1
|
Zhang J, Zhou Y, Sun Y, Yan H, Han W, Wang X, Wang K, Wei B, Xu X. Beneficial effects of Oridonin on myocardial ischemia/reperfusion injury: Insight gained by metabolomic approaches. Eur J Pharmacol 2019; 861:172587. [PMID: 31377155 DOI: 10.1016/j.ejphar.2019.172587] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022]
Abstract
Oridonin is a diterpenoid isolated from Rabdosia rubescens (Hemsl.) Hara, a well-known herbal tea in China with many health benefits. To provide a better understanding of the potential cardioprotective effect of Oridonin, we investigated the metabolic alterations in heart tissue and serum of rat subjected to myocardial ischemia/reperfusion (MI/R) injury with or without pretreatment of Oridonin by UPLC-MS/MS metabolomics approach. Rats were randomly divided into groups as follows: Control, Sham, MI/R and pretreated with Oridonin (10 mg/kg)+MI/R. After 24 h of reperfusion, heart tissue and serum were collected for biochemical and metabolomic analysis. Pretreatment with Oridonin significantly decreased infarct size and reversed the abnormal elevated myocardial zymogram in serum. Moreover, Oridonin regulated several metabolic pathways, including glycolysis, branched chain amino acid, kynurenine, arginine, glutamine and bile acid metabolism. Our results suggest that Oridonin indeed displays outstanding cardioprotective effect mainly by regulating energy and amino acid metabolism.
Collapse
Affiliation(s)
- Junhong Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yuanyuan Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yaxin Sun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hao Yan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Wenchao Han
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xinying Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Kaili Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
2
|
Al-Maghrebi M, Renno WM. Altered expression profile of glycolytic enzymes during testicular ischemia reperfusion injury is associated with the p53/TIGAR pathway: effect of fructose 1,6-diphosphate. PeerJ 2016; 4:e2195. [PMID: 27441124 PMCID: PMC4941766 DOI: 10.7717/peerj.2195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022] Open
Abstract
Background. Testicular ischemia reperfusion injury (tIRI) is considered the mechanism underlying the pathology of testicular torsion and detorsion. Left untreated, tIRI can induce testis dysfunction, damage to spermatogenesis and possible infertility. In this study, we aimed to assess the activities and expression of glycolytic enzymes (GEs) in the testis and their possible modulation during tIRI. The effect of fructose 1,6-diphosphate (FDP), a glycolytic intermediate, on tIRI was also investigated. Methods. Male Sprague-Dawley rats were divided into three groups: sham, unilateral tIRI, and tIRI + FDP (2 mg/kg). tIRI was induced by occlusion of the testicular artery for 1 h followed by 4 h of reperfusion. FDP was injected peritoneally 30 min prior to reperfusion. Histological and biochemical analyses were used to assess damage to spermatogenesis, activities of major GEs, and energy and oxidative stress markers. The relative mRNA expression of GEs was evaluated by real-time PCR. ELISA and immunohistochemistry were used to evaluate the expression of p53 and TP53-induced glycolysis and apoptosis regulator (TIGAR). Results. Histological analysis revealed tIRI-induced spermatogenic damage as represented by a significant decrease in the Johnsen biopsy score. In addition, tIRI reduced the activities of hexokinase 1, phosphofructokinase-1, glyceraldehyde 3-phosphate dehydrogenase, and lactate dehydrogenase C. However, mRNA expression downregulation was detected only for hexokinase 1, phosphoglycerate kinase 2, and lactate dehydrogenase C. ATP and NADPH depletion was also induced by tIRI and was accompanied by an increased Malondialdehyde concentration, reduced glutathione level, and reduced superoxide dismutase and catalase enzyme activities. The immunoexpression of p53 and TIGAR was markedly increased after tIRI. The above tIRI-induced alterations were attenuated by FDP treatment. Discussion. Our findings indicate that tIRI-induced spermatogenic damage is associated with dysregulation of GE activity and gene expression, which were associated with activation of the TIGAR/p53 pathway. FDP treatment had a beneficial effect on alleviating the damaging effects of tIRI. This study further emphasizes the importance of metabolic regulation for proper spermatogenesis.
Collapse
Affiliation(s)
- May Al-Maghrebi
- Faculty of Medicine—Department of Biochemistry, Kuwait University, Jabriyah, Kuwait
| | - Waleed M. Renno
- Faculty of Medicine—Department of Anatomy, Kuwait University, Jabriyah, Kuwait
| |
Collapse
|
3
|
|
4
|
Metabolomics of oxidative stress in recent studies of endogenous and exogenously administered intermediate metabolites. Int J Mol Sci 2011; 12:6469-501. [PMID: 22072900 PMCID: PMC3210991 DOI: 10.3390/ijms12106469] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/13/2011] [Accepted: 09/21/2011] [Indexed: 11/19/2022] Open
Abstract
Aerobic metabolism occurs in a background of oxygen radicals and reactive oxygen species (ROS) that originate from the incomplete reduction of molecular oxygen in electron transfer reactions. The essential role of aerobic metabolism, the generation and consumption of ATP and other high energy phosphates, sustains a balance of approximately 3000 essential human metabolites that serve not only as nutrients, but also as antioxidants, neurotransmitters, osmolytes, and participants in ligand-based and other cellular signaling. In hypoxia, ischemia, and oxidative stress, where pathological circumstances cause oxygen radicals to form at a rate greater than is possible for their consumption, changes in the composition of metabolite ensembles, or metabolomes, can be associated with physiological changes. Metabolomics and metabonomics are a scientific disciplines that focuse on quantifying dynamic metabolome responses, using multivariate analytical approaches derived from methods within genomics, a discipline that consolidated innovative analysis techniques for situations where the number of biomarkers (metabolites in our case) greatly exceeds the number of subjects. This review focuses on the behavior of cytosolic, mitochondrial, and redox metabolites in ameliorating or exacerbating oxidative stress. After reviewing work regarding a small number of metabolites—pyruvate, ethyl pyruvate, and fructose-1,6-bisphosphate—whose exogenous administration was found to ameliorate oxidative stress, a subsequent section reviews basic multivariate statistical methods common in metabolomics research, and their application in human and preclinical studies emphasizing oxidative stress. Particular attention is paid to new NMR spectroscopy methods in metabolomics and metabonomics. Because complex relationships connect oxidative stress to so many physiological processes, studies from different disciplines were reviewed. All, however, shared the common goal of ultimately developing “omics”-based, diagnostic tests to help influence therapies.
Collapse
|
5
|
Liu J, Segal M, Yoo S, Yang GY, Kelly M, James TL, Litt L. Antioxidant effect of ethyl pyruvate in respiring neonatal cerebrocortical slices after H(2)O(2) stress. Neurochem Int 2008; 54:106-10. [PMID: 19041675 DOI: 10.1016/j.neuint.2008.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 10/13/2008] [Accepted: 10/23/2008] [Indexed: 11/19/2022]
Abstract
Administration of ethyl pyruvate, which is formed from pyruvate and ethanol, has been found capable of rescuing cells injured by oxidative stress. In one perspective the rescue has been postulated to be metabolic, with the resulting intracellular delivery of pyruvate seen as providing substrate for the TCA Cycle, making it possible to counteract sequela of poly(ADP-ribose)ribosylation, such as depletion of cytosolic NAD(+), glycolytic arrest, and mitochondrial deprivation of pyruvate. The rescue has also been attributed to radical scavenging via the carbonyl groups in ethyl pyruvate and pyruvate. In a previous study we exposed superfused neonatal (P7) brain slices for 60min to 2mM H(2)O(2) and found evidence for both rescue mechanisms. To see if ethyl pyruvate's actions stemmed more from being an antioxidant than from being a nutrient we conducted six new experiments using the same H(2)O(2) protocol, but with two new rescue solutions: [10mM] glucose (glc) plus one of the following: ethyl pyruvate [20mM], or the nonmetabolizable radical scavenger N-tert-butyl-alpha-phenylnitrone (PBN, 1mM). Final ATP values compared to initial, measured in 14.1T (31)P NMR spectra of PCA extracts, were the same: 0.70+/-0.08 for the former (N=3), and 0.64+/-0.08 for the latter (N=3). Quantifications of this study's (1)H NMR metabolites, also measured at 14.1T, exhibited separate clustering when pooled with data from the previous study and compared in a metabolomic multivariate analyses. Because the addition of ethyl pyruvate provided the same ATP protection as the addition of a nonmetabolizable antioxidant, antioxidant protection was its prominent protective mechanism in the chosen, high glucose protocol. Having distinct clusters in the Scores Plot of a Partial Least Squares-Discriminant Analysis suggests the feasibility of constructing statistical models that are predictive.
