1
|
Le Z, Ramos MC, Shou Y, Li RR, Cheng HS, Jang CJ, Liu L, Xue C, Li X, Liu H, Lim CT, Tan NS, White AD, Charles CJ, Chen Y, Liu Z, Tay A. Bioactive sucralfate-based microneedles promote wound healing through reprogramming macrophages and protecting endogenous growth factors. Biomaterials 2024; 311:122700. [PMID: 38996671 DOI: 10.1016/j.biomaterials.2024.122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Impaired wound healing due to insufficient cell proliferation and angiogenesis is a significant physical and psychological burden to patients worldwide. Therapeutic delivery of exogenous growth factors (GFs) at high doses for wound repair is non-ideal as GFs have poor stability in proteolytic wound environments. Here, we present a two-stage strategy using bioactive sucralfate-based microneedle (SUC-MN) for delivering interleukin-4 (IL-4) to accelerate wound healing. In the first stage, SUC-MN synergistically enhanced the effect of IL-4 through more potent reprogramming of pro-regenerative M2-like macrophages via the JAK-STAT pathway to increase endogenous GF production. In the second stage, sucralfate binds to GFs and sterically disfavors protease degradation to increase bioavailability of GFs. The IL-4/SUC-MN technology accelerated wound healing by 56.6 % and 46.5 % in diabetic mice wounds and porcine wounds compared to their respective untreated controls. Overall, our findings highlight the innovative use of molecular simulations to identify bioactive ingredients and their incorporation into microneedles for promoting wound healing through multiple synergistic mechanisms.
Collapse
Affiliation(s)
- Zhicheng Le
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Mayk Caldas Ramos
- Department of Chemical Engineering, University of Rochester, 14627, USA
| | - Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Renee R Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, 119228, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Clarisse Jm Jang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Ling Liu
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| | - Chencheng Xue
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hong Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Andrew D White
- Department of Chemical Engineering, University of Rochester, 14627, USA
| | - Christopher John Charles
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, 119228, Singapore; Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore.
| |
Collapse
|
2
|
Sikiric P, Sever M, Krezic I, Vranes H, Kalogjera L, Smoday IM, Vukovic V, Oroz K, Coric L, Skoro M, Kavelj I, Zubcic S, Sikiric S, Beketic Oreskovic L, Oreskovic I, Blagaic V, Brcic K, Strbe S, Staresinic M, Boban Blagaic A, Skrtic A, Seiwerth S. New studies with stable gastric pentadecapeptide protecting gastrointestinal tract. significance of counteraction of vascular and multiorgan failure of occlusion/occlusion-like syndrome in cytoprotection/organoprotection. Inflammopharmacology 2024; 32:3119-3161. [PMID: 38980576 DOI: 10.1007/s10787-024-01499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
Since the early 1990s, when Robert's and Szabo's cytoprotection concept had already been more than one decade old, but still not implemented in therapy, we suggest the stable gastric pentadecapeptide BPC 157 as the most relevant mediator of the cytoprotection concept. Consequently, it can translate stomach and gastrointestinal mucosal maintenance, epithelium, and endothelium cell protection to the therapy of other tissue healing (organoprotection), easily applicable, as native and stable in human gastric juice for more than 24 h. These overwhelm current clinical evidence (i.e., ulcerative colitis, phase II, no side effects, and no lethal dose (LD1) in toxicology studies), as BPC 157 therapy effectively combined various tissue healing and lesions counteraction. BPC 157 cytoprotection relevance and vascular recovery, activation of collateral pathways, membrane stabilizer, eye therapy, wound healing capability, brain-gut and gut-brain functioning, tumor cachexia counteraction, muscle, tendon, ligament, and bone disturbances counteraction, and the heart disturbances, myocardial infarction, heart failure, pulmonary hypertension, arrhythmias, and thrombosis counteraction appeared in the recent reviews. Here, as concept resolution, we review the counteraction of advanced Virchow triad circumstances by activation of the collateral rescuing pathways, depending on injury, activated azygos vein direct blood flow delivery, to counteract occlusion/occlusion-like syndromes starting with the context of alcohol-stomach lesions. Counteraction of major vessel failure (congested inferior caval vein and superior mesenteric vein, collapsed azygos vein, collapsed abdominal aorta) includes counteraction of the brain (intracerebral and intraventricular hemorrhage), heart (congestion, severe arrhythmias), lung (hemorrhage), and congestion and lesions in the liver, kidney, and gastrointestinal tract, intracranial (superior sagittal sinus), portal and caval hypertension, aortal hypotension, and thrombosis, peripherally and centrally.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Skoro
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | | | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Klara Brcic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| |
Collapse
|
3
|
Çay F, Duran A, Tokay E, Hacıoğlu N, Köçkar F, Altun E, Kanat BH. Is phenytoin a safe agent for staple line recovery after gastric sleeve surgery in rats? ULUS TRAVMA ACIL CER 2023; 29:1321-1328. [PMID: 38073452 PMCID: PMC10767287 DOI: 10.14744/tjtes.2023.29035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/31/2023] [Accepted: 10/22/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND The most challenging and mortal complication of gastric sleeve surgery (SG) is staple line leakage. Although many agents have been used for increasing tissue healing on the stapler line, there is still no consensus on its effectiveness and efficacy. The aim of study is to determine the effect of phenytoin on the healing process of gastric sleeve surgery in rats. METHODS On the 10th post-operative day, the effects of phenytoin on bursting pressure in the stapler line were evaluated along-side pathohistological examinations. To investigate the molecular impact of phenytoin on the expression of TGF-β, VEGF, FGF2, and p53 genes, quantitative real-time polymerase chain reaction was utilized. In addition, gene expressions at the protein level were deter-mined by immunohistochemical analysis. RESULTS No signs of intra-abdominal leakage were observed in the resected samples. A statistically essential extend in stable line bursting pressure measure was observed between the control group and the group treated with phenytoin application. Pathohisto-logical results indicate that the mean score of collagens of the study group (3.2±0.42) was significantly higher than the control group (2.3±0.48) (P=0.003). In addition, the mean epithelization score of the study group (3.4±0.52) was significantly higher than the control group (2.1±0.57) (P=0.001). mRNA of TGFβ, FGF2, VEGF, and p53 genes drastically increased phenytoin treated group. High FGF2 protein expression levels were determined from phenytoin use compared to the control group. CONCLUSION Molecular studies suggest that phenytoin may increase the healing process of Gastric sleeve following SG in rats and may become a new agent for the prevention of human gastric leaks.
Collapse
Affiliation(s)
- Ferhat Çay
- Department of Surgery, Faculty of Medicine, Balıkesir University, Balıkesir-Türkiye
| | - Ali Duran
- Department of Surgery, Faculty of Medicine, Balıkesir University, Balıkesir-Türkiye
| | - Esra Tokay
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Balıkesir University, Balıkesir-Türkiye
| | - Nelin Hacıoğlu
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Balıkesir University, Balıkesir-Türkiye
| | - Feray Köçkar
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Balıkesir University, Balıkesir-Türkiye
| | - Eren Altun
- Department of Pathology, Bagcılar Training and Research Hospital, University of Health Sciences, İstanbul-Türkiye
| | - Burhan Hakan Kanat
- Department of Surgery, Faculty of Medicine, Turgut Ozal University, Malatya-Türkiye
| |
Collapse
|
4
|
Yildizhan E, Ulger BV, Akkus M, Akinci D, Basol O. Comparison of topical sucralfate with dexpanthenol in rat wound model. Int J Exp Pathol 2022; 103:164-170. [PMID: 35441448 PMCID: PMC9264344 DOI: 10.1111/iep.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Wound healing is a dynamic process initiated in response to injury. There are many factors that have detrimental effects on the wound healing process. Numerous studies have been conducted for improving wound healing processes. Dexpanthenol is widely used to accelerate wound healing. Sucralfate is used for the treatment of peptic ulcers. We aimed to compare the efficacy of topical Dexpanthenol and Sucralfate in an experimental wound model in rats via histopathological examinations and immune histochemical determinations, as well, to evaluate their effects on EGF levels. Three different groups were formed: the Control Group, the Dexpanthenol Group and the Sucralfate Group. Full-thickness skin wounds were created on the back of each rat and isotonic saline was applied to the wounds of the rats in the control group, Bepanthol® cream was applied in Dexpanthenol Group and 10% Sucralfate cream was applied in Sucralfate Group, once a day. On the 7th, 14th and 21st days the wounds were measured and seven rats from each group were sacrificed and the wounds were excised for histopathological examination. Sucralfate increased wound healing rates by increasing neovascularization, fibroblast activation, reepithelialization and collagen density, as well as dexpanthenol. Our study revealed that the dexpanthenol and sucralfate groups were better than the control group in terms of their effects on wound healing, however there was no statistically significant difference among these two groups. Sucralfate improves EGF expression in skin wounds and has positive results on skin wound healing comparable to dexpanthenol.
Collapse
Affiliation(s)
- Eda Yildizhan
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Burak Veli Ulger
- Department of General Surgery, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Murat Akkus
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Dilara Akinci
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Omer Basol
- Department of General Surgery, Gazi Yasargil E.A.H., Diyarbakır, Turkey
| |
Collapse
|
5
|
Arribas-López E, Zand N, Ojo O, Snowden MJ, Kochhar T. A Systematic Review of the Effect of Centella asiatica on Wound Healing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3266. [PMID: 35328954 PMCID: PMC8956065 DOI: 10.3390/ijerph19063266] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Under metabolic stress conditions, there is a higher demand for nutrients which needs to be met. This is to reduce the risk of delay in wound healing which could lead to chronic wound. AIM This is a systematic review of the effect of Centella asiatica on wound healing. C. asiatica is a traditional medicinal plant used due to its antimicrobial, antioxidant, anti-inflammatory, neuroprotective, and wound healing properties. METHODS PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed for the systematic review and four electronic databases were used. RESULTS Four clinical trials met the inclusion criteria. The following distinct areas were identified under C. asiatica: wound contraction and granulation; healing/bleeding time and re-epithelialization; VAS (visual analogue scale) scores; skin erythema and wound appearance. CONCLUSIONS C. asiatica might enhance wound healing resulting from improved angiogenesis. This might occur due to its stimulating effect on collagen I, Fibroblast Growth Factor (FGF) and Vascular Endothelial Growth Factor (VEGF) production. Besides, C. asiatica has shown an anti-inflammatory effect observed by the reduction in Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumour Necrosis Factor α (TNFα), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), and lipoxygenase (LOX) activity. Delivery systems such as nanoencapsulation could be used to increase C. asiatica bioavailability. Nevertheless, more studies are needed in order to perform a meta-analysis and ascertain the effects of C. asiatica on wound healing and its different parameters.
Collapse
Affiliation(s)
- Elena Arribas-López
- School of Science, Medway Campus, University of Greenwich, Central Ave, Gillingham, Chatham Maritime, Kent ME4 4TB, UK; (E.A.-L.); (N.Z.); (M.J.S.)
| | - Nazanin Zand
- School of Science, Medway Campus, University of Greenwich, Central Ave, Gillingham, Chatham Maritime, Kent ME4 4TB, UK; (E.A.-L.); (N.Z.); (M.J.S.)
| | - Omorogieva Ojo
- School of Health Sciences, Avery Hill Campus, University of Greenwich, Avery Hill Road, London SE9 2UG, UK
| | - Martin John Snowden
- School of Science, Medway Campus, University of Greenwich, Central Ave, Gillingham, Chatham Maritime, Kent ME4 4TB, UK; (E.A.-L.); (N.Z.); (M.J.S.)
| | - Tony Kochhar
- HCA London Bridge Hospital, Tooley Street, London SE1 2PR, UK;
| |
Collapse
|
6
|
Yamane S, Amano H, Ito Y, Betto T, Matsui Y, Koizumi W, Narumiya S, Majima M. The role of thromboxane prostanoid receptor signaling in gastric ulcer healing. Int J Exp Pathol 2022; 103:4-12. [PMID: 34655121 PMCID: PMC8781669 DOI: 10.1111/iep.12410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/10/2021] [Accepted: 08/08/2021] [Indexed: 01/03/2023] Open
Abstract
The process of gastric ulcer healing includes cell migration, proliferation, angiogenesis and re-epithelialization. Platelets contain angiogenesis stimulating factors that induce angiogenesis. Thromboxane A2 (TXA2 ) not only induces platelet activity but also angiogenesis. This study investigated the role of TXA2 in gastric ulcer healing using TXA2 receptor knockout (TPKO) mice. Gastric ulcer healing was suppressed by treatment with the TXA2 synthase inhibitor OKY-046 and the TXA2 receptor antagonist S-1452 compared with vehicle-treated mice. TPKO showed delayed gastric ulcer healing compared with wild-type mice (WT). The number of microvessels and CD31 expression were lower in TPKO than in WT mice, and TPKO suppressed the expression of transforming growth factor beta (TGF-β) and vascular endothelial growth factor A (VEGF-A) in areas around gastric ulcers. Immunofluorescence assays showed that TGF-β and VEGF-A co-localized with platelets. Gastric ulcer healing was significantly reduced in WT mice transplanted with TPKO compared with WT bone marrow. These results suggested that TP signalling on platelets facilitates gastric ulcer healing through TGF-β and VEGF-A.
