1
|
Schädlich IS, Winzer R, Stabernack J, Tolosa E, Magnus T, Rissiek B. The role of the ATP-adenosine axis in ischemic stroke. Semin Immunopathol 2023:10.1007/s00281-023-00987-3. [PMID: 36917241 DOI: 10.1007/s00281-023-00987-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
In ischemic stroke, the primary neuronal injury caused by the disruption of energy supply is further exacerbated by secondary sterile inflammation. The inflammatory cascade is largely initiated by the purine adenosine triphosphate (ATP) which is extensively released to the interstitial space during brain ischemia and functions as an extracellular danger signaling molecule. By engaging P2 receptors, extracellular ATP activates microglia leading to cytokine and chemokine production and subsequent immune cell recruitment from the periphery which further amplifies post-stroke inflammation. The ectonucleotidases CD39 and CD73 shape and balance the inflammatory environment by stepwise degrading extracellular ATP to adenosine which itself has neuroprotective and anti-inflammatory signaling properties. The neuroprotective effects of adenosine are mainly mediated through A1 receptors and inhibition of glutamatergic excitotoxicity, while the anti-inflammatory capacities of adenosine have been primarily attributed to A2A receptor activation on infiltrating immune cells in the subacute phase after stroke. In this review, we summarize the current state of knowledge on the ATP-adenosine axis in ischemic stroke, discuss contradictory results, and point out potential pitfalls towards translating therapeutic approaches from rodent stroke models to human patients.
Collapse
Affiliation(s)
- Ines Sophie Schädlich
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Joschi Stabernack
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
2
|
Mayer C, Nägele FL, Petersen M, Schell M, Aarabi G, Beikler T, Borof K, Frey BM, Nikorowitsch J, Senftinger J, Walther C, Wenzel JP, Zyriax BC, Cheng B, Thomalla G. Association between Coffee Consumption and Brain MRI Parameters in the Hamburg City Health Study. Nutrients 2023; 15:674. [PMID: 36771381 PMCID: PMC9919011 DOI: 10.3390/nu15030674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Despite associations of regular coffee consumption with fewer neurodegenerative disorders, its association with microstructural brain alterations is unclear. To address this, we examined the association of coffee consumption with brain MRI parameters representing vascular brain damage, neurodegeneration, and microstructural integrity in 2316 participants in the population-based Hamburg City Health Study. Cortical thickness and white matter hyperintensity (WMH) load were measured on FLAIR and T1-weighted images. Microstructural white matter integrity was quantified as peak width of skeletonized mean diffusivity (PSMD) on diffusion-weighted MRI. Daily coffee consumption was assessed in five groups (<1 cup, 1-2 cups, 3-4 cups, 5-6 cups, >6 cups). In multiple linear regressions, we examined the association between brain MRI parameters and coffee consumption (reference group <1 cup). After adjustment for covariates, 3-4 cups of daily coffee were associated with lower PSMD (p = 0.028) and higher cortical thickness (p = 0.015) compared to <1 cup. Moreover, 1-2 cups per day was also associated with lower PSMD (p = 0.022). Associations with WMH load or other groups of coffee consumption were not significant (p > 0.05). The findings indicate that regular coffee consumption is positively associated with microstructural white matter integrity and cortical thickness. Further research is necessary to determine longitudinal effects of coffee on brain microstructure.
Collapse
Affiliation(s)
- Carola Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Felix L. Nägele
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maximilian Schell
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ghazal Aarabi
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Katrin Borof
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Benedikt M. Frey
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Julius Nikorowitsch
- Department of Cardiology, University Heart and Vascular Center, 20246 Hamburg, Germany
| | - Juliana Senftinger
- Department of Cardiology, University Heart and Vascular Center, 20246 Hamburg, Germany
| | - Carolin Walther
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan-Per Wenzel
- Department of Cardiology, University Heart and Vascular Center, 20246 Hamburg, Germany
| | - Birgit-Christiane Zyriax
- Midwifery Science—Health Service Research and Prevention, Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
3
|
The Role of the Adenosine System on Emotional and Cognitive Disturbances Induced by Ethanol Binge Drinking in the Immature Brain and the Beneficial Effects of Caffeine. Pharmaceuticals (Basel) 2022; 15:ph15111323. [DOI: 10.3390/ph15111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Binge drinking intake is the most common pattern of ethanol consumption by adolescents, which elicits emotional disturbances, mainly anxiety and depressive symptoms, as well as cognitive alterations. Ethanol exposure may act on the adenosine neuromodulation system by increasing adenosine levels, consequently increasing the activation of adenosine receptors in the brain. The adenosine modulation system is involved in the control of mood and memory behavior. However, there is a gap in the knowledge about the exact mechanisms related to ethanol exposure’s hazardous effects on the immature brain (i.e., during adolescence) and the role of the adenosine system thereupon. The present review attempts to provide a comprehensive picture of the role of the adenosinergic system on emotional and cognitive disturbances induced by ethanol during adolescence, exploring the potential benefits of caffeine administration in view of its action as a non-selective antagonist of adenosine receptors.