Collapse
Affiliation(s)
- J Liu
- Department of Anesthesia, The University of California San Francisco, San Francisco 94143-0648, United States
| | | | | | | | | | | | | |
Collapse
|
6
|
Liu J, Hirai K, Litt L. Fructose-1,6-bisphosphate does not preserve ATP in hypoxic-ischemic neonatal cerebrocortical slices. Brain Res 2008; 1238:230-8. [PMID: 18725216 DOI: 10.1016/j.brainres.2008.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 08/02/2008] [Accepted: 08/04/2008] [Indexed: 11/17/2022]
Abstract
Fructose-1,6-bisphosphate (FBP), an endogenous intracellular metabolite in glycolysis, was found in many preclinical studies to be neuroprotective during hypoxia-ischemia (HI) when administered exogenously. We looked for HI neuroprotection from FBP in a neonatal rat brain slice model, using 14.1 T (1)H/(31)P/(13)C NMR spectroscopy of perchloric acid slice extracts to ask: 1) if FBP preserves high energy phosphates during HI; and 2) if exogenous [1-(13)C]FBP enters cells and is glycolytically metabolized to [3-(13)C]lactate. We also asked: 3) if substantial superoxide production occurs during and after HI, thinking such might be treatable by exogenous FBP's antioxidant effects. Superfused P7 rat cerebrocortical slices (350 mum) were treated with 2 mM FBP before and during 30 min of HI, and then given 4 h of recovery with an FBP-free oxygenated superfusate. Slices were removed before HI, at the end of HI, and at 1 and 4 h after HI. FBP did not improve high energy phosphate levels or change (1)H metabolite profiles. Large increases in [3-(13)C]lactate were seen with (13)C NMR, but the lactate fractional enrichment was always (1.1+/-0.5)%, implying that all of lactate's (13)C was natural abundance (13)C, that none was from metabolism of (13)C-FBP. FBP had no effect on the fluorescence of ethidium produced from superoxide oxidation of hydroethidine. Compared to control slices, ethidium fluorescence was 25% higher during HI and 50% higher at the end of recovery. Exogenous FBP did not provide protection or enter glycolysis. Its use as an antioxidant might be worth studying at higher FBP concentrations.
Collapse
Affiliation(s)
- Jia Liu
- Department of Anesthesia and Perioperative Medicine, The University of California San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
7
|
Iwamoto S, Motomura K, Shinoda Y, Urata M, Kato J, Takiguchi N, Ohtake H, Hirota R, Kuroda A. Use of an Escherichia coli recombinant producing thermostable polyphosphate kinase as an ATP regenerator to produce fructose 1,6-diphosphate. Appl Environ Microbiol 2007; 73:5676-8. [PMID: 17616610 PMCID: PMC2042086 DOI: 10.1128/aem.00278-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat-treated Escherichia coli producing Thermus polyphosphate kinase regenerated ATP by using exogenous polyphosphate. This recombinant could be used as a platform to produce valuable compounds in combination with thermostable phosphorylating or energy-requiring enzymes. In this work, we demonstrated the production of fructose 1,6-diphosphate from fructose and polyphosphate.
Collapse
Affiliation(s)
- Seishi Iwamoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
The International Liaison Committee on Resuscitation (ILCOR) consensus on science with treatment recommendations for pediatric and neonatal patients: pediatric basic and advanced life support. Pediatrics 2006; 117:e955-77. [PMID: 16618790 DOI: 10.1542/peds.2006-0206] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This publication contains the pediatric and neonatal sections of the 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations (COSTR). The consensus process that produced this document was sponsored by the International Liaison Committee on Resuscitation (ILCOR). ILCOR was formed in 1993 and consists of representatives of resuscitation councils from all over the world. Its mission is to identify and review international science and knowledge relevant to cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) and to generate consensus on treatment recommendations. ECC includes all responses necessary to treat life-threatening cardiovascular and respiratory events. The COSTR document presents international consensus statements on the science of resuscitation. ILCOR member organizations are each publishing resuscitation guidelines that are consistent with the science in this consensus document, but they also take into consideration geographic, economic, and system differences in practice and the regional availability of medical devices and drugs. The American Heart Association (AHA) pediatric and the American Academy of Pediatrics/AHA neonatal sections of the resuscitation guidelines are reprinted in this issue of Pediatrics (see pages e978-e988). The 2005 evidence evaluation process began shortly after publication of the 2000 International Guidelines for CPR and ECC. The process included topic identification, expert topic review, discussion and debate at 6 international meetings, further review, and debate within ILCOR member organizations and ultimate approval by the member organizations, an Editorial Board, and peer reviewers. The complete COSTR document was published simultaneously in Circulation (International Liaison Committee on Resuscitation. 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2005;112(suppl):73-90) and Resuscitation (International Liaison Committee on Resuscitation. 2005 International Consensus Conference on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation. 2005;67:271-291). Readers are encouraged to review the 2005 COSTR document in its entirety. It can be accessed through the CPR and ECC link at the AHA Web site: www.americanheart.org. The complete publication represents the largest evaluation of resuscitation literature ever published and contains electronic links to more detailed information about the international collaborative process. To organize the evidence evaluation, ILCOR representatives established 6 task forces: basic life support, advanced life support, acute coronary syndromes, pediatric life support, neonatal life support, and an interdisciplinary task force to consider overlapping topics such as educational issues. The AHA established additional task forces on stroke and, in collaboration with the American Red Cross, a task force on first aid. Each task force identified topics requiring evaluation and appointed international experts to review them. A detailed worksheet template was created to help the experts document their literature review, evaluate studies, determine levels of evidence, develop treatment recommendations, and disclose conflicts of interest. Two evidence evaluation experts reviewed all worksheets and assisted the worksheet reviewers to ensure that the worksheets met a consistently high standard. A total of 281 experts completed 403 worksheets on 275 topics, reviewing more than 22000 published studies. In December 2004 the evidence review and summary portions of the evidence evaluation worksheets, with worksheet author conflict of interest statements, were posted on the Internet at www.C2005.org, where readers can continue to access them. Journal advertisements and e-mails invited public comment. Two hundred forty-nine worksheet authors (141 from the United States and 108 from 17 other countries) and additional invited experts and reviewers attended the 2005 International Consensus Conference for presentation, discussion, and debate of the evidence. All 380 participants at the conference received electronic copies of the worksheets. Internet access was available to all conference participants during the conference to facilitate real-time verification of the literature. Expert reviewers presented topics in plenary, concurrent, and poster conference sessions with strict adherence to a novel and rigorous conflict of interest process. Presenters and participants then debated the evidence, conclusions, and draft summary statements. Wording of science statements and treatment recommendations was refined after further review by ILCOR member organizations and the international editorial board. This format ensured that the final document represented a truly international consensus process. The COSTR manuscript was ultimately approved by all ILCOR member organizations and by an international editorial board. The AHA Science Advisory and Coordinating Committee and the editor of Circulation obtained peer reviews of this document before it was accepted for publication. The most important changes in recommendations for pediatric resuscitation since the last ILCOR review in 2000 include: Increased emphasis on performing high quality CPR: "Push hard, push fast, minimize interruptions of chest compression; allow full chest recoil, and don't provide excessive ventilation" Recommended chest compression-ventilation ratio: For lone rescuers with victims of all ages: 30:2 For health care providers performing 2-rescuer CPR for infants and children: 15:2 (except 3:1 for neonates) Either a 2- or 1-hand technique is acceptable for chest compressions in children Use of 1 shock followed by immediate CPR is recommended for each defibrillation attempt, instead of 3 stacked shocks Biphasic shocks with an automated external defibrillator (AED) are acceptable for children 1 year of age. Attenuated shocks using child cables or activation of a key or switch are recommended in children <8 years old. Routine use of high-dose intravenous (IV) epinephrine is no longer recommended. Intravascular (IV and intraosseous) route of drug administration is preferred to the endotracheal route. Cuffed endotracheal tubes can be used in infants and children provided correct tube size and cuff inflation pressure are used. Exhaled CO2 detection is recommended for confirmation of endotracheal tube placement. Consider induced hypothermia for 12 to 24 hours in patients who remain comatose following resuscitation. Some of the most important changes in recommendations for neonatal resuscitation since the last ILCOR review in 2000 include less emphasis on using 100% oxygen when initiating resuscitation, de-emphasis of the need for routine intrapartum oropharyngeal and nasopharyngeal suctioning for infants born to mothers with meconium staining of amniotic fluid, proven value of occlusive wrapping of very low birth weight infants <28 weeks' gestation to reduce heat loss, preference for the IV versus the endotracheal route for epinephrine, and an increased emphasis on parental autonomy at the threshold of viability. The scientific evidence supporting these recommendations is summarized in the neonatal document (see pages e978-e988).
