1
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
2
|
Sharkey KA, Savidge TC. Reprint of: Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2014; 182:70-82. [PMID: 24674836 DOI: 10.1016/j.autneu.2014.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/11/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| | - Tor C Savidge
- Texas Children's Microbiome Center, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2013; 181:94-106. [PMID: 24412639 DOI: 10.1016/j.autneu.2013.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/24/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
|
4
|
Pérez Y, Oyárzabal A, Mas R, Molina V, Jiménez S. Protective effect of D-002, a mixture of beeswax alcohols, against indomethacin-induced gastric ulcers and mechanism of action. J Nat Med 2012; 67:182-9. [PMID: 22576364 DOI: 10.1007/s11418-012-0670-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/30/2012] [Indexed: 11/28/2022]
Abstract
D-002, a mixture of higher aliphatic beeswax alcohols, produces gastroprotective and antioxidant effects. To investigate the gastroprotective effect of D-002 against indomethacin-induced ulcers, oxidative variables and myeloperoxidase (MPO) activity in the rat gastric mucosa were examined. Rats were randomized into six groups: a negative vehicle control and five indomethacin (50 mg/kg) treated groups, comprising a positive control, three groups treated orally with D-002 (5, 25 and 100 mg/kg) and one group with omeprazole 20 mg/kg intraperitoneally (ip). The contents of malondialdehyde (MDA), protein carbonyl groups (PCG), hydroxyl radical generation and catalase (CAT), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and MPO enzyme activities in the rat gastric mucosa were assessed. Indomethacin increased the content of MDA and PCG, the generation of *OH radical and MPO enzyme activity, while it decreased the CAT, GSH-PX and SOD activities as compared to the negative controls. D-002 (5-100 mg/kg) significantly and dose-dependently reduced indomethacin-induced ulceration to 75 %. Also, D-002 decreased the content of MDA and PCG, the generation of hydroxyl radicals and MPO activity as compared to the positive controls. The highest dose of D-002 (100 mg/kg) increased significantly GSH-PX and SOD activities, while all doses used increased CAT activities. Omeprazole 20 mg/kg, the reference drug, reduced significantly the ulcers (93 %), MDA and PCG, the generation of hydroxyl radicals and MPO activity, and increased the CAT, GSH-PX and SOD activities. D-002 treatment produced gastroprotective effects against indomethacin-induced gastric ulceration, which can be related to the reduction of hydroxyl radical generation, lipid peroxidation, protein oxidation and MPO activity, and to the increase of the antioxidant enzymes activities in the rat gastric mucosa.
Collapse
Affiliation(s)
- Yohani Pérez
- Centre of Natural Products, National Centre for Scientific Research, Havana, Cuba.
| | | | | | | | | |
Collapse
|
5
|
Zimmermann MB, Hilty FM. Nanocompounds of iron and zinc: their potential in nutrition. NANOSCALE 2011; 3:2390-2398. [PMID: 21483965 DOI: 10.1039/c0nr00858c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Recent studies suggest nanostructured oxides and phosphates of Fe and atomically mixed Fe/Zn may be useful for nutritional applications. These compounds may have several advantages over existing fortificants, such as ferrous sulfate (FeSO(4)), NaFeEDTA and electrolytic iron. Because of their very low solubility and formation of soft agglomerates of micron size at neutral pH as well as their light native color, they tend to be less reactive in difficult-to-fortify foods and thus have superior sensory performance. At gastric pH the soft agglomerates break up and the Fe compounds rapidly and completely dissolve due to their very high surface area. This results in in vitro solubility and in vivo bioavailability comparable to FeSO(4). Doping with Mg and/or Ca may increase solubility and improve sensory characteristics by lightening color. Feeding the nanostructured compounds at 150-400 µg Fe day(-1) for 15 days to weanling rats in two studies did not induce measurable histological or biochemical adverse effects. No significant Fe was detected in the submucosa of the gastrointestinal tract or lymphatic tissues, suggesting that the nanosized Fe is absorbed through usual non-heme Fe absorption pathways. Thus, these novel compounds show promise as food fortificants or supplements.