Collapse
Affiliation(s)
- Sakiko Yamane
- Department of PharmacologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
- Department of GastroenterologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
| | - Hideki Amano
- Department of PharmacologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
| | - Yoshiya Ito
- Department of PharmacologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
| | - Tomohiro Betto
- Department of PharmacologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
- Department of GastroenterologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
| | - Yoshio Matsui
- Department of GastroenterologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
| | - Wasaburo Koizumi
- Department of GastroenterologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
| | - Shuh Narumiya
- Department of GastroenterologyDrug Discovery MedicineKyoto University Graduate School of MedicineKyotoJapan
| | - Masataka Majima
- Department of PharmacologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
| |
Collapse
|
7
|
Sikiric P, Skrtic A, Gojkovic S, Krezic I, Zizek H, Lovric E, Sikiric S, Knezevic M, Strbe S, Milavic M, Kokot A, Blagaic AB, Seiwerth S. Cytoprotective gastric pentadecapeptide BPC 157 resolves major vessel occlusion disturbances, ischemia-reperfusion injury following Pringle maneuver, and Budd-Chiari syndrome. World J Gastroenterol 2022; 28:23-46. [PMID: 35125818 PMCID: PMC8793015 DOI: 10.3748/wjg.v28.i1.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/14/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
The stable gastric pentadecapeptide BPC 157 counteracts various venous occlusion-induced syndromes. Summarized are all these arguments, in the Robert's cytoprotection concept, to substantiate the resolution of different major vessel occlusion disturbances, in particular ischemia-reperfusion injury following the Pringle maneuver and Budd-Chiari syndrome, which was obtained by BPC 157 therapy. Conceptually, there is a new point, namely, endothelium maintenance to epithelium maintenance (the recruitment of collateral blood vessels to compensate for vessel occlusion and reestablish blood flow or bypass the occluded or ruptured vessel). In this paper, we summarize the evidence of the native cytoprotective gastric pentadecapeptide BPC 157, which is stable in the human gastric juice, is a membrane stabilizer and counteracts gut-leaky syndrome. As a particular target, it is distinctive from the standard peptide growth factors, involving particular molecular pathways and controlling VEGF and NO pathways. In the early 1990s, BPC 157 appeared as a late outbreak of the Robert's and Szabo's cytoprotection-organoprotection concept, like the previous theoretical/practical breakthrough in the 1980s and the brain-gut axis and gut-brain axis. As the time went on, with its reported effects, it is likely most useful theory practical implementation and justification. Meantime, several reviews suggest that BPC 157, which does not have a lethal dose, has profound cytoprotective activity, used to be demonstrated in ulcerative colitis and multiple sclerosis trials. Likely, it may bring the theory to practical application, starting with the initial argument, no degradation in human gastric juice for more than 24 h, and thereby, the therapeutic effectiveness (including via a therapeutic per-oral regimen) and pleiotropic beneficial effects.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine Osijek, J.J.Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
8
|
Tarnawski AS, Ahluwalia A. The Critical Role of Growth Factors in Gastric Ulcer Healing: The Cellular and Molecular Mechanisms and Potential Clinical Implications. Cells 2021; 10:1964. [PMID: 34440733 PMCID: PMC8392882 DOI: 10.3390/cells10081964] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
In this article we review the cellular and molecular mechanisms of gastric ulcer healing. A gastric ulcer (GU) is a deep defect in the gastric wall penetrating through the entire mucosa and the muscularis mucosae. GU healing is a regeneration process that encompasses cell dedifferentiation, proliferation, migration, re-epithelialization, formation of granulation tissue, angiogenesis, vasculogenesis, interactions between various cells and the matrix, and tissue remodeling, all resulting in scar formation. All these events are controlled by cytokines and growth factors (e.g., EGF, TGFα, IGF-1, HGF, bFGF, TGFβ, NGF, VEGF, angiopoietins) and transcription factors activated by tissue injury. These growth factors bind to their receptors and trigger cell proliferation, migration, and survival pathways through Ras, MAPK, PI3K/Akt, PLC-γ, and Rho/Rac/actin signaling. The triggers for the activation of these growth factors are tissue injury and hypoxia. EGF, its receptor, IGF-1, HGF, and COX-2 are important for epithelial cell proliferation, migration, re-epithelialization, and gastric gland reconstruction. VEGF, angiopoietins, bFGF, and NGF are crucial for blood vessel regeneration in GU scars. The serum response factor (SRF) is essential for VEGF-induced angiogenesis, re-epithelialization, and blood vessel and muscle restoration. Local therapy with cDNA of human recombinant VEGF165 in combination with angiopoietin1, or with the NGF protein, dramatically accelerates GU healing and improves the quality of mucosal restoration within ulcer scars. The future directions for accelerating and improving healing include local gene and protein therapies with growth factors, their combinations, and the use of stem cells and tissue engineering.
Collapse
Affiliation(s)
- Andrzej S. Tarnawski
- Medical Research Service, VA Long Beach Healthcare System Long Beach, 5901 East Seventh Street, Long Beach, CA 90822, USA
- Division of Gastroenterology, Department of Medicine and Digestive Health Institute, The University of California-Irvine, Irvine, CA 92697, USA
| | - Amrita Ahluwalia
- Medical Research Service, VA Long Beach Healthcare System Long Beach, 5901 East Seventh Street, Long Beach, CA 90822, USA
| |
Collapse
|
9
|
Shin SS, Yoon M. Regulation of Obesity by Antiangiogenic Herbal Medicines. Molecules 2020; 25:molecules25194549. [PMID: 33020443 PMCID: PMC7582783 DOI: 10.3390/molecules25194549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is the result of an energy imbalance caused by an increased ratio of caloric intake to energy expenditure. In conjunction with obesity, related metabolic disorders, such as dyslipidemia, atherosclerosis, and type 2 diabetes, have become global health problems. Obesity progression is thought to be associated with angiogenesis and extracellular matrix (ECM) remodeling. Angiogenesis occurs in growing adult adipose tissues, which are similar to neoplastic tissues. Adipose tissue is highly vascularized, and each adipocyte is nourished by an extensive capillary network. Adipocytes produce proangiogenic factors, such as vascular endothelial growth factor A and fibroblast growth factor 2, which promote neovascularization within the adipose tissue. Furthermore, matrix metalloproteinases (MMPs), including MMP-2 and MMP-9, play important roles in adipose tissue development and microvessel maturation by modifying the ECM. Thus, modulation of angiogenesis and MMP activity provides a promising therapeutic approach for controlling human obesity and its related disorders. Over the past decade, there has been a great increase in the use of alternative treatments, such as herbal remedies, for these diseases. This review will focus on the role of angiogenesis in adipose tissue growth and the regulation of obesity by antiangiogenic herbal medicines.
Collapse
Affiliation(s)
- Soon Shik Shin
- Department of Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 47340, Korea;
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea;
- Correspondence: ; Tel.: +8242-829-7581; Fax: 8242-829-7580
| |
Collapse
|
10
|
Immunohistochemical Studies of Age-Related Changes in Cell Proliferation and Angiogenesis during the Healing of Acetic Acid-Induced Gastric Ulcers in Rats. ScientificWorldJournal 2020; 2020:3506207. [PMID: 32549798 PMCID: PMC7281815 DOI: 10.1155/2020/3506207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/04/2020] [Indexed: 11/23/2022] Open
Abstract
Cell proliferation and angiogenesis are of utmost importance for healing to take place. The KI67 and EGFR proteins are markers of cell proliferation, while CD31 and factor VIII are markers of angiogenesis. To elucidate the mechanism responsible for delayed healing of the gastric injury in old age, we analyzed the expression of these markers in rats of different months during the healing of an acetic acid-induced gastric ulcer. Male Wistar rats (aged 3, 6, 12, and 18 months) divided into four groups, according to their ages, formed the experimental animals. Stomach tissue samples were collected on days 3, 7, 14, and 21 after induction for assessment of ulcer healing. The area of gastric mucosa healed was inversely proportional to age. The expression of markers of proliferation (KI67 and EGFR) and angiogenesis (factor VIII and CD31) decreased significantly (p < 0.05) in older rats when compared with younger ones (3 months > six months > 12 months > 18 months) on days 7, 14, and 21 after induction of gastric ulcer. This study revealed that the slower gastric ulcer healing rate in older rats might be due to reduced epithelial cell proliferation and angiogenic activities.
Collapse
|
11
|
Wang Q, More SK, Vomhof-DeKrey EE, Golovko MY, Basson MD. Small molecule FAK activator promotes human intestinal epithelial monolayer wound closure and mouse ulcer healing. Sci Rep 2019; 9:14669. [PMID: 31604999 PMCID: PMC6789032 DOI: 10.1038/s41598-019-51183-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/24/2019] [Indexed: 01/23/2023] Open
Abstract
GI mucosal healing requires epithelial sheet migration. The non-receptor tyrosine kinase focal adhesion kinase (FAK) stimulates epithelial motility. A virtual screen identified the small drug-like FAK mimic ZINC40099027, which activates FAK. We assessed whether ZINC40099027 promotes FAK-Tyr-397 phosphorylation and wound healing in Caco-2 monolayers and two mouse intestinal injury models. Murine small bowel ulcers were generated by topical serosal acetic acid or subcutaneous indomethacin in C57BL/6J mice. One day later, we began treatment with ZINC40099027 or DMSO, staining the mucosa for phosphorylated FAK and Ki-67 and measuring mucosal ulcer area, serum creatinine, ALT, and body weight at day 4. ZINC40099027 (10-1000 nM) dose-dependently activated FAK phosphorylation, without activating Pyk2-Tyr-402 or Src-Tyr-419. ZINC40099027 did not stimulate proliferation, and stimulated wound closure independently of proliferation. The FAK inhibitor PF-573228 prevented ZINC40099027-stimulated wound closure. In both mouse ulcer models, ZINC40099027accelerated mucosal wound healing. FAK phosphorylation was increased in jejunal epithelium at the ulcer edge, and Ki-67 staining was unchanged in jejunal mucosa. ZINC40099027 serum concentration at sacrifice resembled the effective concentration in vitro. Weight, creatinine and ALT did not differ between groups. Small molecule FAK activators can specifically promote epithelial restitution and mucosal healing and may be useful to treat gut mucosal injury.
Collapse
Affiliation(s)
- Qinggang Wang
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, USA
| | - Shyam K More
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, USA
| | - Emilie E Vomhof-DeKrey
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, USA
| | - Marc D Basson
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, USA.
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, USA.