Collapse
|
9
|
Cohen JE, Atluri P, Taylor MD, Grand TJ, Liao GP, Panlilio CM, Suarez EE, Zentko SE, Hsu VM, Berry MF, Smith MJ, Gardner TJ, Sweeney HL, Woo YJ. Fructose 1,6-diphosphate administration attenuates post-ischemic ventricular dysfunction. Heart Lung Circ 2006; 15:119-23. [PMID: 16469539 DOI: 10.1016/j.hlc.2005.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 12/02/2005] [Accepted: 12/21/2005] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cardiomyocyte energy production during ischemia depends upon anaerobic glycolysis inefficiently yielding two ATP per glucose. Substrate augmentation with fructose 1,6-diphosphate (FDP) bypasses the ATP consuming steps of glucokinase and phosphofructokinase thus yielding four ATP per FDP. This study evaluated the impact of FDP administration on myocardial function after acute ischemia. METHODS Male Wistar rats, 250-300 g, underwent 30 min occlusion of the left anterior descending coronary artery followed by 30 min reperfusion. Immediately prior to both ischemia and reperfusion, animals received an intravenous bolus of FDP or saline control. After 30 min reperfusion, myocardial function was evaluated with a left ventricular intracavitary pressure/volume conductance microcatheter. For bioenergetics studies, myocardium was isolated at 5 min of ischemia and assayed for ATP levels. RESULTS Compared to controls (n=8), FDP animals (n=8) demonstrated significantly improved maximal left ventricular pressure (100.5+/-5.4 mmHg versus 69.1+/-1.9 mmHg; p<0.0005), dP/dt (5296+/-531 mmHg/s versus 2940+/-175 mmHg/s; p<0.0028), ejection fraction (29.1+/-1.7% versus 20.4+/-1.4%; p<0.0017), and preload adjusted maximal power (59.3+/-5.0 mW/microL(2) versus 44.4+/-4.6 mW/microL(2); p<0.0477). Additionally, significantly enhanced ATP levels were observed in FDP animals (n=5) compared to controls (n=5) (535+/-156 nmol/g ischemic tissue versus 160+/-9.0 nmol/g ischemic tissue; p<0.0369). CONCLUSIONS The administration of the glycolytic intermediate, FDP, by intravenous injection, resulted in significantly improved myocardial function after ischemia and improved bioenergetics during ischemia.
Collapse
Affiliation(s)
- Jeffrey E Cohen
- University of Pennsylvania, School of Medicine, Department of Surgery, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Riedel BJ, Gal J, Ellis G, Marangos PJ, Fox AW, Royston D. Myocardial protection using fructose-1,6-diphosphate during coronary artery bypass graft surgery: a randomized, placebo-controlled clinical trial. Anesth Analg 2004; 98:20-29. [PMID: 14693576 DOI: 10.1213/01.ane.0000094336.97693.90] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED In vitro and in vivo studies suggest that fructose-1,6-diphosphate (FDP), an intermediary glycolytic pathway metabolite, ameliorates ischemic tissue injury through increased high-energy phosphate levels and may therefore have cardioprotective properties in patients undergoing coronary artery bypass graft (CABG) surgery. We designed a randomized, placebo-controlled, double-blinded, sequential-cohort, dose-ranging safety study to test 5 FDP dosage regimens in patients (n = 120; 60 FDP, 60 control) undergoing CABG surgery. Of these dosage regimens, 3 produced no benefit, 1 produced improved cardiac function, and 1 required adjustment as a result of metabolic acidosis. This suggests that we achieved the intended effect of a dose-ranging study. The expected response was observed in patients treated with 250 mg/kg FDP IV before surgery and 2.5 mM FDP as a cardioplegic additive (n = 15). These patients had lower serum creatine kinase-MB levels 2, 4, and 6 h after reperfusion (P < 0.05), fewer perioperative myocardial infarctions (P < 0.05), and improved postoperative cardiac function, as evidenced by higher left ventricular stroke work index (LVSWI) 6, 12, and 16 h (P < 0.01) and cardiac index (CI) at 12 and 16 h (P < 0.05) after reperfusion. Overall efficacy of FDP was tested across all regimens that included IV FDP (n = 88; 44 FDP, 44 control) using 2 (FDP versus placebo) x 3 (dose size) factorial analyses. Area-under-curve (AUC) analysis demonstrated a significant increase in CI (AUC-16h, P = 0.013) and LVSWI (AUC-16h, P = 0.003) and reduction in CK-MB levels (AUC-16h, P < 0.05) in FDP-treated patients. The internal consistency of this dataset suggests that FDP may provide myocardial protection in CABG surgery and supports previous laboratory and clinical studies of FDP in ischemic heart disease. IMPLICATIONS Fructose-1,6-diphosphate (FDP) may increase high-energy phosphate levels under anaerobic conditions and therefore ameliorate ischemic injury. A dose-ranging safety study for FDP was conducted in patients undergoing coronary artery surgery. Preischemic provision of FDP significantly improved cardiac function and reduced perioperative ischemic injury. These myocardial protective effects may improve patient outcome after cardiac surgery.