Collapse
|
6
|
Drug E, Landesman-Milo D, Belgorodsky B, Ermakov N, Frenkel-Pinter M, Fadeev L, Peer D, Gozin M. Enhanced bioavailability of polyaromatic hydrocarbons in the form of mucin complexes. Chem Res Toxicol 2011; 24:314-20. [PMID: 21332130 DOI: 10.1021/tx100426s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing exposure of biological systems to large amounts of polycyclic aromatic hydrocarbons is of great public concern. Organisms have an array of biological defense mechanisms, and it is believed that mucosal gel (which covers the respiratory system, the gastrointestinal tract, etc.) provides an effective chemical shield against a range of toxic materials. However, in this work, we demonstrate, for the first time, that, upon complexation of polyaromatic hydrocarbons with mucins, enhanced bioavailability and, therefore, toxicity are obtained. This work was aimed to demonstrate how complexation of various highly hydrophobic polycyclic aromatic hydrocarbons with representative mucin glycoprotein could lead to the formation of previously undescribed materials, which exhibit increased toxicity versus pristine polycyclic aromatic hydrocarbons. In the present work, we show that a representative mucin glycoprotein, bovine submaxillary mucin, has impressive and unprecedented capabilities of binding and solubilizing water-insoluble materials in physiological solution. The complexes formed between the mucin and a series of polycyclic aromatic hydrocarbons were comprehensively characterized, and their toxicity was evaluated by both in vivo and in vitro assays. In addition, the bioavailability and membrane-penetration capabilities were tested using an internalization assay. Our results provide, for the first time, evidence of an unknown route by which hydrophobic materials may achieve higher bioavailability, penetrating some of the biological defense systems, in the form of water-soluble complexes with mucosal proteins.
Collapse
Affiliation(s)
- Eyal Drug
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Sharma R, Tsuchiya M, Skobe Z, Tannous BA, Bartlett JD. The acid test of fluoride: how pH modulates toxicity. PLoS One 2010; 5:e10895. [PMID: 20531944 PMCID: PMC2878349 DOI: 10.1371/journal.pone.0010895] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/09/2010] [Indexed: 01/04/2023] Open
Abstract
Background It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F−). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F−. Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of F− into cells. Here, we asked if F− was more toxic at low pH, as measured by increased cell stress and decreased cell function. Methodology/Principal Findings Treatment of ameloblast-derived LS8 cells with F− at low pH reduced the threshold dose of F− required to phosphorylate stress-related proteins, PERK, eIF2α, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F− dose and pH. Luciferase secretion significantly decreased within 2 hr of F− treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F− in their drinking water exhibited increased stress-mediated phosphorylation of eIF2α in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH∼7.2). Intriguingly, F−-treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. Conclusions The low pH environment of maturation stage ameloblasts facilitates the uptake of F−, causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis.
Collapse
Affiliation(s)
- Ramaswamy Sharma
- Department of Cytokine Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Masahiro Tsuchiya
- Division of Aging and Geriatric Dentistry, Tohoku University, Sendai, Japan
| | - Ziedonis Skobe
- Department of Cytokine Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Bakhos A. Tannous
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John D. Bartlett
- Department of Cytokine Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Hoffmann P, Hoeck K, Deters S, Werner-Martini I, Schmidt WE. Substance P and calcitonin gene related peptide induce TGF-alpha expression in epithelial cells via mast cells and fibroblasts. ACTA ACUST UNITED AC 2010; 161:33-7. [DOI: 10.1016/j.regpep.2009.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 12/30/2009] [Indexed: 11/29/2022]
|
9
|
Belgorodsky B, Drug E, Fadeev L, Hendler N, Mentovich E, Gozin M. Mucin complexes of nanomaterials: first biochemical encounter. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:262-269. [PMID: 19957282 DOI: 10.1002/smll.200900637] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In recent years, the exposure of biological systems to various nanomaterials has become an issue of great public concern. Although living organisms have arrays of biological defense mechanisms against exposure to exogenous compounds, the biochemical mechanisms allowing various nanomaterials to enter the body are not well understood. A unique example of a typical mucosal glycoprotein capable of binding and solubilizing nanomaterials in physiological solution is provided, suggesting a possible route for entry into biological systems.