Collapse
|
4
|
Pereira-Figueiredo D, Nascimento AA, Cunha-Rodrigues MC, Brito R, Calaza KC. Caffeine and Its Neuroprotective Role in Ischemic Events: A Mechanism Dependent on Adenosine Receptors. Cell Mol Neurobiol 2022; 42:1693-1725. [PMID: 33730305 PMCID: PMC11421760 DOI: 10.1007/s10571-021-01077-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Ischemia is characterized by a transient, insufficient, or permanent interruption of blood flow to a tissue, which leads to an inadequate glucose and oxygen supply. The nervous tissue is highly active, and it closely depends on glucose and oxygen to satisfy its metabolic demand. Therefore, ischemic conditions promote cell death and lead to a secondary wave of cell damage that progressively spreads to the neighborhood areas, called penumbra. Brain ischemia is one of the main causes of deaths and summed with retinal ischemia comprises one of the principal reasons of disability. Although several studies have been performed to investigate the mechanisms of damage to find protective/preventive interventions, an effective treatment does not exist yet. Adenosine is a well-described neuromodulator in the central nervous system (CNS), and acts through four subtypes of G-protein-coupled receptors. Adenosine receptors, especially A1 and A2A receptors, are the main targets of caffeine in daily consumption doses. Accordingly, caffeine has been greatly studied in the context of CNS pathologies. In fact, adenosine system, as well as caffeine, is involved in neuroprotection effects in different pathological situations. Therefore, the present review focuses on the role of adenosine/caffeine in CNS, brain and retina, ischemic events.
Collapse
Affiliation(s)
- D Pereira-Figueiredo
- Neurobiology of the Retina Laboratory, Biomedical Sciences Program, Biomedical Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - A A Nascimento
- Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - M C Cunha-Rodrigues
- Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - R Brito
- Laboratory of Neuronal Physiology and Pathology, Cellular and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - K C Calaza
- Neurobiology of the Retina Laboratory, Biomedical Sciences Program, Biomedical Institute, Fluminense Federal University, Niterói, RJ, Brazil.
- Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil.
- Neurobiology Department, Biology Institute of Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
5
|
Blockade of adenosine A 2A receptor alleviates cognitive dysfunction after chronic exposure to intermittent hypoxia in mice. Exp Neurol 2021; 350:113929. [PMID: 34813840 DOI: 10.1016/j.expneurol.2021.113929] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is widely known for its multiple systems damage, especially neurocognitive deficits in children. Since their discovery, adenosine A2A receptors (A2ARs) have been considered as key elements in signaling pathways mediating neurodegenerative diseases such as Huntington's and Alzheimer's, as well as cognitive function regulation. Herein, we investigated A2AR role in cognitive impairment induced by chronic intermittent hypoxia (CIH). Mice were exposed to CIH 7 h every day for 4 weeks, and intraperitoneally injected with A2AR agonist CGS21680 or A2AR antagonist SCH58261 half an hour before IH exposure daily. The 8-arm radial arm maze was utilized to assess spatial memory after CIH exposures.To validate findings using pharmacology, the impact of intermittent hypoxia was investigated in A2AR knockout mice. CIH-induced memory dysfunction was manifested by increased error rates in the radial arm maze test. The behavioral changes were associated with hippocampal pathology, neuronal apoptosis, and synaptic plasticity impairment. The stimulation of adenosine A2AR exacerbated memory impairment with more serious neuropathological damage, attenuated long-term potentiation (LTP), syntaxin down-regulation, and increased BDNF protein. Moreover, apoptosis-promoting protein cleaved caspase-3 was upregulated while anti-apoptotic protein Bcl-2 was downregulated. Consistent with these findings, A2AR inhibition with SCH58261 and A2AR deletion exhibited the opposite result. Overall, these findings suggest that A2AR plays a critical role in CIH-induced impairment of learning and memory by accelerating hippocampal neuronal apoptosis and reducing synaptic plasticity. Blockade of adenosine A2A receptor alleviates cognitive dysfunction after chronic exposure to intermittent hypoxia in mice.