Collapse
Affiliation(s)
- Bernhard J Riedel
- *Department of Anesthesiology, Royal Brompton & Harefield NHS Trust, London, UK and †Cypros Pharmaceutical Corporation, Carlsbad, California (now incorporated into Questcor Pharmaceuticals, Inc., Hayward, California)
| | | | | | | | | | | |
Collapse
|
12
|
Izumi Y, Benz AM, Katsuki H, Matsukawa M, Clifford DB, Zorumski CF. Effects of fructose-1,6-bisphosphate on morphological and functional neuronal integrity in rat hippocampal slices during energy deprivation. Neuroscience 2003; 116:465-75. [PMID: 12559101 DOI: 10.1016/s0306-4522(02)00661-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
D-fructose-1,6-bisphosphate, a high energy glycolytic intermediate, attenuates ischemic damage in a variety of tissues, including brain. To determine whether D-fructose-1,6-bisphosphate serves as an alternate energy substrate in the CNS, rat hippocampal slices were treated with D-fructose-1,6-bisphosphate during glucose deprivation. Unlike pyruvate, an endproduct of glycolysis, 10 mM D-fructose-1,6-bisphosphate did not preserve synaptic transmission or morphological integrity of CA1 pyramidal neurons during glucose deprivation. Moreover, during glucose deprivation, 10-mM D-fructose-1,6-bisphosphate failed to maintain adenosine triphosphate levels in slices. D-fructose-1,6-bisphosphate, however, attenuated acute neuronal degeneration produced by 200 microM iodoacetate, an inhibitor of glycolysis downstream of D-fructose-1,6-bisphosphate. Because (5S, 10R)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine, an antagonist of N-methyl-D-aspartate receptors, exhibited similar protection against iodoacetate damage, we examined whether (5S, 10R)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine and D-fructose-1,6-bisphosphate share a common neuroprotective mechanism. Indeed, D-fructose-1,6-bisphosphate diminished N-methyl-D-aspartate receptor-mediated synaptic responses and partially attenuated neuronal degeneration induced by 100-microM N-methyl-D-aspartate. Taken together, these results indicate that D-fructose-1,6-bisphosphate is unlikely to serve as an energy substrate in the hippocampus, and that neuroprotective effects of D-fructose-1,6-bisphosphate are mediated by mechanisms other than anaerobic energy supply.
Collapse
Affiliation(s)
- Y Izumi
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63310, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Donohoe PH, Fahlman CS, Bickler PE, Vexler ZS, Gregory GA. Neuroprotection and intracellular Ca2+ modulation with fructose-1,6-bisphosphate during in vitro hypoxia-ischemia involves phospholipase C-dependent signaling. Brain Res 2001; 917:158-66. [PMID: 11640901 DOI: 10.1016/s0006-8993(01)02849-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The neuroprotectant fructose-1,6-bisphosphate (FBP) preserves cellular [ATP] and prevents catastrophic increases in [Ca2+]i during hypoxia. Because FBP does not enter neurons or glia, the mechanism of protection is not clear. In this study, we show that FBP's capacity to protect neurons and stabilize [Ca2+]i during hypoxia derives from signaling by a phospholipase-C-intracellular Ca2+-protein kinases pathway, rather than Ca2+ chelation or glutamate receptor inhibition. FBP reduced [Ca2+]i changes in hypoxic hippocampal neurons, regardless of [Ca2+]e, and preserved cellular integrity as measured by trypan blue or propidium iodide exclusion and [ATP]. FBP also prevented hypoxia-induced increases in [Ca2+]i when glucose was absent and when [Ca2+]e was increased to negate Ca2+ chelation by FBP. These protective effects were observed equally in postnatal day 2 (P2) and P16 neurons. Inhibiting glycolysis with iodoacetate eliminated the protective effects of FBP in P16 neurons. FBP did not alter Ca2+ influx stimulated by brief applications of NMDA or glutamate during normoxia or hypoxia, but did reduce the increase in [Ca2+]i produced by 10 min of glutamate exposure during hypoxia. Because FBP increases basal [Ca2+]i and stimulates membrane lipid hydrolysis, we tested whether FBP's protective action was dependent on phospholipase C signaling. The phospholipase C inhibitor U73122 prevented FBP-induced increases in [Ca2+]i and eliminated FBP's ability to stabilize [Ca2+]i and increase survival during anoxia. Similarly, FBP's protection was eliminated in the presence of the mitogen/extracellular signal protein kinase (MEK) inhibitor U0126. We conclude that FBP may produce neuroprotection via activation of neuroprotective signaling pathways that modulate Ca2+ homeostasis.
Collapse
Affiliation(s)
- P H Donohoe
- Department of Anesthesia and Perioperative Care, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0542, USA
| | | | | | | | | |
Collapse
|
14
|
Behringer W, Kentner R, Wu X, Tisherman SA, Radovsky A, Stezoski WS, Henchir J, Prueckner S, Jackson EK, Safar P. Fructose-1,6-bisphosphate and MK-801 by aortic arch flush for cerebral preservation during exsanguination cardiac arrest of 20 min in dogs. An exploratory study. Resuscitation 2001; 50:205-16. [PMID: 11719149 DOI: 10.1016/s0300-9572(01)00337-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In our exsanguination cardiac arrest (CA) outcome model in dogs we are systematically exploring suspended animation (SA), i.e. preservation of brain and heart immediately after the onset of CA to enable transport and resuscitative surgery during CA, followed by delayed resuscitation. We have shown in dogs that inducing moderate cerebral hypothermia with an aortic arch flush of 500 ml normal saline solution at 4 degrees C, at start of CA 20 min no-flow, leads to normal functional outcome. We hypothesized that, using the same model, but with the saline flush at 24 degrees C inducing minimal cerebral hypothermia (which would be more readily available in the field), adding either fructose-1,6-bisphosphate (FBP, a more efficient energy substrate) or MK-801 (an N-methyl-D-aspartate (NMDA) receptor blocker) would also achieve normal functional outcome. Dogs (range 19-30 kg) were exsanguinated over 5 min to CA of 20 min no-flow, and resuscitated by closed-chest cardiopulmonary bypass (CPB). They received assisted circulation to 2 h, mild systemic hypothermia (34 degrees C) post-CA to 12 h, controlled ventilation to 20 h, and intensive care to 72 h. At CA 2 min, the dogs received an aortic arch flush of 500 ml saline at 24 degrees C by a balloon-tipped catheter, inserted through the femoral artery (control group, n=6). In the FBP group (n=5), FBP (total 1440 or 4090 mg/kg) was given by flush and with reperfusion. In the MK-801 group (n=5), MK-801 (2, 4, or 8 mg/kg) was given by flush and with reperfusion. Outcome was assessed in terms of overall performance categories (OPC 1, normal; 2, moderate disability; 3, severe disability; 4, coma; 5, brain death or death), neurologic deficit scores (NDS 0-10%, normal; 100%, brain death), and brain histologic damage scores (HDS, total HDS 0, no damage; >100, extensive damage; 1064, maximal damage). In the control group, one dog achieved OPC 2, one OPC 3, and four OPC 4; in the FBP group, two dogs achieved OPC 3, and three OPC 4; in the MK-801 group, two dogs achieved OPC 3, and three OPC 4 (P=1.0). Median NDS were 62% (range 8-67) in the control group; 55% (range 34-66) in the FBP group; and 50% (range 26-59) in the MK-801 group (P=0.2). Median total HDS were 130 (range 56-140) in the control group; 96 (range 64-104) in the FBP group; and 80 (range 34-122) in the MK-801 group (P=0.2). There was no difference in regional HDS between groups. We conclude that neither FBP nor MK-801 by aortic arch flush at the start of CA, plus an additional i.v. infusion of the same drug during reperfusion, can provide cerebral preservation during CA 20 min no-flow. Other drugs and drug-combinations should be tested with this model in search for a breakthrough effect.