Collapse
Affiliation(s)
- Bogdan Belgorodsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
10
|
Shraga N, Belgorodsky B, Gozin M. Organic Reactions Promoted by Mucin Glycoproteins. J Am Chem Soc 2009; 131:12074-5. [DOI: 10.1021/ja9040626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Natalie Shraga
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | - Bogdan Belgorodsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | - Michael Gozin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| |
Collapse
|
11
|
Maity P, Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. The use of neem for controlling gastric hyperacidity and ulcer. Phytother Res 2009; 23:747-55. [PMID: 19140119 DOI: 10.1002/ptr.2721] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
H(2)-receptor blockers and proton pump inhibitors are now used extensively to control gastric and duodenal ulcer, inflammation and pain, but these drugs have limitations and are not always affordable. The development of novel nontoxic antiulcer drugs, including from medicinal plants, is therefore desirable, and Azadirachta indica A. Juss, commonly known as Neem, is known to have potent gastroprotective and antiulcer effects. This review deals with the pharmacological and biochemical studies carried out regarding the antiulcer activities of Neem extracts and their mechanism of action, including the inhibition of acid secretion. A comparison with ranitidine and omeprazole in some animal models has been included and clinical studies, where available, have also been incorporated, along with a safety evaluation. Neem bark extract has the potential for the development of novel medicines for the therapeutic control of gastric hyperacidity and ulcer.
Collapse
Affiliation(s)
- Pallab Maity
- Division of Infectious Disease and Immunology, Indian Institute of Chemical Biology, Kolkata-700032, West Bengal, India
| | | | | | | | | |
Collapse
|
12
|
Singh AK, Sjöblom M, Zheng W, Krabbenhöft A, Riederer B, Rausch B, Manns MP, Soleimani M, Seidler U. CFTR and its key role in in vivo resting and luminal acid-induced duodenal HCO3- secretion. Acta Physiol (Oxf) 2008; 193:357-65. [PMID: 18363901 DOI: 10.1111/j.1748-1716.2008.01854.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS We investigated the role of the recently discovered, villous-expressed anion exchanger Slc26a6 (PAT1) and the predominantly crypt-expressed cystic fibrosis transmembrane regulator (CFTR) in basal and acid-stimulated murine duodenal HCO(3)(-) secretion in vivo, and the influence of blood HCO(3)(-) concentration on both. METHODS The proximal duodenum of anaesthetized mice was perfused in situ, and HCO(3)(-) secretion was determined by back-titration. Duodenal mucosal permeability was assessed by determining (51)Cr-EDTA leakage from blood to lumen. RESULTS Compared with wild type (WT) littermates basal duodenal HCO(3)(-) secretory rates were slightly reduced in Slc26-deficient mice at low ( approximately 21 mm), and markedly reduced at high blood HCO(3)(-) concentration ( approximately 29 mm). In contrast, basal HCO(3)(-) secretion was markedly reduced in CFTR-deficient mice compared with WT littermates both at high and low blood HCO(3)(-) concentration. A short-term application of luminal acid increased duodenal HCO(3)(-) secretory rate in Slc26a6-deficient and WT mice to the same degree, but had no stimulatory effect in the absence of CFTR. Luminal acidification to pH 2.5 did not alter duodenal permeability. CONCLUSIONS The involvement of Slc26a6 in basal HCO(3)(-) secretion in murine duodenum in vivo is critically dependent on the systemic acid/base status, and this transporter is not involved in acid-stimulated HCO(3)(-) secretion. The presence of CFTR is essential for basal and acid-induced HCO(3)(-) secretion irrespective of acid/base status. This suggests a coupled action of Slc26a6 with CFTR for murine basal duodenal HCO(3)(-) secretion, but not acid-stimulated secretion, in vivo.