- Department of Pathology, University of North Dakota School of Medicine & Health Sciences, Grand Forks, USA.
| |
Collapse
|
12
|
Ghiselli G. Heparin Binding Proteins as Therapeutic Target: An Historical Account and Current Trends. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E80. [PMID: 31362364 PMCID: PMC6789896 DOI: 10.3390/medicines6030080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
The polyanionic nature and the ability to interact with proteins with different affinities are properties of sulfated glycosaminoglycans (GAGs) that determine their biological function. In designing drugs affecting the interaction of proteins with GAGs the challenge has been to generate agents with high binding specificity. The example to emulated has been a heparin-derived pentasaccharide that binds to antithrombin-III with high affinity. However, the portability of this model to other biological situations is questioned on several accounts. Because of their structural flexibility, oligosaccharides with different sulfation and uronic acid conformation can display the same binding proficiency to different proteins and produce comparable biological effects. This circumstance represents a formidable obstacle to the design of drugs based on the heparin scaffold. The conceptual framework discussed in this article is that through a direct intervention on the heparin-binding functionality of proteins is possible to achieve a high degree of action specificity. This objective is currently pursued through two strategies. The first makes use of small molecules for which in the text we provide examples from past and present literature concerning angiogenic factors and enzymes. The second approach entails the mutagenesis of the GAG-binding site of proteins as a means to generate a new class of biologics of therapeutic interest.
Collapse
Affiliation(s)
- Giancarlo Ghiselli
- Independent Researcher, 1326 Spruce Street Suite 706, Philadephia, PA 19107, USA.
| |
Collapse
|
13
|
Virtual screening of active compounds from Artemisia argyi and potential targets against gastric ulcer based on Network pharmacology. Bioorg Chem 2019; 88:102924. [PMID: 31005783 DOI: 10.1016/j.bioorg.2019.102924] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022]
|
14
|
Yen T, Boord MJ, Ghubash R, Blondeau JM. A pilot study investigating the in vitro efficacy of sucralfate against common veterinary cutaneous pathogens. J Small Anim Pract 2018; 59:691-694. [PMID: 29972242 DOI: 10.1111/jsap.12902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/28/2018] [Accepted: 06/05/2018] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To determine whether Cicalfate® (Avene), a commercially available skin cream, or its active ingredient - sucralfate - demonstrate in vitro antimicrobial effect against common veterinary cutaneous pathogens. MATERIALS AND METHODS Prospective study assessing in vitro susceptibility of standardised and clinical strains of common veterinary cutaneous pathogens to titrated concentrations of sucralfate in either saline solution (range 0∙2 to 200 mg/mL) or in Cicalfate® restorative cream solubilised in DMSO (range 0∙002 to 1 mg/mL). Minimum inhibitory concentrations were determined by broth dilution in accordance with Clinical and Laboratory Standards Institute guidelines. RESULTS Both solutions demonstrated in vitro inhibitory effects against strains of Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus pseudintermedius, Escherichia coli and Enterococcus faecalis. Minimum inhibitory concentration ranges for susceptible bacteria tested in Cicalfate® solution and sucralfate solution were 0∙06 to 0∙25 mg/mL and 25 to 50 mg/mL, respectively. Sucralfate solution did not demonstrate antimicrobial effects against laboratory strains of S. aureus and E. faecalis and neither solution demonstrated antimicrobial effects against the clinical strain of P. aeruginosa. For organisms inhibited by sucralfate, Cicalfate® solution inhibited growth at lower sucralfate concentrations than sucralfate solution. CLINICAL SIGNIFICANCE The results of this pilot study suggest that Cicalfate® and sucralfate demonstrate in vitro antibacterial activity. Further in vitro and clinical studies are warranted to confirm these observations and determine their clinical utility in the treatment of superficial pyoderma.
Collapse
Affiliation(s)
- T Yen
- Animal Dermatology Clinic, Marina del Rey, California 90293, USA
| | - M J Boord
- Animal Dermatology Clinic, San Diego, California 92111, USA
| | - R Ghubash
- Animal Dermatology Clinic, Marina del Rey, California 90293, USA
| | - J M Blondeau
- Royal University Hospital, Saskatoon, Saskatchewan S7N 0W, Canada
| |
Collapse
|
15
|
Danopoulos S, Schlieve CR, Grikscheit TC, Al Alam D. Fibroblast Growth Factors in the Gastrointestinal Tract: Twists and Turns. Dev Dyn 2017; 246:344-352. [PMID: 28198118 DOI: 10.1002/dvdy.24491] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
Fibroblast growth factors (FGFs) are a family of conserved peptides that play an important role in the development, homeostasis, and repair processes of many organ systems, including the gastrointestinal tract. All four FGF receptors and several FGF ligands are present in the intestine. They play important roles in controlling cell proliferation, differentiation, epithelial cell restitution, and stem cell maintenance. Several FGFs have also been proven to be protective against gastrointestinal diseases such as inflammatory bowel diseases or to aid in regeneration after intestinal loss associated with short bowel syndrome. Herein, we review the multifaceted actions of canonical FGFs in intestinal development, homeostasis, and repair in rodents and humans. Developmental Dynamics 246:344-352, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soula Danopoulos
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Christopher R Schlieve
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Tracy C Grikscheit
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
16
|
Alvandipour M, Ala S, Tavakoli H, Yazdani Charati J, Shiva A. Efficacy of 10% sucralfate ointment after anal fistulotomy: A prospective, double-blind, randomized, placebo-controlled trial. Int J Surg 2016; 36:13-17. [PMID: 27765686 DOI: 10.1016/j.ijsu.2016.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/25/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The most frequent problems after anal fistulotomy are pain, bleeding, and delayed or impaired wound healing. Topical Sucralfate preparation has been used to treat a wide variety of wounds. In this study, we investigate effects of 10% sucralfate ointment on wound healing and postoperative pain after fistulotomy. METHODS AND MATERIALS A total of 41 patients undergoing anorectal fistulotomy were included in this randomized, blinded, controlled trial and were randomly allocated to either sucralfate ointment (every 12 h) or placebo. The patients were visited weekly for up to 5 weeks. The intensity of pain and the wound healing were assessed. RESULTS The sucralfate group had significantly less pain at rest (1.92 ± 0.88 vs 2.96 ± 0.98; P = 0.002) and on defecation (1.68 ± 0.92 vs 3.08 ± 1.12; p < 0.001) than the placebo group from 1st to 5th post-operative visits. Complete wound healing was achieved after 8.15 ± 1 weeks in placebo group versus 5.9 ± 0.8 weeks in sucralfate group (p < 0.001). There were no significant differences in the frequencies of postoperative complications between the two groups. CONCLUSION Compared with placebo, sucralfate ointment reduced postoperative pain at rest and on defecation and improves wound healing in patients undergoing fistulotomy.
Collapse
Affiliation(s)
- Mina Alvandipour
- Department of Surgery, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Mazandaran Province, Iran
| | - Shahram Ala
- Department of Clinical Pharmacy, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Mazandaran Province, Iran.
| | - Hasan Tavakoli
- Department of Surgery, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Mazandaran Province, Iran
| | - Jamshid Yazdani Charati
- Department of Biostatics, Health Sciences Research Center, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Mazandaran Province, Iran
| | - Afshin Shiva
- Department of Clinical Pharmacy, Nephrology and Kidney Transplant Research Center, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
17
|
Niu H, Wang Z, Hou H, Zhang Z, Li B. Protective Effect of Cod (Gadus macrocephalus) Skin Collagen Peptides on Acetic Acid-Induced Gastric Ulcer in Rats. J Food Sci 2016; 81:H1807-15. [PMID: 27219644 DOI: 10.1111/1750-3841.13332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/30/2016] [Accepted: 04/06/2016] [Indexed: 12/14/2022]
Abstract
This research was performed to explore the protective effect of cod skin collagen peptides (CCP) on gastric ulcer induced by acetic acid. The CCP were fractionated into low molecular CCP (LMCCP, Mw < 3 kDa) and high molecular CCP (HMCCP, Mw > 3 kDa). In HMCCP and LMCCP, glycine of accounted for about one-third of the total amino acids without cysteine and tryptophan, and hydrophobic amino acids accounted for about 50%. After 21 d CCP treatment (60 or 300 mg/kg, p.o./daily), the healing effects on acetic acid-induced gastric ulcers were evaluated by macroscopic measure, microscopic measure, and immune histochemistry. Moreover, the expression levels of the growth factors, such as vascular endothelial growth factor, epidermal growth factor, transforming growth factor β1 (TGFβ1), and the heat shock protein 70 (HSP70) was detected. The results showed that both LMCCP and HMCCP could significantly decrease the ulcer areas and promote the healing of the lesions. They also could improve the levels of hexosamine, glutathione, superoxide dismutase, and glutathione peroxidase, and reduce the content of malondialdehyde and inducible nitric oxide synthase. In addition, the expression level of TGFβ1 gene and HSP70 mRNA was significantly improved by the treatment. It suggested that CCP could be able to improve symptoms of gastric ulcer and probably be used in the treatment of gastric ulcer.
Collapse
Affiliation(s)
- Huina Niu
- College of Food Science and Engineering, Ocean Univ. of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, P.R. China
| | - Zhicong Wang
- College of Food Science and Engineering, Ocean Univ. of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, P.R. China
| | - Hu Hou
- College of Food Science and Engineering, Ocean Univ. of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, P.R. China
| | - Zhaohui Zhang
- College of Food Science and Engineering, Ocean Univ. of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, P.R. China
| | - Bafang Li
- College of Food Science and Engineering, Ocean Univ. of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, P.R. China
| |
Collapse
|
18
|
El Agha E, Kosanovic D, Schermuly RT, Bellusci S. Role of fibroblast growth factors in organ regeneration and repair. Semin Cell Dev Biol 2015; 53:76-84. [PMID: 26459973 DOI: 10.1016/j.semcdb.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023]
Abstract
In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases.
Collapse
Affiliation(s)
- Elie El Agha
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Djuro Kosanovic
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
19
|
Abstract
Vascular integrity or the maintenance of blood vessel continuity is a fundamental process regulated by endothelial cell-cell junctions. Defects in endothelial barrier function are an initiating factor in several disease processes including tumor angiogenesis and metastasis. The glycosaminoglycan, hyaluronan (HA), maintains vascular integrity through specific mechanisms including HA-binding protein signaling in caveolin-enriched microdomains, a subset of lipid rafts. Certain disease states, including cancer, increase enzymatic hyaluronidase activity and reactive oxygen species generation, which break down high molecular weight HA (HMW-HA) to low molecular weight fragments (LMW-HA). LMW-HA can activate specific HA-binding proteins during tumor progression to promote disruption of endothelial cell-cell contacts. In contrast, exogenous administration of HMW-HA promotes enhancement of vascular integrity. This review focuses on the roles of HA in regulating angiogenic and metastatic processes based on its size and the HA-binding proteins present. Further, potential therapeutic applications of HMW-HA in treating cancer are discussed.
Collapse
Affiliation(s)
- Patrick A Singleton
- Department of Medicine, Section of Pulmonary and Critical Care, Chicago, Illinois, USA; Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
20
|
Avallone G, Stefanello D, Boracchi P, Ferrari R, Gelain ME, Turin L, Tresoldi E, Roccabianca P. Growth Factors and COX2 Expression in Canine Perivascular Wall Tumors. Vet Pathol 2015; 52:1034-40. [PMID: 25795373 DOI: 10.1177/0300985815575050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Canine perivascular wall tumors (PWTs) are a group of subcutaneous soft tissue sarcomas developing from vascular mural cells. Mural cells are involved in angiogenesis through a complex crosstalk with endothelial cells mediated by several growth factors and their receptors. The evaluation of their expression may have relevance since they may represent a therapeutic target in the control of canine PWTs. The expression of vascular endothelial growth factor (VEGF) and receptors VEGFR-I/II, basic fibroblast growth factor (bFGF) and receptor Flg, platelet-derived growth factor B (PDGFB) and receptor PDGFRβ, transforming growth factor β1 (TGFβ1) and receptors TGFβR-I/II, and cyclooxygenase 2 (COX2) was evaluated on frozen sections of 40 PWTs by immunohistochemistry and semiquantitatively scored to identify their potential role in PWT development. Statistical analysis was performed to analyze possible correlations between Ki67 labeling index and the expression of each molecule. Proteins of the VEGF-, PDGFB-, and bFGF-mediated pathways were highly expressed in 27 (67.5%), 30 (75%), and 19 (47.5%) of 40 PWTs, respectively. Proteins of the TGFβ1- and COX2-mediated pathways were highly expressed in 4 (10%) and 14 (35%) of 40 cases. Statistical analysis identified an association between VEGF and VEGFR-I/II (P = .015 and .003, respectively), bFGF and Flg (P = .038), bFGF and PDGFRβ (P = .003), and between TGFβ1 and COX2 (P = .006). These findings were consistent with the mechanisms that have been reported to play a role in angiogenesis and in tumor development. No association with Ki67 labeling index was found. VEGF-, PDGFB-, and bFGF-mediated pathways seem to have a key role in PWT development and growth. Blockade of tyrosine kinase receptors after surgery could represent a promising therapy with the aim to reduce the PWT relapse rate and prolong the time to relapse.