Collapse
Affiliation(s)
- W Behringer
- Department of Anesthesiology/Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Markov AK, Neely WA, Didlake RH, Terry J, Causey A, Lehan PH. Metabolic responses to fructose-1,6-diphosphate in healthy subjects. Metabolism 2000; 49:698-703. [PMID: 10877192 DOI: 10.1053/meta.2000.6249] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fructose-1,6-diphosphate (FDP) is an important naturally occurring intracellular metabolite with a direct regulatory role in many metabolic pathways. The most important and widely studied of the FDP effects has been its regulation of glycolysis, particularly the enzyme that synthesizes FDP--phosphofructokinase (PFK). Since it was observed experimentally that FDP does indeed modulate carbohydrate metabolism, we investigated whether FDP would similarly enhance carbohydrate utilization in man. The study used indirect calorimetry and was open to healthy adults (N = 45) of either sex and above legal age. After a steady metabolic state was obtained, 5 g of FDP (10%) was infused into a brachial vein. In 10 subjects, glucose (5 g) or FDP (5 g) was sequentially infused. The rapid intravenous infusion of FDP produced a slight but significant decrease in heart and respiration rates (P < .05). A significant increase in the serum concentration of inorganic phosphate (P < .0001) and the intraerythrocytic concentration of adenosine triphosphate (ATP) (P < .01) was also observed. The FDP infusion produced a decrease in plasma cholesterol and triglycerides (P < .001 and P < .01, respectively). The indirect calorimetric data indicate that the infusion produced a highly significant increase in the respiratory quotient ([RQ] P < .0001) and the energy derived from carbohydrates (P < .0001) and a significant decrease in the energy derived from lipids (P < .0001). Glucose infusion did not cause changes in any of the parameters. These data indicate that carbohydrate metabolism is stimulated by FDP.
Collapse
Affiliation(s)
- A K Markov
- Department of Medicine, University of Mississippi School of Medicine, Jackson 39216, USA
| | | | | | | | | | | |
Collapse
|
16
|
Vexler Z, Berrios M, Ursell PC, Sola A, Ferriero DM, Gregory GA. Toxicity of fructose-1,6-bisphosphate in developing normoxic rats. PHARMACOLOGY & TOXICOLOGY 1999; 84:115-21. [PMID: 10193671 DOI: 10.1111/j.1600-0773.1999.tb00885.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Giving 500 mg/kg of fructose-1,6-bisphosphate intraperitoneally decreases hypoxic/ischaemic CNS injury of neonatal rats. Before administering fructose-1,6-bisphosphate to human neonates, its toxicity must be determined in neonatal animals. Thus, saline or 4,000, 6,000, or 8,000 mg/kg of fructose-1,6-bisphosphate was given intraperitoneally to normoxic 7 days old rats. One, 2, and 24 hr and 7 days later, blood Ca2+, PO(4)3-, blood urea nitrogen, and creatinine concentrations, and aspartate aminotransferase activity were measured. Organ pathology was determined at necropsy. Pups receiving 4,000 mg/kg of fructose-1,6-bisphosphate survived without evidence of injury or toxicity. All animals receiving 8,000 mg/kg and 27 percent of those receiving 6,000 mg/kg of fructose-1,6-bisphosphate died. Surviving fructose-1,6-bisphosphate-treated animals grew at the same rates and had similar weights as saline-treated animals. Nineteen percent of pups given 6,000 or 8,000 mg/kg of fructose-1,6-bisphosphate had mild perivascular fluid cuffing and/or microscopic pulmonary haemorrhage, but none of the animals given 4,000 mg/kg of the compound had evidence of injury. No other organ pathology was found in any of the animals. Renal and hepatic function were normal in all animals. Fructose-1,6-bisphosphate administration was associated with a significant increase in the fructose-1,6-bisphosphate concentration of blood. Administering 4,000 to 8,000 mg/kg of fructose-1,6-bisphosphate significantly decreased Ca2+ concentrations and increased PO(4)3- concentrations 1 and 2 hrs after fructose-1,6-bisphosphate administration. Similar changes in Ca2+ and PO(4)3- concentrations occurred after the administration of 10 mmol/kg of sodium phosphate. The wide margin of safety for fructose-1,6-bisphosphate (8 times the dose needed to prevent or reduce CNS injury) may render fructose-1,6-bisphosphate safe for use in neonates.
Collapse
Affiliation(s)
- Z Vexler
- Department of Paediatrics (Neonatology), University of California, San Francisco, USA
| | | | | | | | | | | |
Collapse
|
17
|
Markov AK, Brumley MA, Figueroa A, Skelton TN, Lehan PH. Hemodynamic effects of fructose 1,6-diphosphate in patients with normal and impaired left ventricular function. Am Heart J 1997; 133:541-9. [PMID: 9141376 DOI: 10.1016/s0002-8703(97)70149-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We compared the short-term hemodynamic effects of intravenous fructose 1,6-diphosphate (FDP) administration in patients with coronary artery disease. Hemodynamic measurements were performed before and after administration of FDP in two groups of patients: those with impaired left ventricular (LV) function, elevated LV end-diastolic pressures (LVEDP > or =12 mm Hg, n = 30), and those with normal LV function (LVEDP <12 mm Hg, n = 17). In those with impaired LV function, FDP induced a decrease in LVEDP from 22 +/- 1.31 to 16.73 +/- 1.46 mm Hg (p< 0.0001). The cardiac index increased (2.50 +/- 0.11 to 2.81 +/- 0.13 L/m2 [p < 0.0001]), as did the LV stroke work index (31.7 +/- 2.04 to 40.3 +/- 2.67 gm x m x m2 [p < 0.0001]). FDP induced no significant change in heart rate and mean aortic pressure. Pulmonary pressure and resistance declined (p<0.002 and p< 0.0001, respectively). Systemic vascular resistance decreased because of increased cardiac output and unchanged arterial pressure (p < 0.001). In those patients with normal baseline LVEDP (5.06 +/- 0.27 mm Hg), FDP decreased heart rate (p< 0.0001) and systemic and pulmonary resistance (p < 0.03 and p < 0.004, respectively), whereas LVEDP and mean aortic and pulmonary pressures remained unchanged. FDP moderately increased cardiac output (p < 0.05), stroke volume index, and LV stroke work index (p< 0.002 and p< 0.003, respectively). The observed improvement in LV function in those patients with elevated LV filling pressures is thought to be a result of an increased energy production by the Embden-Meyerhoff pathway and to act as a positive inotrope.
Collapse
Affiliation(s)
- A K Markov
- Department of Medicine, The University of Mississippi Medical Center, Jackson 39216, USA
| | | | | | | | | |
Collapse
|
18
|
Sola A, Berrios M, Sheldon RA, Ferriero DM, Gregory GA. Fructose-1,6-bisphosphate after hypoxic ischemic injury is protective to the neonatal rat brain. Brain Res 1996; 741:294-9. [PMID: 9001735 DOI: 10.1016/s0006-8993(96)00984-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fructose-1,6-bisphosphate (FBP) has been shown to attenuate central nervous system injury in adult animals. We evaluated whether FBP given after an ischemic-hypoxic insult is protective to the developing brain in a neonatal rat model of hypoxia-ischemia. Postnatal day 7 rat pups were subjected to focal ischemia followed by global hypoxia and then administered either FBP or saline intraperitoneally. A dose of 500 mg/kg or greater of FBP significantly reduced the amount of injury such that 55% of FBP- vs. 17% of saline-treated rats had no injury; 6% of FBP- and 47% of saline-treated rats had severe damage (P = 0.004). There was less infarcted brain in FBP-treated rats (12 +/- 11% vs. 37 +/- 32%; P = 0.005); and fewer FBP-treated rats had > 30% ipsilateral cortical injury (12% of FBP- vs. 50% of saline-treated rats; P = 0.002). FBP lowered serum calcium levels during the first 24 h after the insult without significant changes in ionized calcium or osmolarity. These results indicate that FBP treatment administered systemically after hypoxia-ischemia reduces CNS injury in neonatal rats.
