. Therefore, it is still unresolved as to whether the proliferative effect of cysteine or cystine is entirely mediated by a change in the intracellular glutathione status. The objective of this study was to delineate the relationship among cysteine/cystine (thereafter referred to as cyst(e)ine), intracellular glutathione and cell proliferation in the human colon cancer CaCo-2 cell line. CaCo-2 cells were cultured in cyst(e)ine-free Dulbecco's Modified Eagle Medium without serum, and treated with 200 microm cysteine and/or 200-400 microm cystine for 24 h. In the presence of DL-buthionine-[S, R]-sulfoximine (BSO), a glutathione synthesis inhibitor, exogenously administered cyst(e)ine did not change the intracellular glutathione content, but increased the intracellular cysteine as well as cystine level. Addition of exogenous cyst(e)ine following 5 mm BSO treatment significantly increased cell proliferation as measured by 3H-thymidine incorporation and protein content. Cell cycle analyses revealed that cyst(e)ine promoted cell progression from the G1 phase to the S phase. Correspondingly, cyst(e)ine treatment induced expression of cyclin D1 and phosphorylation of retinoblastoma protein (Rb). In conclusion, these data indicate that both cysteine and cystine have proliferative effects in CaCo-2 cells independent of an increase in intracellular glutathione. Induction of cyclin D1, phosphorylation of Rb, and subsequent facilitation of G1-to-S phase transition were involved in the proliferative effect of exogenous cyst(e)ine.
Collapse
Affiliation(s)
- T Noda
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|