Collapse
Affiliation(s)
- A K Singh
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cooke CL, An HJ, Kim J, Solnick JV, Lebrilla CB. Method for Profiling Mucin Oligosaccharides from Gastric Biopsies of Rhesus Monkeys with and withoutHelicobacter pyloriInfection. Anal Chem 2007; 79:8090-7. [DOI: 10.1021/ac071157d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Czinn SJ, Nedrud JG. Peptic Ulcers and Gastritis. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Abstract
PURPOSE OF REVIEW The remarkable resistance of the mucosal lining the upper gastrointestinal tract to concentrated gastric acid remains one of the biggest unsolved mysteries of upper gastrointestinal physiology. Even with the discovery of the involvement of Helicobacter pylori in gastroduodenal injury, the mechanism by which the organism causes injury remains unresolved. In the past year, there have been striking findings regarding trefoil peptides, the protective effect of regulatory peptides such as adrenomedullin, and the influence of H. pylori on the junctions that join the epithelial cells. RECENT FINDINGS Trefoil peptide-2-deficient mice were more susceptible to gastric injury from nonsteroidal anti-inflammatory agents, confirming that trefoil peptides increased the barrier properties of the pre-epithelial mucus gel. With regard to H. pylori, the gastric mucosa of mice deficient in the tyrosine phosphatase receptor type Z were not damaged by H. pylori vacuolating cytotoxin. Proton pump inhibition appears to be equally or more effective in upper gastrointestinal mucosal protection compared with other interventions such as exogenous prostaglandins or H. pylori eradication. SUMMARY Peptic ulcer disease, although declining in prevalence, appears to be increasing in virulence, perhaps because of the overall aging of the population and improved intensive care unit care. Although H. pylori and nonsteroidal anti-inflammatory drugs have been identified as key pro-ulcerogenic factors, many ulcers may also result from a deficiency of other, unknown host protective factors. A more detailed understanding of the host factors involved in mucosal protection will thus help identify novel therapeutic targets aimed at the prevention and treatment of upper gastrointestinal mucosal injury.
Collapse
Affiliation(s)
- Luke C Bi
- Long Beach VA Medical Center, Long Beach, California, USA
| | | |
Collapse
|
16
|
Vongthavaravat V, Mesiya S, Saymeh L, Xia Y, Ward A, Harty RF. Transforming growth factor alpha-mediated gastroprotection against stress ulceration in the rat: involvement of capsaicin-sensitive sensory neurons. Life Sci 2003; 72:1803-11. [PMID: 12586218 DOI: 10.1016/s0024-3205(02)02504-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exogenously administered TGF alpha has been shown to protect rodent gastric mucosa against injury caused by acid-dependent and acid-independent injury. The present study examined whether the gastroprotective effects of TGF alpha on stress-induced gastric ulceration in the rat involves activation of capsaicin-sensitive sensory neurons. Fasted male SD rats were subjected to water restraint stress (WRS) for four hours. Thereafter, rats were euthanized; the stomach opened and macroscopic areas of gastric ulceration quantitated (mm(2)). Gastric tissue contents of TGF alpha and the sensory neuropeptide, calcitonin gene-related peptide (CGRP) were determined by radioimmunoassay. Prior to stress rats received TGF alpha 50, 100 or 200 microg/kg by intraperitoneal injection. Sensory denervation was accomplished by high dose capsaicin treatment. WRS caused severe ulceration in the gastric corpus; 46.1 + 6.6 mm(2). Parenteral administration of TGF alpha caused dose-dependent reduction in gastric injury: 34.7 + 4.9 mm(2) with 50 microg/kg (p < 0.05); 25.4 + 3.6 mm(2) with 100 microg/kg (p < 0.001) and 9.4 + 0.8 mm(2) with 200 microg/kg (p < 0.001). The gastroprotective action of TGF alpha (200 microg/kg, i.p.) was abolished by capsaicin-induced sensory denervation. In addition, WRS ulceration was associated with significant reduction in gastric CGRP (-42%) and TGF alpha (-48%) content. Reduction in CGRP content was prevented by TGF alpha pretreatment. We conclude that: 1) TGF alpha caused dose-dependent gastroprotection against WRS ulceration, 2) TGF alpha-mediated gastric mucosal protection was prevented by capsaicin-induced sensory denervation and, 3) stress-induced injury was associated with significant reduction in gastric content of both TGF alpha and CGRP.