Collapse
Affiliation(s)
- A Sola
- Department of Pediatrics (Neonatology), University of California, San Francisco 94143-0734, USA.
| | | | | | | | | |
Collapse
|
19
|
Kelleher JA, Chan PH, Chan TY, Gregory GA. Energy metabolism in hypoxic astrocytes: protective mechanism of fructose-1,6-bisphosphate. Neurochem Res 1995; 20:785-92. [PMID: 7477671 DOI: 10.1007/bf00969690] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The protective effects of fructose-1,6-biphosphate (FBP) during hypoxia/ischemia are thought to result from uptake and utilization of FBP as a substrate for glycolysis or from stimulation of glucose metabolism. To test these hypotheses, we measured CO2 and lactate production from [6-14C]glucose, [1-14C]glucose, and [U-14C]FBP in normoxic and hypoxic cultured astrocytes with and without FBP present. FBP had little effect on CO2 production by glycolysis, but increased CO2 production by the pentose phosphate pathway. Labeled FBP produced very small amounts of CO2. Lactate production from [1-, and 6-14C]glucose increased similarly during hypoxic hypoxia; the increase was independent of added FBP. Labeled lactate from [U-14C]FBP was minimal. We conclude that exogenous FBP is not used by astrocytes as a substrate for glycolysis and that FBP alters glucose metabolism.
Collapse
Affiliation(s)
- J A Kelleher
- Department of Neurology, School of Medicine, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|
20
|
Sano W, Watanabe F, Tamai H, Furuya E, Mino M. Beneficial effect of fructose-1,6-bisphosphate on mitochondrial function during ischemia-reperfusion of rat liver. Gastroenterology 1995; 108:1785-92. [PMID: 7768384 DOI: 10.1016/0016-5085(95)90141-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND/AIMS Several groups have reported that administration of fructose-1,6-bisphosphate (FBP) reduces ischemic injury. The aim of this study was to determine the protective effect of FBP on the impairment of mitochondrial oxidative phosphorylation by ischemia-reperfusion injury in the rat liver. METHODS The respiratory control ratio (RCR) and the adenine nucleotide content of mitochondria isolated from ischemic and reperfused livers with or without FBP treatment were measured. RESULTS In FBP-treated livers, the cellular adenosine triphosphate level was restored to more than 50% of normal after 120 minutes of reperfusion following 120 minutes of ischemia, whereas that of control livers only reached 15% of normal. The RCR and the adenine nucleotide content of mitochondria isolated from FBP-treated livers were significantly higher than those of mitochondria from control livers after ischemia and reperfusion. FBP strongly suppressed the formation of lipid peroxides during reperfusion. In vitamin E-deficient rats, the RCR decreased markedly during reperfusion, but FBP protected the mitochondria against reperfusion injury. CONCLUSIONS FBP has a protective effect against ischemia-reperfusion injury on the liver and especially preserves the oxidative phosphorylation capacity of hepatic mitochondria.
Collapse
Affiliation(s)
- W Sano
- Department of Pediatrics, Osaka Medical College, Japan
| | | | | | | | | |
Collapse
|
21
|
Gobbel GT, Chan TY, Gregory GA, Chan PH. Response of cerebral endothelial cells to hypoxia: modification by fructose-1,6-bisphosphate but not glutamate receptor antagonists. Brain Res 1994; 653:23-30. [PMID: 7526960 DOI: 10.1016/0006-8993(94)90367-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Damage to the cerebral endothelium from ischemia could exacerbate brain injury by altering vascular integrity, but little is known concerning the response of cerebral endothelial cells to hypoxia. To address this issue, cerebral capillary endothelial cells were isolated from 14-day-old rats, grown to confluence, and placed in hypoxic chambers for up to 62 h. Cells were undamaged by 24 hours of hypoxia as assessed by lactate dehydrogenase release and ethidium bromide staining, but 48 h resulted in marked damage. Hypoxia was probably exacerbated by hypoglycemia because glucose levels fell to < 1 mM by 24 h, at which point ATP levels began to fall in hypoxic cultures (3.25 +/- 1.48 nmol/mg protein; mean +/- S.D.) relative to normoxic cultures (9.52 +/- 1.41 nmol/mg protein). Cells treated with 4 mM fructose-1,6-bisphosphate (FBP) had significantly less damage at 48 h of hypoxia than controls. FBP had little effect on rate of glucose depletion from the media, but ATP depletion due to hypoxia was significantly less. Thus, the protective effect of FBP may be mediated by the ability of treated cells to maintain higher ATP levels. Unlike FBP, glutamate receptor antagonists including MK-801, NBQX, DNQX, and kynurenic acid were ineffective in ameliorating hypoxia-induced endothelial cell injury.
Collapse
Affiliation(s)
- G T Gobbel
- Department of Neurology, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
22
|
Tortosa A, Rivera R, Ambrosio S, Bartrons R, Ferrer I. Fructose-1,6-bisphosphate fails to ameliorate delayed neuronal death in the CA1 area after transient forebrain ischaemia in gerbils. Neuropharmacology 1993; 32:1367-71. [PMID: 8152526 DOI: 10.1016/0028-3908(93)90032-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fructose-1,6-bisphosphate has been shown to reduce ischaemic-induced brain damage in rabbits and gerbils. In view of these findings, we investigated the effects of fructose-1,6-bisphosphate on delayed neuronal death, following bilateral forebrain ischaemia, in the gerbil hippocampus at the fourth day of reperfusion. We subjected gerbils to bilateral forebrain ischaemia for 20 min. Fructose-1,6-bisphosphate was administered: intraperitoneally at a dose of 1 g/kg in saline in hr before the occlusion or at a dose of 1 g/kg 1 hr before the occlusion and every 24 hr for 3 days; or intraventricularly at a dose of 0.1 g/kg just after the carotid occlusion. No significant differences in the number of dying cells in the CA1 area were found between each group of treated animals when compared with controls. This study suggests that fructose-1,6-bisphosphate, administered according to these three different schedules, fails to ameliorate delayed neuronal death after 20 min of bilateral forebrain ischaemia in the CA1 area of the gerbil hippocampus.
Collapse
Affiliation(s)
- A Tortosa
- Department of Pathological Anatomy, Hospital, Princeps d'Espanya L'Hospitalet de Llobregat, Spain
| | | | | | | | | |
Collapse
|
23
|
Kuluz JW, Gregory GA, Han Y, Dietrich WD, Schleien CL. Fructose-1,6-bisphosphate reduces infarct volume after reversible middle cerebral artery occlusion in rats. Stroke 1993; 24:1576-83. [PMID: 8378964 DOI: 10.1161/01.str.24.10.1576] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND PURPOSE We tested the hypothesis that fructose-1,6-bisphosphate, when administered 10 minutes before the end of 2 hours of reversible middle cerebral artery occlusion, reduces ischemia-reperfusion injury and infarct volume measured after a 3-day survival period in rats. METHODS After 1 hour and 50 minutes of middle cerebral artery occlusion by the intraluminal suture method, fructose-1,6-bisphosphate, 500 mg/kg in group 1 and 350 mg/kg in group 2 (or an equivalent volume of 1.8% saline as placebo in each group), was given intravenously for a period of 15 minutes to fasted adult Sprague-Dawley rats. After 2 hours of ischemia, the suture was withdrawn and the rats allowed to survive for 3 days. The areas of infarction in 10 hematoxylin-eosin-stained coronal sections of the brain were measured and used to calculate infarct volume. RESULTS In group 1, fructose-1,6-bisphosphate decreased total cerebral hemispheric infarct volume by 43% (from 199.6 +/- 11.2 to 114.2 +/- 35.8 mm3, P < .04; mean +/- SEM). Cerebral cortical and subcortical infarct volumes were decreased by 46% (from 137.3 +/- 7.5 to 74.1 +/- 28.6 mm3, P < .04) and 36% (from 62.3 +/- 5.1 to 40.0 +/- 8.3 mm3, P < .04), respectively. In group 2, fructose-1,6-bisphosphate had no effect on infarct volume in rats that developed mild intraischemic hyperthermia, but in rats kept normothermic during ischemia, fructose-1,6-bisphosphate reduced subcortical infarct volume from 53.7 +/- 8.1 to 18.4 +/- 8.0 mm3 (P < .03). CONCLUSIONS Fructose-1,6-bisphosphate improves functional neurological outcome and reduces infarct volume after reversible middle cerebral artery occlusion in rats.