Collapse
|
6
|
Pereira-Figueiredo D, Brito R, Araújo DSM, Nascimento AA, Lyra ESB, Cheibub AMSS, Pereira Netto AD, Ventura ALM, Paes-de-Carvalho R, Calaza KC. Caffeine exposure ameliorates acute ischemic cell death in avian developing retina. Purinergic Signal 2020; 16:41-59. [PMID: 32078115 PMCID: PMC7166236 DOI: 10.1007/s11302-020-09687-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
In infants, the main cause of blindness is retinopathy of prematurity that stems in a hypoxic-ischemic condition. Caffeine is a psychoactive compound that at low to moderate concentrations, selectively inhibits adenosine A1 and A2A receptors. Caffeine exerts beneficial effects in central nervous system of adult animal models and humans, whereas it seems to have malefic effect on the developing tissue. We observed that 48-h exposure (during synaptogenesis) to a moderate dose of caffeine (30 mg/kg of egg) activated pro-survival signaling pathways, including ERK, CREB, and Akt phosphorylation, alongside BDNF production, and reduced retinal cell death promoted by oxygen glucose deprivation in the chick retina. Blockade of TrkB receptors and inhibition of CREB prevented caffeine protection effect. Similar signaling pathways were described in previously reported data concerning chemical preconditioning mechanism triggered by NMDA receptors activation, with low concentrations of agonist. In agreement to these data, caffeine increased NMDA receptor activity. Caffeine decreased the levels of the chloride co-transporter KCC2 and delayed the developmental shift on GABAA receptor response from depolarizing to hyperpolarizing. These results suggest that the caffeine-induced delaying in depolarizing effect of GABA could be facilitating NMDA receptor activity. DPCPX, an A1 adenosine receptor antagonist, but not A2A receptor inhibitor, mimicked the effect of caffeine, suggesting that the effect of caffeine occurs through A1 receptor blockade. In summary, an in vivo caffeine exposure could increase the resistance of the retina to ischemia-induced cell death, by triggering survival pathways involving CREB phosphorylation and BDNF production/TrkB activation.
Collapse
Affiliation(s)
- D. Pereira-Figueiredo
- Neurobiology of the Retina Laboratory, Fluminense Federal University, Niterói, RJ Brazil
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
| | - R. Brito
- Cellular Signaling and Metabolic Modulation Laboratory, Cellular and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niterói, RJ Brazil
| | - D. S. M. Araújo
- Neurobiology of the Retina Laboratory, Fluminense Federal University, Niterói, RJ Brazil
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - A. A. Nascimento
- Neurobiology of the Retina Laboratory, Fluminense Federal University, Niterói, RJ Brazil
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
| | - E. S. B. Lyra
- Fundamental and Applied Analytical Chemistry Laboratory (LAQAFA), Department of Analytical Chemistry, Chemistry Institute, Fluminense Federal University, Niterói, RJ Brazil
| | - A. M. S. S. Cheibub
- Fundamental and Applied Analytical Chemistry Laboratory (LAQAFA), Department of Analytical Chemistry, Chemistry Institute, Fluminense Federal University, Niterói, RJ Brazil
| | - A. D. Pereira Netto
- Fundamental and Applied Analytical Chemistry Laboratory (LAQAFA), Department of Analytical Chemistry, Chemistry Institute, Fluminense Federal University, Niterói, RJ Brazil
| | - A. L. M. Ventura
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
- Neurobiology Department, Biology Institute of Fluminense Federal University, Niteroi, Rio de Janeiro Brazil
| | - R. Paes-de-Carvalho
- Laboratory of Cellular Neurobiology, Fluminense Federal University, Niterói, RJ Brazil
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
- Neurobiology Department, Biology Institute of Fluminense Federal University, Niteroi, Rio de Janeiro Brazil
| | - K. C. Calaza
- Neurobiology of the Retina Laboratory, Fluminense Federal University, Niterói, RJ Brazil
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
- Neurobiology Department, Biology Institute of Fluminense Federal University, Niteroi, Rio de Janeiro Brazil
| |
Collapse
|
7
|