Collapse
Affiliation(s)
- Verapan Vongthavaravat
- Department of Medicine, Division of Gastroenterology, University of Oklahoma Health Sciences Center, PO Box 26901, ET NP526, Oklahoma City, OK 73190, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The mechanisms by which the gastroduodenal mucosa maintains viability and normal functioning despite its intensely caustic environment have puzzled clinicians and investigators alike for at least 150 years. Protective mechanisms have been divided into three main categories: preepithelial (mucus and bicarbonate secretion), epithelial (cellular buffering, mucosal architecture and permeability), and postepithelial mechanisms (mucosal blood flow). Within each category are many other factors that bear on the ability of the mucosa to withstand constant changes of luminal pH. We will summarize some of the recent findings that pertain to the nature and regulation of these defense mechanisms in the context of a historical overview. Therapeutic implications of these findings will also be presented in the discussion of novel antiinflammatory compounds designed to upregulate simultaneously several defensive mechanisms, with the expectation that gastroduodenal damage will be minimized.
Collapse
Affiliation(s)
- Sushovan Guha
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA
| | | |
Collapse
|
18
|
Holzer P. Sensory neurone responses to mucosal noxae in the upper gut: relevance to mucosal integrity and gastrointestinal pain. Neurogastroenterol Motil 2002; 14:459-75. [PMID: 12358674 DOI: 10.1046/j.1365-2982.2002.00353.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The digestive tract is supplied by extrinsic and intrinsic sensory neurones that, together with endocrine and immune cells, form a surveillance network that is essential to gut function. This article focuses on the responses of extrinsic afferent neurones to chemical insults of the gastrointestinal mucosa and their pathophysiological relevance to mucosal integrity and abdominal pain. Within the gastroduodenal region, spinal afferents subserve an emergency function because, in case of alarm by influxing acid, they stimulate mechanisms of mucosal protection via an efferent-like release of transmitters. Other sensory neurones signal chemical noxae to the brain, a task that is not confined to spinal afferents because vagal afferents communicate gastric acid and peripheral immune challenges to the brainstem and in this way elicit autonomic, endocrine, affective and behavioural reactions. Emerging evidence indicates that hypersensitivity of extrinsic afferent pathways to mechanical and chemical stimuli makes an important contribution to the abdominal hyperalgesia seen in functional dyspepsia and irritable bowel syndrome. Sensitization may be brought about by inflammatory processes that lead to up-regulation and functional alterations of receptors and ion channels on sensory neurones. Such sensory neurone-specific molecules, which include vanilloid (capsaicin) receptors, may represent important targets for novel drugs to treat abdominal pain.
Collapse
Affiliation(s)
- P Holzer
- Department of Experimental and Clinical Pharmacology, University of Graz, Graz, Austria.
| |
Collapse
|
19
|
Abstract
Gastroduodenal mucosal defense is composed of structural features of the mucosa, cellular monitors of pending or actual injury, and a web of effector cells that protect the mucosa from damage and govern its recovery from injury. By virtue of these systems, the gastroduodenal mucosa can cope with the harmful ingredients of ingested food and the potentially deleterious effects of gastric acid and pepsin. It is increasingly appreciated that a network of chemical messengers coordinates the alarm, defensive, and healing mechanisms. This article highlights some of the advances from the past year that have furthered our understanding of the regulatory systems that govern gastroduodenal mucosal homeostasis. Particular emphasis is given to control of the mucous and epithelial phospholipid barriers, the mucosal microcirculation, and the epithelial, neural, immune, and inflammatory mediators of the mucosal repair mechanisms.
Collapse
Affiliation(s)
- P Holzer
- Department of Experimental and Clinical Pharmacology, University of Graz, Austria.
| |
Collapse
|