Collapse
Affiliation(s)
- J W Kuluz
- Department of Pediatrics, University of Miami, School of Medicine, FL 33101
| | | | | | | | | |
Collapse
|
24
|
Bickler PE, Kelleher JA. Fructose-1,6-bisphosphate stabilizes brain intracellular calcium during hypoxia in rats. Stroke 1992; 23:1617-22. [PMID: 1440710 DOI: 10.1161/01.str.23.11.1617] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Exogenously administered fructose-1,6-bisphosphate reduces neuronal injury from hypoxic or ischemic brain insults. To test the hypothesis that fructose-1,6-bisphosphate prevents changes in intracellular calcium ([Ca2+]i) and high-energy phosphate levels, we measured [Ca2+]i, intracellular pH (pHi), and adenosine triphosphate in cultured rat cortical astrocytes and cortical brain slices during hypoxia. METHODS The fluorescent indicators fura-2 and bis-carboxyethyl-carboxyfluorescein were used to simultaneously measure [Ca2+]i and pHi with a fluorometer. RESULTS Exposure to hypoxia (95% N2, 5% CO2) or 100 microM sodium cyanide produced transient increases in [Ca2+]i in astrocytes and sustained increases in [Ca2+]i in brain slices. Adenosine triphosphate levels fell in slices exposed to hypoxia or cyanide. Fructose-1,6-bisphosphate (3.5 mM) blocked increases in [Ca2+]i and prevented depletion of adenosine triphosphate. Fructose-1,6-bisphosphate also partially prevented adenosine triphosphate depletion in brain slices incubated in glucose-free medium. Iodoacetate (a specific inhibitor of glycolysis) elevated [Ca2+]i and partially prevented these actions of fructose-1,6-bisphosphate. Changes in pHi during hypoxia were not affected by fructose-1,6-bisphosphate. CONCLUSIONS Fructose-1,6-bisphosphate supports adenosine triphosphate production via stimulation of glycolysis and results in the maintenance of normal [Ca2+]i during hypoxia or hypoglycemia.
Collapse
Affiliation(s)
- P E Bickler
- Department of Anesthesia, University of California, San Francisco 94143-0542
| | | |
Collapse
|
25
|
Cargnoni A, Condorelli E, Boraso A, Comini L, De Giuli F, Pasini E, Ferrari R. Role of timing of administration in the cardioprotective effect of fructose-1,6-bisphosphate. Cardiovasc Drugs Ther 1992; 6:209-17. [PMID: 1637729 DOI: 10.1007/bf00051141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We administered fructose-1,6-bisphosphate (FDP), 1 mM, to isolated and perfused rabbit hearts submitted, after 90 minutes of equilibration, to an ischemic period (60 minutes at a coronary flow of 0.17 ml/min/g), followed by a period of reperfusion (30 minutes at a coronary flow of 3.6 ml/min/g). FDP was delivered at different times following the experimental protocol: 60 minutes before ischemia and for the entire experiment; 60 minutes before and during ischemia, but not at reperfusion; at the onset of ischemia and during reperfusion; and only during reperfusion. The FDP cardioprotective effect was evaluated in terms of recovery of left ventricular pressure developed during reperfusion, creatine phosphokinase (CPK) and noradrenaline release, mitochondrial function (expressed as yield, RCI, QO2, ADP/O), ATP and creatine phosphate (CP) tissue contents, calcium homeostasis, and by measuring oxidative stress in terms of reduced and oxidized glutathione release and tissue contents. Our data show that the cytoprotective action of FDP is closely related to the time of administration. Optimal myocardial preservation was achieved when it was present prior to ischemia and during reperfusion. When given at the time of ischemia or only on reperfusion, FDP does not exert cardioprotection. The data suggest that the FDP cardioprotective effect is related to improvement of energy metabolism.
Collapse
Affiliation(s)
- A Cargnoni
- Department of Cardiology, University of Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Hassinen IE, Nuutinen EM, Ito K, Nioka S, Lazzarino G, Giardina B, Chance B. Mechanism of the effect of exogenous fructose 1,6-bisphosphate on myocardial energy metabolism. Circulation 1991; 83:584-93. [PMID: 1991376 DOI: 10.1161/01.cir.83.2.584] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of fructose 1,6-bisphosphate (F-1,6-P2) on the isolated Langendorff-perfused heart were studied by monitoring flavoprotein fluorescence, oxygen consumption (MVO2), coronary flow (Fc), systolic intraventricular pressure (Psys), diastolic intraventricular pressure, and contraction frequency. The cellular energy state and cytosolic pH were determined by means of 31P nuclear magnetic resonance. Infusion of 5 mM F-1,6-P2 caused a rapid shift toward reduction in the flavoprotein redox state and initial 50% and 44% decreases in Psys and MVO2, respectively. After a partial recovery, these measures remained 11% and 25% below the basal value. Concomitantly, after an initial transient increase of 13%, Fc remained 17% lower than in the basal state. When the F-1,6-P2 concentration was subsequently increased to 10 mM, psys and MVO2 dropped temporarily to 31% and 29% of the basal value and then remained at 50% and 53%, respectively. Simultaneously, a brief increase was observed in Fc, which then fell 34% below the basal value. Rapid reoxidation of the flavoproteins and increases in MVO2, Psys, and Fc occurred on discontinuation of the F-1,6-P2 infusion. 31P nuclear magnetic resonance during infusions of both 5 and 10 mM F-1,6-P2 revealed a decrease in cytosolic inorganic phosphate and a tendency to increase creatine phosphate, suggesting elevation in the cellular energy state. No changes in intracellular pH occurred as estimated from the chemical shift of the nuclear magnetic resonance of inorganic phosphate. F-1,6-P2 (5 mM and 10 mM) lowered the free Ca2+ concentration in the Krebs-Henseleit bicarbonate buffer (by 32% and 47%, respectively). This probably explains the effects of F-1,6-P2 on mechanical work performance and cellular respiration. A direct metabolic effect also exists, however, because flavoprotein reduction by F-1,6-P2 could be observed in the K(+)-arrested heart, where its effects on MVO2 were minimal. This redox effect may not be caused by changes in free Ca2+ concentration because it could not be reproduced by infusion of EGTA.