Collapse
Affiliation(s)
- G Avallone
- Department of Veterinary Medical Sciences (DIMEVET), Università di Bologna, Ozzano dell'Emilia, Milano, Italy
| | - D Stefanello
- Dipartimento di scienze veterinarie e sanità pubblica (DIVET), Università degli studi di Milano, Milano, Italy
| | - P Boracchi
- Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics, Biometry and Epidemiology GA Maccacaro, Università degli Studi di Milano, Milano, Italy
| | - R Ferrari
- Dipartimento di scienze veterinarie e sanità pubblica (DIVET), Università degli studi di Milano, Milano, Italy
| | - M E Gelain
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Agripolis-Legnaro (PD), Italy
| | - L Turin
- Dipartimento di scienze veterinarie e sanità pubblica (DIVET), Università degli studi di Milano, Milano, Italy
| | - E Tresoldi
- Dipartimento di scienze veterinarie e sanità pubblica (DIVET), Università degli studi di Milano, Milano, Italy
| | - P Roccabianca
- Dipartimento di scienze veterinarie e sanità pubblica (DIVET), Università degli studi di Milano, Milano, Italy
| |
Collapse
|
21
|
Abstract
Although Andre Robert's historic article on "gastric cytoprotection" in 1979 introduced this new name and concept, gastroprotective drugs (e.g. sofalcone, sucralfate), which prevent and/or accelerate healing of gastric ulcers without inhibiting acid secretion, were known in Japan before or around that time. But since Robert's studies were solely focused on prostaglandins (PG), they became the center of gastrointestinal research for more than 30 years. As endogenous products, PG were implicated in mediating the gastroprotective effect of other drugs such as sofalcone and sucralfate, despite that the cyclooxygenase inhibitor indomethacin diminished but never abolished gastroprotection by other drugs. Another group of endogenous substances, that is, sulfhydryls (SH), investigated in parallel with PG, also seem to play a mechanistic role in gastroprotection, especially since SH alkylators like N-ethylmaleimide counteract virtually any form of gastroprotection. In Robert's terms of "prevention of chemically induced acute mucosal lesions," so far no single mechanism could explain the beneficial effects of diverse protective agents, but I argue that these two endogenous substances (i.e. PG, SH), in addition to histamine, are the main mechanistic mediators of acute gastroprotection: PG and histamine, because as mediators of acute inflammation, they increase vascular permeability (VP), and SH scavenge free radicals. This is contrary to the search for a single mechanism of action, long focused on enhanced secretion of mucus and/or bicarbonate that may contribute but cannot explain all forms of gastroprotection. Nevertheless, based on research work of the last 30 years, in part from our lab, a new mechanistic explanation of gastroprotection may be formulated: it's a complex but orderly and evolution-based physiologic response of the gastric mucosa under pathologic conditions. Namely, one of the first physiologic defense responses of any organ is inflammation that starts with rapid vascular changes (e.g. increased VP and blood flow), followed by cellular events (e.g. infiltration by acute and chronic inflammatory cells). Thus, PG and histamine, by increasing VP create a perivascular edema that dilutes and delays toxic agents reaching the subepithelial capillaries. Otherwise, damaging chemicals may induce severe early vascular injury resulting in blood flow stasis, hypoxia, and necrosis of surrounding epithelial and mesenchymal cells. In this complex response, increased mucus and/or bicarbonate secretion seem to cause luminal dilution of gastrotoxic chemicals that is further reinforced by a perivascular, histodilutional component. This mechanistic explanation would encompass the protective actions of diverse agents as PG, small doses of histamine, motility stimulants, and dilute irritants (i.e. "adaptive cytoprotection"). Thus, although markedly increased VP is pathologic, slight increase in VP seems to be protective, that is, a key element in the complex pathophysiologic response during acute gastroprotection. Over the years, "gastroprotection" was also applied to accelerated healing of chronic gastroduodenal ulcers without reduction of acid secretion. The likely main mechanism here is the binding of angiogenic growth factors (e.g. basic fibroblast growth factor, vascular endothelial growth factor) to the heparin-like structures of sucralfate and sofalcone. Thus, despite intensive research of the last 30 years, gastroprotection is incompletely understood, and we are still far away from effectively treating Helicobacter pylori-negative ulcers and preventing nonsteroidal anti-inflammatory drugs-caused erosions and ulcers in the upper and lower gastrointestinal tract; hence "gastric cytoprotection" research is still relevant.
Collapse
Affiliation(s)
- Sandor Szabo
- Departments of Pathology and Pharmacology, University of California-Irvine and VA Medical Center, Long Beach, California, USA
| |
Collapse
|
22
|
Tarnawski AS, Ahluwalia A, Jones MK. Angiogenesis in gastric mucosa: an important component of gastric erosion and ulcer healing and its impairment in aging. J Gastroenterol Hepatol 2014; 29 Suppl 4:112-123. [PMID: 25521743 DOI: 10.1111/jgh.12734] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Angiogenesis (also referred to as neovascularization-formation of new blood vessels from existing vessels) is a fundamental process essential for healing of tissue injury and ulcers because regeneration of blood microvessels is a critical requirement for oxygen and nutrient delivery to the healing site. This review article updates the current views on angiogenesis in gastric mucosa following injury and during ulcer healing, its sequential events, the underlying mechanisms, and the impairment of angiogenesis in aging gastric mucosa. We focus on the time sequence and ultrastructural features of angiogenesis, hypoxia as a trigger, role of vascular endothelial growth factor signaling (VEGF), serum response factor, Cox2 and prostaglandins, nitric oxide, and importin. Recent reports indicate that gastric mucosa of aging humans and experimental animals exhibits increased susceptibility to injury and delayed healing. Gastric mucosa of aging rats has increased susceptibility to injury by a variety of damaging agents such as ethanol, aspirin, and other non-steroidal anti-inflammatory drugs because of structural and functional abnormalities including: reduced gastric mucosal blood flow, hypoxia, reduced expression of vascular endothelial growth factor and survivin, and increased expression of early growth response protein 1 (egr-1) and phosphatase and tensin homolog (PTEN). Until recently, postnatal neovascularization was assumed to occur solely through angiogenesis sprouting of endothelial cells and formation of new blood vessels from pre-existing blood vessels. New studies in the last decade have challenged this paradigm and indicate that in some tissues, including gastric mucosa, the homing of bone marrow-derived endothelial progenitor cells to the site of injury can also contribute to neovascularization by a process termed vasculogenesis.
Collapse
Affiliation(s)
- Andrzej S Tarnawski
- Veterans Administration Long Beach Healthcare System, 5901 E. Seventh Street, Long Beach, CA, 90822, USA; The University of California, Irvine, CA, USA
| | | | | |
Collapse
|
23
|
Lennon FE, Mirzapoiazova T, Mambetsariev N, Mambetsariev B, Salgia R, Singleton PA. Transactivation of the receptor-tyrosine kinase ephrin receptor A2 is required for the low molecular weight hyaluronan-mediated angiogenesis that is implicated in tumor progression. J Biol Chem 2014; 289:24043-58. [PMID: 25023279 DOI: 10.1074/jbc.m114.554766] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis or the formation of new blood vessels is important in the growth and metastatic potential of various cancers. Therefore, understanding the mechanism(s) by which angiogenesis occurs can have important therapeutic implications in numerous malignancies. We and others have demonstrated that low molecular weight hyaluronan (LMW-HA, ∼2500 Da) promotes endothelial cell (EC) barrier disruption and angiogenesis. However, the mechanism(s) by which this occurs is poorly defined. Our data indicate that treatment of human EC with LMW-HA induced CD44v10 association with the receptor-tyrosine kinase, EphA2, transactivation (tyrosine phosphorylation) of EphA2, and recruitment of the PDZ domain scaffolding protein, PATJ, to the cell periphery. Silencing (siRNA) CD44, EphA2, PATJ, or Dbs (RhoGEF) expression blocked LMW-HA-mediated angiogenesis (EC proliferation, migration, and tubule formation). In addition, silencing EphA2, PATJ, Src, or Dbs expression blocked LMW-HA-mediated RhoA activation. To translate our in vitro findings, we utilized a novel anginex/liposomal targeting of murine angiogenic endothelium with either CD44 or EphA2 siRNA and observed inhibition of LMW-HA-induced angiogenesis in implanted Matrigel plugs. Taken together, these results indicate LMW-HA-mediated transactivation of EphA2 is required for PATJ and Dbs membrane recruitment and subsequent RhoA activation required for angiogenesis. These results suggest that targeting downstream effectors of LMW-HA could be a useful therapeutic intervention for angiogenesis-associated diseases including tumor progression.
Collapse
Affiliation(s)
- Frances E Lennon
- From the Department of Medicine, Section of Pulmonary and Critical Care and
| | | | | | - Bolot Mambetsariev
- From the Department of Medicine, Section of Pulmonary and Critical Care and
| | - Ravi Salgia
- Section of Hematology and Oncology University of Chicago, Chicago Illinois 60637
| | | |
Collapse
|
24
|
Sato T, Amano H, Ito Y, Eshima K, Minamino T, Ae T, Katada C, Ohno T, Hosono K, Suzuki T, Shibuya M, Koizumi W, Majima M. Vascular endothelial growth factor receptor 1 signaling facilitates gastric ulcer healing and angiogenesis through the upregulation of epidermal growth factor expression on VEGFR1+CXCR4 + cells recruited from bone marrow. J Gastroenterol 2014; 49:455-69. [PMID: 23982810 DOI: 10.1007/s00535-013-0869-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 08/01/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Angiogenesis is essential for gastric ulcer healing. Recent results suggest that vascular endothelial growth factor receptor 1 (VEGFR1), which binds to VEGF, promotes angiogenesis. In the present study, we investigated the role of VEGFR1 signaling in gastric ulcer healing and angiogenesis. METHODS Gastric ulcers were induced by serosal application of 100 % acetic acid in wild-type (WT) and tyrosine kinase-deficient VEGFR1 mice (VEGFR1 TK(-/-)). Bone marrow transplantation into irradiated WT mice was carried out using bone marrow cells isolated from WT and VEGFR1 TK(-/-) mice. RESULTS Ulcer healing was delayed in VEGFR1 TK(-/-) mice compared to WT mice and this was accompanied by decreased angiogenesis, as evidenced by reduced mRNA levels of CD31 and decreased microvessel density. Recruitment of cells expressing VEGFR1 and C-X-C chemokine receptor type 4 (CXCR4) was suppressed and epidermal growth factor (EGF) expression in ulcer granulation tissue was attenuated. Treatment of WT mice with neutralizing antibodies against VEGF or CXCR4 also delayed ulcer healing. In WT mice transplanted with bone marrow cells from VEGFR1 TK(-/-) mice, ulcer healing and angiogenesis were suppressed, and this was associated with reduced recruitment of bone marrow cells to ulcer granulation tissue. VEGFR1 TK(-/-) bone marrow chimeras also exhibited downregulation of EGF expression on CXCR4(+)VEGFR1(+) cells recruited from the bone marrow into ulcer lesions. CONCLUSION VEGFR1-mediated signaling plays a critical role in gastric ulcer healing and angiogenesis through enhanced EGF expression on VEGFR1(+)CXCR4(+) cells recruited from the bone marrow into ulcer granulation tissue.