Collapse
Affiliation(s)
- I E Hassinen
- Department of Medical Biochemistry, University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
27
|
Farias LA, Smith EE, Markov AK. Prevention of ischemic-hypoxic brain injury and death in rabbits with fructose-1,6-diphosphate. Stroke 1990; 21:606-13. [PMID: 2326842 DOI: 10.1161/01.str.21.4.606] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fructose-1,6-diphosphate has been shown to improve neurologic recovery following resuscitation from cardiac arrest and to restore brain electrical activity during hypoglycemic coma in rabbits. In view of these findings, we determined whether fructose-1,6-diphosphate protects the brain during ischemia-hypoxia. We subjected 16 rabbits to hypotension, hypoxemia, and bilateral common carotid artery occlusion. Five minutes after the onset of isoelectric electroencephalograms, seven randomly selected rabbits received 10% fructose-1,6-diphosphate (350 mg/kg bolus followed by 10 mg/kg/min infusion for 90 minutes) and the remaining nine rabbits (controls) received an equal volume of 1.5% NaCl (3.5 ml/kg bolus followed by 0.1 ml/kg/min infusion for 90 minutes). After isoelectricity lasting 7.86 +/- 0.8 minutes (mean +/- SEM) in the treated group and 6.44 +/- 0.38 minutes in the control group, the rabbits were reinfused with autologous shed blood and reoxygenated and the carotid artery occluders were removed. Treated rabbits recovered electrical activity more rapidly than the controls (p less than 0.005), and all seven treated rabbits survived. Only two controls (22%) survived (p less than 0.001), and they were severely disabled. Histology showed extensive cortical necrosis and focal necrosis in the hippocampi and cerebellum of brains from the two surviving controls. Brains from two treated rabbits exhibited minimal neuronal loss limited to the neocortex, and the brains from the remaining five treated rabbits were normal. This study suggests that fructose-1,6-diphosphate protects the brain from ischemic-hypoxic insults.
Collapse
Affiliation(s)
- L A Farias
- Department of Anesthesia, Central University of Venezuela, Caracas
| | | | | |
Collapse
|
28
|
Sun JX, Farias LA, Markov AK. Fructose 1-6 diphosphate prevents intestinal ischemic reperfusion injury and death in rats. Gastroenterology 1990; 98:117-26. [PMID: 2293570 DOI: 10.1016/0016-5085(90)91299-l] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study of ischemic and postischemic reperfusion intestinal injury in rats evaluates the potential therapeutic value of fructose 1-6 diphosphate on the basis of its ability to enhance anaerobic carbohydrate metabolism during ischemia and to prevent additional tissue injury after reestablishing blood flow by inhibiting the neutrophils to produce oxygen free radicals. In pursuit of this goal, 28 rats were randomized into 4 groups: pretreated with fructose 1-6 diphosphate (n = 7); pretreated with glucose (n = 7); post-reperfusion treated with fructose 1-6 diphosphate (n = 7); and post-reperfusion treated with saline (n = 7). Five additional rats were sham operated. Following 30 min occlusion of the superior mesenteric artery, all rats received their respective treatments for 5 days. Post-reperfusion arterial pressure was significantly lower in the control rats (p less than 0.001) as well as when compared with the fructose 1-6 diphosphate groups (p less than 0.001). Significant increase in white blood cell counts occurred in the controls (p less than 0.001), whereas in the fructose 1-6 diphosphate groups white blood cell counts were no different from preischemic values. All control rats that died in less than 5 days had transmural intestinal necrosis, whereas in 3 of the controls that survived 5 days, partial intestinal necrosis was noted. Only one fructose 1-6 diphosphate-treated rat had partial intestinal necrosis. The overall 5-day survival was 100% for sham-operated rats, 93% for fructose 1-6 diphosphate-treated rats, and 21% for controls (fructose 1-6 diphosphate vs. controls, p less than 0.001; fructose 1-6 diphosphate vs. sham, NS). The results are discussed and explained in terms of the postulated mechanism based on the pharmacological properties of fructose 1-6 diphosphate.
Collapse
Affiliation(s)
- J X Sun
- Qinghai Medical College, Qinghai Province, Peoples' Republic of China
| | | | | |
Collapse
|
29
|
Farias LA, Sun J, Markov AK. Improved brain metabolism with fructose 1-6 diphosphate during insulin-induced hypoglycemic coma. Am J Med Sci 1989; 297:294-9. [PMID: 2719056 DOI: 10.1097/00000441-198905000-00005] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effect of fructose 1-6 diphosphate (FDP) on brain metabolism and brain function was investigated in hypoglycemic rabbits. The electroencephalogram and differences in oxygen content of arterial and cerebral venous blood were used as indicators for brain metabolic activity. Hypoglycemic coma was induced and maintained for 1 hour by insulin administration. At the onset of isoelectric EEG, six rabbits were treated with FDP and five rabbits received 0.9% saline. The animals were killed by an overdose of barbiturate 60 minutes after hypoglycemic recovery with glucose. FDP-treated rabbits had lower arterial glucose concentration after 40 minutes of treatment (p less than .05) and a significantly greater difference between the oxygen content of arterial and venous blood after 40 minutes (p less than .01), and after 60 minutes (p less than .025) of FDP infusion than saline-treated rabbits. FDP-treated rabbits also had a lower cerebral glucose-oxygen index than did saline-treated rabbits (p less than .005, after 20 and 40 minutes of FDP infusion). FDP administration was followed by a return of EEG activity during hypoglycemia, whereas saline produced no such effect. After glucose infusion, EEG activity was improved in FDP-treated rabbits; in saline-treated rabbits, minimal or no EEG activity was observed. The data suggest the possibility that, at the doses given in this study, FDP is taken up and used as a metabolic substrate by the brain.
Collapse
|
30
|
Abstract
To determine the effects of glucose and fructose-1,6-bisphosphate (FDP) on hypoxic cell damage, primary cultures of astrocytes were incubated for 18 h in an air-tight chamber that had been flushed with 95% N2/5% CO2 for 15 min before it was sealed. Cultures containing 7.5 mM glucose without FDP or FDP without glucose showed evidence of significant cell injury after 18 h of hypoxia (increased lactate dehydrogenase content in the culture medium; cell edema and disruption by phase-contrast microscopy). Cultures exposed to glucose + FDP had normal lactate dehydrogenase concentrations and appeared normal microscopically. Maximal protection of hypoxic cells occurred at 6.0 mM FDP. Lactate concentrations of the culture medium of hypoxic cells increased 2.5 times above normoxic control values when glucose was present, but neither FDP alone nor glucose + FDP caused the lactate concentrations to increase further. This implies that anaerobic glycolysis was not increased by adding FDP to the medium. Cell volumes (water space) measured with [14C]-3-0-methyl-D-glucose were normal with glucose + FDP in the culture medium of hypoxic cells but were significantly larger than normal when glucose alone was present. Increases in cell volume paralleled changes in lactate dehydrogenase in the culture medium. Uptake of [14C]FDP occurred rapidly in normoxic cells and was maximal after 5 min of incubation. The data indicate that the presence of glucose + FDP in the culture medium protects primary cultures of hypoxic astrocytes from cell damage.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G A Gregory
- Department of Neurology, University of California, San Francisco 94143
| | | | | |
Collapse
|
31
|
Marchionni N, Moschi G, Di Bari M, Ferrucci L, Paoletti M, Salani B, Fattirolli F. Improved exercise tolerance by i.v. fructose-1,6-diphosphate in chronic, stable angina pectoris. J Clin Pharmacol 1988; 28:807-11. [PMID: 3230148 DOI: 10.1002/j.1552-4604.1988.tb03220.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effect of IV fructose-1,6-diphosphate (FDP) on transient, reproducible myocardial ischemia was evaluated in ten patients, aged 50 to 66 years, with chronic, stable exertional angina. FDP or placebo (glucose) were administered between basal and posttreatment ergometric stress testing; an identical procedure was repeated in each patient with the second treatment on the following day according to a single-blind, cross-over design. FDP improved exercise tolerance and total work capacity, significantly delaying the onset of ST-segment depression and angina. Nevertheless, the critical level of the rate x pressure (R X P) product, causing appearance of myocardial ischemia, was not remarkably changed. However, the R X P product at same workload was significantly lower after FDP. These results suggest that improved exercise tolerance might have resulted from peripheral (increased oxygen delivery to skeletal muscle) rather than from central (cardiac) effects of FDP.
Collapse
Affiliation(s)
- N Marchionni
- Coronary Care Unit, University of Florence, Italy
| | | | | | | | | | | | | |
Collapse
|