Collapse
Affiliation(s)
- Takehito Sato
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yoo SY, Kwon SM. Angiogenesis and its therapeutic opportunities. Mediators Inflamm 2013; 2013:127170. [PMID: 23983401 PMCID: PMC3745966 DOI: 10.1155/2013/127170] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/07/2013] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis plays critical roles in human physiology that range from reproduction and fetal growth to wound healing and tissue repair. The sophisticated multistep process is tightly regulated in a spatial and temporal manner by "on-off switch signals" between angiogenic factors, extracellular matrix components, and endothelial cells. Uncontrolled angiogenesis may lead to several angiogenic disorders, including vascular insufficiency (myocardial or critical limb ischemia) and vascular overgrowth (hemangiomas, vascularized tumors, and retinopathies). Thus, numerous therapeutic opportunities can be envisaged through the successful understanding and subsequent manipulation of angiogenesis. Here, we review the clinical implications of angiogenesis and discuss pro- and antiangiogenic agents that offer potential therapy for cancer and other angiogenic diseases.
Collapse
Affiliation(s)
- So Young Yoo
- Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-870, Republic of Korea
| | - Sang Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-870, Republic of Korea
| |
Collapse
|
26
|
NSAID, aspirin delays gastric ulcer healing with reduced accumulation of CXCR4(+)VEGFR1(+) cells to the ulcer granulation tissues. Biomed Pharmacother 2013; 67:607-13. [PMID: 23809370 DOI: 10.1016/j.biopha.2013.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/24/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Ulcer healing is a complex process, which involves cell migration, proliferation, angiogenesis and re-epithelialization. Several growth factors have been implicated in this process but the precise mechanism is not well understood. This study examined the involvement of VEGFR1 signaling in the gastric ulcer healing. METHODS Gastric ulcers were induced by the serosal application of 100% acetic acid, and the areas of the ulcers were measured thereafter. RESULTS The healing of acetic acid induced ulcers and the progenitor cells expressing CXCR4(+)VEGFR1(+) cell were significantly delayed in NSAID treated mice. The areas of the ulcer was significantly suppressed in tyrosine kinase-deficient VEGFR1 mice (VEGFR1TKKO) compared with wild type (WT) mice. The plasma level of SDF-1 and stem cell factor (SCF) and bone marrow level of pro-matrix metallopeptidase 9 (pro-MMP-9) were significantly reduced in VEGFR1TKKO mice. In VEGFR1 TKKOmice, the progenitor cells expressing CXCR4(+)VEGFR1(+) cell from bone marrow and the recruitment of these cells in healing ulcer were suppressed. Furthermore, VEGFR1 TKKO mice treated with NSAID did not suppress gastric ulcer healing compared to vehicle mice. These results suggested that NSAID suppressed VEGFR1 TK signaling plays a critical role in ulcer healing through mobilization of CXCR4(+)VEGFR1(+) cells. CONCLUSION VEGFR1 signaling is required for healing of NSAID induced gastric ulcer and angiogenesis with increased recruitment of CXCR4(+)VEGFR1(+) cells to the ulcerative lesion.
Collapse
|
27
|
Vascular endothelial growth factor receptor-2 inhibition in experimental murine colitis. J Surg Res 2013; 184:101-7. [PMID: 23688787 DOI: 10.1016/j.jss.2013.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/07/2013] [Accepted: 04/15/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND In the setting of inflammatory bowel disease, inflammation is associated with a simultaneous increase in angiogenesis; moreover, elevated vascular endothelial growth factor (VEGF) levels implicate angiogenesis as a pathologic contributor to disease severity. We hypothesize that selectively inhibiting vascular endothelial growth factor receptor-2 (VEGFR2) in a model of murine colitis will reduce angiogenesis, resulting in decreased inflammation and disease severity, providing mechanistic insight into the role of pathologic angiogenesis in IBD. MATERIALS AND METHODS In a dextran sodium sulfate model of murine colitis, anti-VEGFR2 monoclonal antibody (DC101) or placebo was administered. Clinical assessments followed by histologic and molecular tissue analysis were performed to quantify inflammation, microvessel density (MVD), VEGF and VEGFR2 gene expression, and phosphorylated mitogen-activated protein kinase protein expression. RESULTS Weight loss began after d 6 with the treatment group demonstrating a more favorable percent weight change. Inflammation and MVD were similar between cohorts, both increasing in parallel toward a plateau. VEGF and VEGFR2 messenger RNA expression were not significantly different, but phosphorylated mitogen-activated protein kinase was elevated in the DC101 cohort (P = 0.03). CONCLUSIONS Despite a more favorable weight change profile in the treated group, no difference was observed between cohorts regarding clinical disease severity. However, a parallel rise in inflammation and MVD was observed coinciding with weight loss, suggesting their relationship in IBD. VEGFR2 downstream signaling was significantly elevated in the treated cohort, possibly by VEGF-independent signal transduction. Early and effective inhibition of angiogenesis by limiting downstream VEGF signaling or targeting multiple angiogenic pathways may block angiogenesis, thereby reducing disease severity and provide evidence toward the mechanism and clinical benefit of antiangiogenics in the setting of IBD.
Collapse
|
28
|
Forget P, Simonet O, De Kock M. Cancer surgery induces inflammation, immunosuppression and neo-angiogenesis, but is it influenced by analgesics? F1000Res 2013; 2:102. [PMID: 24358839 PMCID: PMC3752648 DOI: 10.12688/f1000research.2-102.v1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2013] [Indexed: 12/12/2022] Open
Abstract
Surgery remains a main part of the treatment of most solid tumors. Paradoxically, rapid disease progression may be a consequence of surgery in patients presenting with a dysregulated inflammatory response, and increased angiogenesis consequent to a suppressed antitumoral immune response. Physicians taking care of cancer patients should be aware of the important findings that indicate that analgesic techniques could play a role in these phenomena.
Collapse
Affiliation(s)
- Patrice Forget
- Departments of Anesthesiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Olivier Simonet
- Department of Anesthesiology, Centre Hospitalier Wallonie-Picarde, Tournai, B-7500, Belgium
| | - Marc De Kock
- Departments of Anesthesiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
29
|
Takeuchi K, Amagase K. Evaluation of gastric ulcerogenic and healing impairment effects of bisphosphonates: adverse gastric reactions of bisphosphonate. ACTA ACUST UNITED AC 2013; Chapter 21:Unit 21.10.1-29. [PMID: 22896009 DOI: 10.1002/0471140856.tx2110s53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bisphosphonates (BPPs) were developed as antiresorptive drugs capable of treating diseases related to bone remodeling; however, they have untoward effects including ulceration in the upper gastrointestinal tract and worsen the healing-impairment action of nonsteroidal anti-inflammatory drugs, prescribed in patients with arthritis or osteoporosis. We produced ulcers in the antrum by administering BPPs to fasted rats, followed by refeeding, and confirmed their healing-impairment action on pre-existing gastric ulcers; the ulcerogenic effect is due to direct mucosal irritation and decrease in the mucosal anti-oxidative system, while the latter effect is due to dysregulation of growth factor expression, such as vascular endothelial growth factor and basic fibroblast growth factor, and angiogenesis in the ulcerated mucosa. In this article, we describe these two animal models for investigating BPP-related adverse reactions, including methods for the induction of antral ulcers and healing impairment of gastric ulcers, as well as measurement of pathogenic functional and biochemical changes.
Collapse
Affiliation(s)
- Koji Takeuchi
- Department of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | | |
Collapse
|
30
|
Fannon M, Forsten-Williams K, Zhao B, Bach E, Parekh PP, Chu CL, Goerges-Wildt AL, Buczek-Thomas JA, Nugent MA. Facilitated diffusion of VEGF165 through descemet's membrane with sucrose octasulfate. J Cell Physiol 2012; 227:3693-700. [PMID: 22378222 DOI: 10.1002/jcp.24077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Vascular endothelial growth factor A (VEGF-A) is a promoter of neovascularization and thus a popular therapeutic target for diseases involving excessive growth of blood vessels. In this study, we explored the potential of the disaccharide sucrose octasulfate (SOS) to alter VEGF165 diffusion through Descemet's membrane. Descemet's membranes were isolated from bovine eyes and used as a barrier between two chambers of a diffusion apparatus to measure VEGF transport. Diffusion studies revealed a dramatic increase in VEGF165 transport in the presence of SOS, with little diffusion of VEGF165 across the membrane over a 10-h time course in the absence of SOS. Diffusion studies with VEGF121, a non-heparin binding variant of VEGF, showed robust diffusion with or without SOS. To determine a possible mechanism, we measured the ability of SOS to inhibit VEGF interactions with extracellular matrix (ECM), using cell-free and cell surface binding assays. Binding studies showed SOS had no effect on VEGF165 binding to either heparin-coated plates or endothelial cell surfaces at less than mg/ml concentrations. In contrast, we show that SOS inhibited VEGF165 binding to fibronectin in a dose dependent manner and dramatically accelerated the rate of release of VEGF165 from fibronectin. SOS also inhibited the binding of VEGF165 to fibronectin-rich ECM deposited by vascular smooth muscle cells. These results suggest that fibronectin-rich extracellular matrices serve as barriers to VEGF165 diffusion by providing a network of binding sites that can trap and sequester the protein. Since the content of Descemet's membrane is typical of many basement membranes it is possible that they serve throughout the body as formidable barriers to VEGF165 diffusion and tightly regulate its bioavailability and distribution within tissues.
Collapse
Affiliation(s)
- Michael Fannon
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536-0305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chernoguz A, Crawford K, Vandersall A, Rao M, Willson T, Denson LA, Frischer JS. Pretreatment with anti-VEGF therapy may exacerbate inflammation in experimental acute colitis. J Pediatr Surg 2012; 47:347-54. [PMID: 22325388 DOI: 10.1016/j.jpedsurg.2011.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 11/10/2011] [Indexed: 12/16/2022]
Abstract
AIM Our previous investigations of angiogenesis in inflammatory bowel disease showed that vascular endothelial growth factor (VEGF) blockade reduced colonic neovascularization and inflammation. We hypothesized that pretreatment with bevacizumab, a monoclonal anti-VEGF antibody, would attenuate the severity of angiogenesis and inflammation in a murine model of colitis. METHODS C57BL/6 mice were treated with intraperitoneal injections of bevacizumab (250 μg/dose) before induction of colitis with dextran sulfate sodium (DSS). The colons were examined at predetermined time points. Colonic inflammation and microvessel density were assessed microscopically. RESULTS All mice acutely developed melena and weight loss (18.8% ± 1.1% control vs 20.2% ± 1.1% treated, P = .37) and regained a similar weight percentage after the recovery (26.5% ± 4.0% vs 20.9% ± 4.4%, P = .37). Microvessel density acutely increased in both groups in response to DSS, with a trend toward inhibited angiogenesis in the treated group at the conclusion of the acute phase (194,100 ± 14,240 vs 149,400 ± 17,590 μm(2), P = .11). Bevacizumab-treated mice exhibited significantly increased inflammation after the acute phase (8.3 ± 0.8 vs 13.0 ± 2.0, P = .05), but were similar to control after the recovery (7.3 ± 1.5 vs 5.5 ± 1.0, P = .27). CONCLUSIONS Preemptive VEGF inhibition does not significantly attenuate angiogenesis and, in fact, worsens inflammation in a model of acute colitis. Preventive VEGF blockade may disrupt healing and exacerbate injury via alternative angiogenic or inflammatory pathways.
Collapse
Affiliation(s)
- Artur Chernoguz
- Division of Pediatric General & Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Deng X, Xiong X, Khomenko T, Sandor Z, Osapay K, Tolstanova G, Shiloach J, Chen L, Folkman J, Szabo S. Inappropriate angiogenic response as a novel mechanism of duodenal ulceration and impaired healing. Dig Dis Sci 2011; 56:2792-2801. [PMID: 21735086 PMCID: PMC9534042 DOI: 10.1007/s10620-011-1753-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/09/2011] [Indexed: 01/19/2023]
Abstract
BACKGROUND Despite recent advances and better understanding of the etiology and the pathogenesis of gastrointestinal ulcer diseases, e.g., duodenal ulcer, the molecular events leading to ulcer development, delayed healing, and recurrence remain poorly elucidated. AIMS After we found that duodenal ulcers did not heal despite increased levels of vascular endothelial growth factor (VEGF), we tested the hypothesis that an imbalance in angiogenic VEGF and anti-angiogenic endostatin and angiostatin might be important in the development and delayed healing of experimental duodenal ulcers. METHODS Levels of VEGF, endostatin, and angiostatin, and the expression and activity of related matrix metalloproteinases (MMP) 2 and 9 were measured in scrapings of rat proximal duodenal mucosa in the early and late stages of chemically induced duodenal ulceration. Furthermore, animals were treated with recombinant endostatin and MMP 2 inhibitor to test the relationship between MMP2 and endostatin and their involvement in healing of experimental duodenal ulcers. RESULTS A concurrent increase of duodenal VEGF, endostatin, and angiostatin was noted during duodenal ulceration. Endostatin treatment aggravated duodenal ulcer. Levels of MMP2, but not MMP9, were increased. Inhibition of MMP2 reduced levels of endostatin and angiostatin, and attenuated duodenal ulcers. CONCLUSIONS Increased levels of endostatin and angiostatin induced by MMP2 delayed healing of duodenal ulcers despite concurrently increased VEGF. Thus, an inappropriate angiogenic response or "angiogenic imbalance" may be an important new mechanism in ulcer development and impaired healing.
Collapse
Affiliation(s)
- Xiaoming Deng
- Diagnostic & Molecular Medicine, VA Medical Center, Long Beach, CA 90822, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Florkiewicz RZ, Ahluwalia A, Sandor Z, Szabo S, Tarnawski AS. Gastric mucosal injury activates bFGF gene expression and triggers preferential translation of high molecular weight bFGF isoforms through CUG-initiated, non-canonical codons. Biochem Biophys Res Commun 2011; 409:494-499. [PMID: 21600881 DOI: 10.1016/j.bbrc.2011.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
Basic fibroblast growth factor (bFGF or FGF-2) is a pleiotropic growth factor that promotes growth of mesenchymal and epithelial cells, stimulates angiogenesis and neuroprotection. Moreover, exogenous bFGF by stimulating angiogenesis promotes healing of gastroduodenal ulcers and cardiac and brain injury. All these actions were demonstrated in regard to 18kDa bFGF isoform that is secreted by cells via an ER/Golgi-independent pathway and activates FGF receptors. However in some transformed and stressed cells and in some tissues (e.g. brain) the single copy bFGF gene encodes multiple gene products: 18 kDa and also higher molecular weight (HMW) bFGF isoforms: ∼21 and ∼22 kDa in rodents, and ∼22, ∼23 and ∼24 kDa in humans. The biologic roles of these HMW bFGF isoforms in vivo remain unknown. In this study we demonstrated that in normal, uninjured gastric mucosa, bFGF is almost exclusively expressed as 18kDa isoform translated through a classical AUG (methionine) codon. In contrast, in injured gastric mucosa of rat, bFGF gene is preferentially translated to HMW bFGF isoforms through alternative CUG (leucine) initiation codon. Gastric mucosal injury caused in rats a significant increase in bFGF mRNA at 8 and 24h vs. normal mucosa and a significant increase in bFGF protein at 24-72h, mainly due to increased expression of ∼21 and ∼22 kDa HMW bFGF isoforms. This is first demonstration that gastric mucosal injury and repair triggers local activation of bFGF gene with preferential translation of HMW bFGF isoforms through a non-canonical CUG codon. This study uncovered CUG-initiated HMW bFGF translation as a novel regulatory mechanism operating in vivo during gastric injury repair.
Collapse
Affiliation(s)
- Robert Z Florkiewicz
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
34
|
Takeuchi K, Tanigami M, Amagase K, Ochi A, Okuda S, Hatazawa R. Endogenous prostaglandin E2 accelerates healing of indomethacin-induced small intestinal lesions through upregulation of vascular endothelial growth factor expression by activation of EP4 receptors. J Gastroenterol Hepatol 2010; 25 Suppl 1:S67-74. [PMID: 20586869 DOI: 10.1111/j.1440-1746.2010.06222.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS The effects of an EP4 agonist/antagonist on the healing of lesions produced by indomethacin in the small intestine were examined in rats, especially in relation to the expression of vascular endothelial growth factor (VEGF) and angiogenesis. METHODS Animals were given indomethacin (10 mg/kg s.c.) and killed at various time points. To impair the healing of these lesions, a small dose of indomethacin (2 mg/kg p.o.) or AE3-208 (EP4 antagonist: 3 mg/kg i.p.) was given once daily for 6 days after the ulceration was induced, with or without the co-administration of AE1-329 (EP4 agonist: 0.1 mg/kg i.p.). RESULTS Indomethacin (10 mg/kg) caused severe damage in the small intestine, but the lesions healed rapidly decreasing to approximately one-fifth of their initial size within 7 days. The healing process was significantly impaired by indomethacin (2 mg/kg) given once daily for 6 days after the ulceration. This effect of indomethacin was mimicked by the EP4 antagonist and reversed by co-administration of the EP4 agonist. Mucosal VEGF expression was upregulated after the ulceration, reaching a peak on day 3 followed by a decrease. The changes in VEGF expression paralleled those in mucosal cyclooxygenase-2 expression, as well as prostaglandin E(2) (PGE(2)) content. Indomethacin (2 mg/kg) downregulated both VEGF expression and angiogenesis in the mucosa during the healing process, and these effects were significantly reversed by co-treatment with the EP4 agonist. CONCLUSION The results suggest that endogenous PGE(2) promotes the healing of small intestinal lesions by stimulating angiogenesis through the upregulation of VEGF expression mediated by the activation of EP4 receptors.
Collapse
Affiliation(s)
- Koji Takeuchi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Kim WY, Lee HY. Brain angiogenesis in developmental and pathological processes: mechanism and therapeutic intervention in brain tumors. FEBS J 2009; 276:4653-64. [PMID: 19664069 PMCID: PMC2847309 DOI: 10.1111/j.1742-4658.2009.07177.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Formation of new blood vessels is required for the growth and metastasis of all solid tumors. New blood vessels are established in tumors mainly through angiogenesis. Brain tumors in particular are highly angiogenic. Therefore, interventions designed to prevent angiogenesis may be effective at controlling brain tumors. Indeed, many recent findings from preclinical and clinical studies of antiangiogenic therapy for brain tumors have shown that it is a promising approach to managing this deadly disease, especially when combined with other cytotoxic treatments. In this minireview, we summarize the basic characteristics of brain tumor angiogenesis and the role of known angiogenic factors in regulating this angiogenesis, which may be targets of antiangiogenic therapy. We also discuss the current status of antiangiogenic therapy for brain tumors, the suggested mechanisms of this therapy and the limitations of this strategy.
Collapse
Affiliation(s)
- Woo-Young Kim
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
36
|
Colucci R, Fornai M, Antonioli L, Ghisu N, Tuccori M, Blandizzi C, Del Tacca M. Characterization of mechanisms underlying the effects of esomeprazole on the impairment of gastric ulcer healing with addition of NSAID treatment. Dig Liver Dis 2009; 41:395-405. [PMID: 19251492 DOI: 10.1016/j.dld.2008.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/30/2008] [Accepted: 10/05/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND The efficacy of proton pump inhibitors in patients at high risk of gastrointestinal injury receiving non-steroidal anti-inflammatory drugs is currently debated. AIMS To evaluate the effects of esomeprazole on the impairment of gastric ulcer healing associated with non-steroidal anti-inflammatory drug treatment. METHODS Gastric ulcers were induced in rats by acetic acid. Four days later, animals were treated daily with equivalent acid-inhibiting doses of esomeprazole or famotidine, alone or in combination with indomethacin. At day 3 or 7 of treatment, ulcerated tissues were processed to assess: ulcer area; malondialdehyde; prostaglandin E(2); nuclear factor-kB; proliferating cell nuclear antigen and caspase-3 (Western blot). RESULTS In indomethacin-treated animals, esomeprazole was more effective than famotidine or the antioxidant melatonin in promoting ulcer healing. Malondialdehyde levels were increased by indomethacin, and this effect was counteracted by esomeprazole, but not famotidine. Esomeprazole and famotidine, given alone or in combination with indomethacin, increased proliferating cell nuclear antigen expression. Increased levels of prostaglandin E(2) were detected in ulcerated tissues. Ulcer prostaglandin E(2) production was reduced by indomethacin, alone or in combination with esomeprazole or famotidine, while it was enhanced when esomeprazole or famotidine were tested alone. The activation of caspase-3 was induced by indomethacin, and this effect was prevented by esomeprazole, but not famotidine. In the presence of indomethacin, esomeprazole, but not famotidine, enhanced nuclear factor-kB activation in gastric ulcers. CONCLUSIONS Esomeprazole counteracts the detrimental action of indomethacin on ulcer repair through both acid-dependent and acid-independent effects. The acid-independent actions are related to decrease in tissue oxidation and apoptosis and to enhancement of nuclear factor-kB activation.
Collapse
Affiliation(s)
- R Colucci
- Interdepartmental Centre for Research in Clinical Pharmacology and Experimental Therapeutics, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Mannari C, Santi S, Migliori M, Filippi C, Origlia N, Sansò M, Boldrini E, Giovannini L. Sucralfate modulates uPAR and EGFR expression in an experimental rat model of cervicitis. Int J Immunopathol Pharmacol 2008; 21:651-8. [PMID: 18831933 DOI: 10.1177/039463200802100319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sucralfate is a drug used in the treatment of gastric and duodenal ulcer; it is cytoprotective and able to increase the bioavailability of several growth factors, modulating the wound healing process. In this study we tested the possible therapeutic effect of Sucralfate in the treatment of ulcerative lesions occurring in uterine cervix; to investigate such effect we used an experimental rat model of cervicitis in which the uPAR and EGFR expression were evaluated. Cervicitis was induced in wild and ovariectomized Wistar female rats by an acetic acid-soaked tampon. The animals were divided into two main groups (4 and 7 days) and Sucralfate was administered topically until the day they were sacrificed. In order to distinguish physiological and drug-induced healing, quantitative and qualitative uPAR and EGFR expression were evaluated by using Western blot and Immunohistochemistry techniques. Western blot analysis demonstrated an increased expression of both receptors after 4 days from wounding in wild and ovariectomized animals. In particular in ovariectomized animals the expression of uPAR and EGFR increased after 4 days while it reduced following the administration of Sucralfate. In wild rats the same was observed for uPAR expression, while EGFR was different; in fact, its expression increased significantly at day 4 in the animals treated with the drug and only at day 7 in those untreated. Immunohistochemistry highlighted a noteworthy epithelial colocalization of EGFR and uPAR after 4 days in the animals treated with Sucralfate. We conclude that Sucralfate can promote the healing of ulcerative cervicitis and moreover, it reduces the normal healing time because of its modulatory property on uPAR and EGFR expression.
Collapse
Affiliation(s)
- C Mannari
- Department of Neuroscience, Pharmacology section, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kulahin N, Kiselyov V, Kochoyan A, Kristensen O, Kastrup JS, Berezin V, Bock E, Gajhede M. Dimerization effect of sucrose octasulfate on rat FGF1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:448-52. [PMID: 18540049 PMCID: PMC2496850 DOI: 10.1107/s174430910801066x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 04/17/2008] [Indexed: 12/29/2022]
Abstract
Fibroblast growth factors (FGFs) constitute a family of at least 23 structurally related heparin-binding proteins that are involved in regulation of cell growth, survival, differentiation and migration. Sucrose octasulfate (SOS), a chemical analogue of heparin, has been demonstrated to activate FGF signalling pathways. The structure of rat FGF1 crystallized in the presence of SOS has been determined at 2.2 A resolution. SOS-mediated dimerization of FGF1 was observed, which was further supported by gel-filtration experiments. The major contributors to the sulfate-binding sites in rat FGF1 are Lys113, Lys118, Arg122 and Lys128. An arginine at position 116 is a consensus residue in mammalian FGF molecules; however, it is a serine in rat FGF1. This difference may be important for SOS-mediated FGF1 dimerization in rat.
Collapse
Affiliation(s)
- N Kulahin
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Fannon M, Forsten-Williams K, Nugent MA, Gregory KJ, Chu CL, Goerges-Wildt AL, Panigrahy D, Kaipainen A, Barnes C, Lapp C, Shing Y. Sucrose octasulfate regulates fibroblast growth factor-2 binding, transport, and activity: potential for regulation of tumor growth. J Cell Physiol 2008; 215:434-41. [PMID: 18163458 DOI: 10.1002/jcp.21327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The antithrombotic activity of heparin has largely been credited with the success found in some cancer treatment by heparin. There are, however, many potent growth factors involved in tumor and blood vessel growth that bind to heparin with high affinity and their regulation by heparin may play a role in heparin's efficacy. We therefore chose to study the activity of a heparin analog, sucrose octasulfate (SOS), which has been similarly shown to interact with heparin-binding growth factors. Using mouse melanoma and lung carcinoma models, we demonstrate in vivo inhibition of tumor growth by SOS. SOS, however, showed little effect in coagulation assays indicating that this activity was not a primary mechanism of action for this molecule. Studies were then performed to assess the effect of SOS on basic fibroblast growth factor (FGF-2) activity, a growth factor which promotes tumor and blood vessel growth and is produced by B16 melanoma cells. SOS potently inhibited FGF-2 binding to endothelial cells and stripped pre-bound FGF-2 from cells. SOS also regulated FGF-2 stimulated proliferation. Further, SOS facilitated FGF-2 diffusion through Descemet's membrane, a heparan sulfate-rich basement membrane from the cornea, suggesting a possible role in FGF-2 clearance. Our results suggest that molecules such as SOS have the potential to remove growth factors from tumor microenvironments and the approach offers an attractive area for further study.
Collapse
Affiliation(s)
- Michael Fannon
- Department of Ophthalmology and Visual Science, University of Kentucky, Lexington, Kentucky, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fedakar-Senyucel M, Bingol-Kologlu M, Vargun R, Akbay C, Sarac FN, Renda N, Hasirci N, Gollu G, Dindar H. The effects of local and sustained release of fibroblast growth factor on wound healing in esophageal anastomoses. J Pediatr Surg 2008; 43:290-5. [PMID: 18280276 DOI: 10.1016/j.jpedsurg.2007.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/09/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND/PURPOSE Postsurgical complications, such as anastomotic leaks in patients with esophageal atresia, have remained unchanged during the last 3 decades. Growth factors enhance healing in several wound-healing models. Therefore, an experimental study was used to evaluate the effects of local and sustained release of basic fibroblast growth factor (FGF) on wound healing in esophageal anastomoses. MATERIALS AND METHODS Twenty-four male Wistar albino rats, which were subjected to a 1-cm segmental resection of the abdominal esophagus followed by end-to-end anastomosis, were allocated into 3 groups. Group I, the control group, had no gelatin film applied to the anastomosis. In group II (gelatin film without FGF) and group III (gelatin film with FGF), anastomoses were covered with unloaded and 2.55 mug FGF-loaded gelatin films, respectively. On postoperative day 7, bursting pressures, histopathologic collagen deposition, and tissue hydroxyproline concentrations of the anastomoses were then analyzed and compared. RESULTS Mean bursting pressures, mean submucosal and muscular collagen deposition scores, and mean tissue hydroxyproline concentrations differed significantly between groups. Mean bursting pressures were 22.5 +/- 3.1 mm Hg in group I, 29 +/- 1.6 mm Hg in group II, and 63.2 +/- 6.8 mm Hg in group III (P < .001). Mean submucosal collagen deposition scores (group I: 0.7 +/- 0.2, group II: 0.7 +/- 0.1, group III: 1.5 +/- 0.2; P = .02) and mean muscular collagen deposition scores (group I: 0.8 +/- 0.2, group II: 0.8 +/- 0.1, group III: 1.8 +/- 0.1; P = .01) were significantly higher in FGF animals than the other in the other 2 groups. Mean tissue hydroxyproline concentrations were 2.4 +/- 0.5 microg/mg in group I, 3.9 +/- 0.4 microg/mg in group II, and 6.0 +/- 1.0 microg/mg in group III (P = .007). CONCLUSION Local and sustained release of FGF enhanced wound healing in esophageal anastomoses in this animal model.
Collapse
Affiliation(s)
- Mine Fedakar-Senyucel
- Department of Pediatric Surgery, School of Medicine, Ankara University, 06100 Ankara, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mechanisms of disease: the PI3K-Akt-PTEN signaling node--an intercept point for the control of angiogenesis in brain tumors. ACTA ACUST UNITED AC 2008; 3:682-93. [PMID: 18046441 DOI: 10.1038/ncpneuro0661] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 08/17/2007] [Indexed: 12/24/2022]
Abstract
The overall prognosis for patients with high-grade glioma remains dismal, despite advances in treatment modalities including neurosurgery, radiation therapy and conventional cytotoxic chemotherapy. In this article, we review literature that provides a rationale for the use of antiangiogenic therapy to improve the treatment of high-grade neoplasms in the CNS. In particular, we focus our discussion on the central role of the phosphatidylinositol 3-kinase-Akt- phosphatase and tensin homolog (PI3K-Akt-PTEN) axis as a potential molecular target for the control of angiogenesis in brain tumors via the coordinated control of cell division, tumor growth, angiogenesis, apoptosis, invasion and cellular metabolism in the tumor and stromal compartments. We suggest that instead of inhibiting a single cell surface receptor, thereby leaving other receptors free to pulse survival, proliferative, angiogenic and invasive signals, a more effective way to approach the design of targeted therapy against brain tumors is to inhibit a nodal point where redundant cell surface receptor signals converge to transmit important, relatively conserved signaling events within the cell. The epigenetic and post-translational regulation of PI3K-Akt-PTEN signaling has a prominent role in brain tumor pathogenesis, and we therefore suggest that PI3K could be an important target for therapies that target brain tumors.
Collapse
|
42
|
Nissen LJ, Cao R, Hedlund EM, Wang Z, Zhao X, Wetterskog D, Funa K, Bråkenhielm E, Cao Y. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 2007; 117:2766-77. [PMID: 17909625 PMCID: PMC1994630 DOI: 10.1172/jci32479] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 07/25/2007] [Indexed: 01/06/2023] Open
Abstract
Tumors produce multiple growth factors, but little is known about the interplay between various angiogenic factors in promoting tumor angiogenesis, growth, and metastasis. Here we show that 2 angiogenic factors frequently upregulated in tumors, PDGF-BB and FGF2, synergistically promote tumor angiogenesis and pulmonary metastasis. Simultaneous overexpression of PDGF-BB and FGF2 in murine fibrosarcomas led to the formation of high-density primitive vascular plexuses, which were poorly coated with pericytes and VSMCs. Surprisingly, overexpression of PDGF-BB alone in tumor cells resulted in dissociation of VSMCs from tumor vessels and decreased recruitment of pericytes. In the absence of FGF2, capillary ECs lacked response to PDGF-BB. However, FGF2 triggers PDGFR-alpha and -beta expression at the transcriptional level in ECs, which acquire hyperresponsiveness to PDGF-BB. Similarly, PDGF-BB-treated VSMCs become responsive to FGF2 stimulation via upregulation of FGF receptor 1 (FGFR1) promoter activity. These findings demonstrate that PDGF-BB and FGF2 reciprocally increase their EC and mural cell responses, leading to disorganized neovascularization and metastasis. Our data suggest that intervention of this non-VEGF reciprocal interaction loop for the tumor vasculature could be an important therapeutic target for the treatment of cancer and metastasis.
Collapse
MESH Headings
- Animals
- Becaplermin
- Capillaries
- Cell Movement
- Cell Proliferation
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/metabolism
- Fibroblast Growth Factor 2/pharmacology
- Fibrosarcoma/blood
- Fibrosarcoma/metabolism
- Fibrosarcoma/pathology
- Humans
- Lung Neoplasms/secondary
- Mice
- Mice, SCID
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Pericytes/metabolism
- Pericytes/pathology
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-sis
- Rats
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Lars Johan Nissen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Göteborg University, Gothenburg, Sweden
| | - Renhai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Göteborg University, Gothenburg, Sweden
| | - Eva-Maria Hedlund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Göteborg University, Gothenburg, Sweden
| | - Zongwei Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Göteborg University, Gothenburg, Sweden
| | - Xing Zhao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Göteborg University, Gothenburg, Sweden
| | - Daniel Wetterskog
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Göteborg University, Gothenburg, Sweden
| | - Keiko Funa
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Göteborg University, Gothenburg, Sweden
| | - Ebba Bråkenhielm
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Göteborg University, Gothenburg, Sweden
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Göteborg University, Gothenburg, Sweden
| |
Collapse
|
43
|
Szabo S, Deng X, Khomenko T, Chen L, Tolstanova G, Osapay K, Sandor Z, Xiong X. New molecular mechanisms of duodenal ulceration. Ann N Y Acad Sci 2007; 1113:238-255. [PMID: 17656571 DOI: 10.1196/annals.1391.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stress is a major etiologic factor in the pathogenesis of gastric and duodenal ulceration, as first described in rats by Hans Selye. In patients with "peptic ulcers" duodenal ulcers are more frequent than gastric ulcers (except in Japan). Thus, our research during the last three decades focused on the molecular mechanisms of duodenal ulcer in rodent models of chemically induced duodenal ulceration, and here we review our three recent findings: Endothelins (ET-1), the immediate early gene egr-1 and imbalance of angiogenic/antiangiogenic molecules. Namely, we found an enhanced expression and release of ET-1 within 15-30 min after the administration of duodenal ulcerogen cysteamine, resulting in local ischemia that triggers the expression of hypoxia-inducible factors (HIF-1alpha). Our gene expression studies also revealed an early (0.5-2 h) increase in the expression of egr-1 that is followed (12-24 h) by upregulation of angiogenic growth factors (e.g., VEGF, bFGF, PDGF). Surprisingly, this event is also associated with an enhanced production of angiostatin and endostatin that probably counteract the beneficial effect of angiogenic molecules. Thus, the initial injury to endothelial and epithelial cells in duodenal ulceration seems to be aggravated (and not initiated) by HCl and proteolytic enzymes. The resulting mucosal necrosis does not rapidly heal because of the imbalance of VEGF and angiostatin/endostatin, hence duodenal ulcers develop. The experimental ulcers Selye described morphologically are now characterized at the molecular and genome level, involving unexpected mediators like ET-1, egr-1 and angiogenesis-related molecules.
Collapse
Affiliation(s)
- Sandor Szabo
- VA Medical Center, University of California-Irvine, School of Medicine, Long Beach, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hatazawa R, Tanaka A, Tanigami M, Amagase K, Kato S, Ashida Y, Takeuchi K. Cyclooxygenase-2/prostaglandin E2 accelerates the healing of gastric ulcers via EP4 receptors. Am J Physiol Gastrointest Liver Physiol 2007; 293:G788-97. [PMID: 17673547 DOI: 10.1152/ajpgi.00131.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We examined the involvement of cyclooxygenase (COX)-1 as well as COX-2 in the healing of gastric ulcers and investigated which prostaglandin (PG) EP receptor subtype is responsible for the healing-promoting action of PGE2. Male SD rats and C57BL/6 mice, including wild-type, COX-1(-/-), and COX-2(-/-), were used. Gastric ulcers were produced by thermocauterization under ether anesthesia. Gastric ulcer healing was significantly delayed in both rats and mice by indomethacin and rofecoxib but not SC-560 given for 14 days after ulceration. The impaired healing was also observed in COX-2(-/-) but not COX-1(-/-) mice. Mucosal PGE2 content increased after ulceration, and this response was significantly suppressed by indomethacin and rofecoxib but not SC-560. The delayed healing in mice caused by indomethacin was significantly reversed by the coadministration of 11-deoxy-PGE1 (EP3/EP4 agonist) but not other prostanoids, including the EP1, EP2, and EP3 agonists. By contrast, CJ-42794 (selective EP(4) antagonist) significantly delayed the ulcer healing in rats and mice. VEGF expression and angiogenesis were both upregulated in the ulcerated mucosa, and these responses were suppressed by indomethacin, rofocoxib, and CJ-42794. The expression of VEGF in primary rat gastric fibroblasts was increased by PGE2 or AE1-329 (EP4 agonist), and these responses were both attenuated by coadministration of CJ-42794. These results confirmed the importance of COX-2/PGE2 in the healing mechanism of gastric ulcers and further suggested that the healing-promoting action of PGE2 is mediated by the activation of EP4 receptors and is associated with VEGF expression.
Collapse
Affiliation(s)
- Ryo Hatazawa
- Dept. of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical Univ., Misasagi, Yamashina, Kyoto 607, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Southwick SM, Vythilingam M, Charney DS. The psychobiology of depression and resilience to stress: implications for prevention and treatment. Annu Rev Clin Psychol 2007; 1:255-91. [PMID: 17716089 DOI: 10.1146/annurev.clinpsy.1.102803.143948] [Citation(s) in RCA: 657] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses neurobiological and psychosocial factors associated with stress-induced depression and compares these factors with those believed to characterize stress resilience. Neurobiological factors that are discussed and contrasted include serotonin, the 5-HT1A receptor, polymorphisms of the 5-HT transporter gene, norepinephrine, alpha-2 adrenergic receptors, neuropeptide Y, polymorphisms of the alpha-2 adrenergic gene, dopamine, corticotropin-releasing hormone (CRH), dehydroepiandrosterone (DHEA), cortisol, and CRH receptors. These factors are described in the context of brain regions believed to be involved in stress, depression, and resilience to stress. Psychosocial factors associated with depression and/or stress resilience include positive emotions and optimism, humor, cognitive flexibility, cognitive explanatory style and reappraisal, acceptance, religion/spirituality, altruism, social support, role models, coping style, exercise, capacity to recover from negative events, and stress inoculation. The review concludes with potential psychological, social, spiritual, and neurobiological approaches to enhancing stress resilience, decreasing the likelihood of developing stress-induced depression/anxiety, and treating stress-induced psychopathology.
Collapse
Affiliation(s)
- Steven M Southwick
- Yale University School of Medicine, National Center for Post-Traumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, Connecticut 06516, USA.
| | | | | |
Collapse
|
46
|
Wallace JL, Dicay M, McKnight W, Dudar GK. Platelets accelerate gastric ulcer healing through presentation of vascular endothelial growth factor. Br J Pharmacol 2006; 148:274-8. [PMID: 16565732 PMCID: PMC1751560 DOI: 10.1038/sj.bjp.0706722] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Platelets contain an array of growth factors that can modulate healing processes, including both pro- (e.g., vascular endothelial growth factor (VEGF)) and antiangiogenic (e.g., endostatin) factors. Previous studies have shown that circulating platelets contribute significantly to gastric ulcer healing, acting as a delivery system for these growth factors to the site of injury. In this study, we examined the effects of orally administered human platelets on the healing of gastric ulcers in rats, and determined the contribution of VEGF and endostatin to healing in this model. 2. Twice-daily administration of human platelets significantly accelerated ulcer healing, but platelet-poor plasma (PPP), lysed platelets and serum failed to produce this effect. There was no correlation between ulcer healing and the levels of VEGF or endostatin in serum, PPP or platelet-rich plasma (PRP). 3. Accelerated ulcer healing could not be produced by oral administration of the angiogenic factors themselves, at concentrations matching those in PRP. 4. The accelerated healing induced by platelets could be reversed by immuno-neutralization of VEGF. In contrast, immuno-neutralization of endostatin did not affect PRP-induced ulcer healing. 5. These studies indicate that VEGF released from platelets accounts for the accelerated healing of gastric ulcers. However, as intact (rather than lysed) platelets were required for the accelerated healing, the presentation of VEGF by the platelet at the site of injury appears to be crucial for enhancement of the healing process.
Collapse
Affiliation(s)
- John L Wallace
- Mucosal Inflammation Research Group, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | |
Collapse
|
47
|
Sandor Z, Deng XM, Khomenko T, Tarnawski AS, Szabo S. Altered angiogenic balance in ulcerative colitis: a key to impaired healing? Biochem Biophys Res Commun 2006; 350:147-150. [PMID: 17011522 DOI: 10.1016/j.bbrc.2006.09.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 09/02/2006] [Indexed: 02/06/2023]
Abstract
Angiogenesis is an essential component of ulcer healing since it assures delivery of oxygen and nutrients to the healing site. Previous studies demonstrated increased serum and tissue levels of vascular endothelial growth factor (VEGF, the most potent angiogenic growth factor) in patients with active ulcerative colitis (UC) and animal models of UC. However, there is no explanation why the healing of UC-related mucosal injury is impaired despite increased expression of VEGF. Expression of angiogenesis inhibitors, angiostatin and/or endostatin, in UC has not been determined before. We examined expression of VEGF, angiostatin, and endostatin in two models of experimental UC. The results revealed that in addition to increased VEGF, both endostatin and angiostatin levels were markedly (2-3-folds) increased in colonic mucosa at early stage of experimental UC. This is the first demonstration that colitis triggers increase in angiostatin and endostatin levels. The results may explain why mucosal lesions heal slowly despite increased VEGF levels, and may provide a novel and mechanistic insight into UC.
Collapse
Affiliation(s)
- Zs Sandor
- Medical Health Care Groups, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | | | | | | | | |
Collapse
|
48
|
Singleton PA, Lingen MW, Fekete MJ, Garcia JGN, Moss J. Methylnaltrexone inhibits opiate and VEGF-induced angiogenesis: role of receptor transactivation. Microvasc Res 2006; 72:3-11. [PMID: 16820176 DOI: 10.1016/j.mvr.2006.04.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2006] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/22/2022]
Abstract
Angiogenesis or the formation of new blood vessels is important in the growth and metastatic potential of various cancers. Therefore, agents that inhibit angiogenesis have important therapeutic implications in numerous malignancies. We examined the effects of methylnaltrexone (MNTX), a peripheral mu opioid receptor antagonist, on agonist-induced human EC proliferation and migration, two key components in angiogenesis. Using human dermal microvascular EC, we observed that morphine sulfate (MS), the active metabolite, morphine-6-glucuronide (M6G), DAMGO ([d-Ala(2), N-Me-Phe(4), Gly(5)-ol]enkaphalin) and VEGF induced migration which were inhibited by pretreatment with MNTX at therapeutically relevant concentration (0.1 microM). The biologically inactive metabolite morphine-3-glucuronide (M3G) did not affect EC migration. We next examined the mechanism(s) by which MNTX inhibits opioid and VEGF-induced angiogenesis using human pulmonary microvascular EC. MS and DAMGO induced Src activation which was required for VEGF receptor transactivation and opioid-induced EC proliferation and migration. MNTX inhibited MS, DAMGO and VEGF induced tyrosine phosphorylation (transactivation) of VEGF receptors 1 and 2. Furthermore, MS, DAMGO and VEGF induced RhoA activation which was inhibited by MNTX or VEGF receptor tyrosine kinase inhibition. Finally, MNTX or silencing RhoA expression (siRNA) blocked MS, DAMGO and VEGF-induced EC proliferation and migration. Taken together, these results indicate that MNTX inhibits opioid-induced EC proliferation and migration via inhibition of VEGF receptor phosphorylation/transactivation with subsequent inhibition of RhoA activation. These results suggest that MNTX inhibition of angiogenesis can be a useful therapeutic intervention for cancer treatment.
Collapse
Affiliation(s)
- P A Singleton
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
49
|
Arisawa T, Shibata T, Kamiya Y, Nagasaka M, Nakamura M, Fujita H, Hasegawa S, Harata M, Nakamura M, Mizuno T, Tahara T, Ohta Y, Nakano H. EFFECTS OF SUCRALFATE, CIMETIDINE AND RABEPRAZOLE ON MUCOSAL HYDROXYPROLINE CONTENT IN HEALING OF ETHANOL-HCL-INDUCED GASTRIC LESIONS. Clin Exp Pharmacol Physiol 2006; 33:628-32. [PMID: 16789931 DOI: 10.1111/j.1440-1681.2006.04418.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. No general consensus has been reached on the treatment of acute gastric lesions. The aims of the present study were to clarify the effects of sucralfate, cimetidine and rabeprazole monotherapies and combination therapies on acute gastric lesions from the viewpoint of connective tissue regeneration. 2. Gastric lesions were experimentally created by the oral administration of 50% ethanol-0.15 mol/L HCl to rats. After 30 min, the anti-ulcer agents sucralfate (100 mg/kg), cimetidine (20 mg/kg) and rabeprazole (2 mg/kg) were administered separately or in combination and the stomach was excised at different times to measure the level of hydroxyproline in the gastric mucosa and determine lesion index. Immunostaining against prolylhydroxylase was performed on some specimens. 3. In the control group, lesion index decreased linearly from 30 min after ethanol-HCl administration and the level of mucosal hydroxyproline peaked between 2 and 4 h later. Although sucralfate significantly promoted lesion healing, it had no effect on mucosal hydroxyproline level. Cimetidine suppressed increases in mucosal hydroxyproline and prolonged lesion healing, but these findings were reversed by combining cimetidine and sucralfate. Rabeprazole had no significant effect on lesion healing, but promoted lesion healing in combination with sucralfate. Immunohistochemical analysis showed that prolylhydroxylase was expressed in spindle cells that lined the glandular cells in a boundary area between normal and injured tissues. 4. Under conditions in which the effects of intragastric pH are minimal, sucralfate is superior to antisecretory agents in promoting the healing of acute gastric lesions.
Collapse
Affiliation(s)
- Tomiyasu Arisawa
- Department of Gatroenterology, Fujita Health University, School of Medicine, Kutsukake-cho, Toyoake, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Poonam D, Vinay CS, Gautam P. Cyclo-oxygenase-2 expression and prostaglandin E2 production in experimental chronic gastric ulcer healing. Eur J Pharmacol 2005; 519:277-84. [PMID: 16139265 DOI: 10.1016/j.ejphar.2005.06.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 06/17/2005] [Accepted: 06/30/2005] [Indexed: 01/08/2023]
Abstract
Prostaglandin, a key molecule that stimulates the complex array of ulcer healing mechanism, gets synthesized in the mucosal cells by cyclooxygenase (COX) enzymes: COX-1 and COX-2. High expression level of COX-2 protein at healing ulcer margins highlights its role in ulcer healing and hypothesized to be an important contributing factor in healing mechanism of anti-ulcer drugs. In the present study we have compared the expression profile of COX-2 protein, prostaglandin E2 (PGE2) levels and myeloperoxidase activity in acetic acid induced chronic gastric ulcer model in rats treated with omeprazole, misoprostol and COX-2 selective nonsteroidal anti-inflammatory drug (NSAID) celecoxib. Both COX-2 expression and PGE2 level have shown differential pattern in different treated groups parallel to the differential effects of these drugs on ulcer healing. Omeprazole has significantly elevated the expression level of COX-2 protein, PGE2 level (19.37%), and decreased myeloperoxidase activity (81.92%), thereby causing the most effective ulcer healing (89.74%). Similar trend was observed with misoprostol, but with relatively less pronounced ulcer healing and COX-2 expression. Celecoxib has retarded COX-2 expression and delayed ulcer healing. Therefore, induction of COX-2 expression leading to higher level of prostaglandin appears to be an important contributing factor in drug mediated ulcer healing apart from the respective mechanisms of different drugs.
Collapse
Affiliation(s)
- Dharmani Poonam
- Division of Pharmacology, Central Drug Research Institute, Lucknow-226001, P.B. No. 173, U.P, India
| | | | | |
Collapse
|