Singh BL, Chen L, Cai H, Shi H, Wang Y, Yu C, Chen X, Han X, Cai X. Activation of adenosine A2a receptor accelerates and A2a receptor antagonist reduces intermittent hypoxia induced PC12 cell injury via PKC-KATP pathway. Brain Res Bull 2019; 150:118-126. [PMID: 31129168 DOI: 10.1016/j.brainresbull.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Obstructive sleep apnea hypopnea syndrome (OSAHS) is associated with multiple system diseases. Neurocognitive dysfunction resulting from central nervous system complications has been reported, especially in children with OSAHS. Chronic intermittent hypoxia is accepted to be the major pathophysiological mechanism of OSAHS. Adenosine plays an important role in cellular function via interactions with its receptors. A2a receptor has been recognized as a factor involved in neuroprotection. However, the role of adenosine A2a receptor in intermittent hypoxia induced cellular injury is not completely understood. In this study, we aim to investigate the underlying mechanisms of A2a receptor mediated cellular damage caused by intermittent hypoxia in PC12 cells. We found that activated A2a receptor by CGS21680 decreased cellular viability, increased PKC as well as ATP-sensitive potassium channel (KATP) subunits expression Kir6.2 and SUR1. Inhibition of A2a receptor by SCH58261 increased cellular viability, suppressed PKC and SUR1 expression level, ultimately showing a protective role in PC12 cells. Moreover, we observed that CHE, which is an antagonist of PKC, downregulated Kir6.2 and SUR1 expression and increased cellular viability. Additionally, we found that A2a receptor activation induced cell injury was associated with increased Cleaved-Caspase 3 expression, which can be decreased by inhibition of A2a receptor or PKC. In conclusion, our findings indicate that A2a receptor induced KATP expression by PKC activation and plays a role in accelerating PC12 cells injury induced by intermittent hypoxia exposure via A2a-PKC-KATP signal pathway mediated apoptosis.
Collapse
Affiliation(s)
- Brett Lyndall Singh
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Liya Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Huilin Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Hua Shi
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yueyuan Wang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chenyi Yu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China
| | - Xu Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China
| | - Xinru Han
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiaohong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
8
|
Jamwal S, Kumar P. Insight Into the Emerging Role of Striatal Neurotransmitters in the Pathophysiology of Parkinson's Disease and Huntington's Disease: A Review. Curr Neuropharmacol 2019; 17:165-175. [PMID: 29512464 PMCID: PMC6343208 DOI: 10.2174/1570159x16666180302115032] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/06/2017] [Accepted: 02/28/2018] [Indexed: 12/05/2022] Open
Abstract
Alteration in neurotransmitters signaling in basal ganglia has been consistently shown to significantly contribute to the pathophysiological basis of Parkinson's disease and Huntington's disease. Dopamine is an important neurotransmitter which plays a critical role in coordinated body movements. Alteration in the level of brain dopamine and receptor radically contributes to irregular movements, glutamate mediated excitotoxic neuronal death and further leads to imbalance in the levels of other neurotransmitters viz. GABA, adenosine, acetylcholine and endocannabinoids. This review is based upon the data from clinical and preclinical studies to characterize the role of various striatal neurotransmitters in the pathogenesis of Parkinson's disease and Huntington's disease. Further, we have collected data of altered level of various neurotransmitters and their metabolites and receptor density in basal ganglia region. Although the exact mechanisms underlying neuropathology of movement disorders are not fully understood, but several mechanisms related to neurotransmitters alteration, excitotoxic neuronal death, oxidative stress, mitochondrial dysfunction, neuroinflammation are being put forward. Restoring neurotransmitters level and downstream signaling has been considered to be beneficial in the treatment of Parkinson's disease and Huntington's disease. Therefore, there is an urgent need to identify more specific drugs and drug targets that can restore the altered neurotransmitters level in brain and prevent/delay neurodegeneration.
Collapse
Affiliation(s)
| | - Puneet Kumar
- Address correspondence to this author at the Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Panjab, India; E-mail:
| |
Collapse
|
9
|
Bortolatto CF, Reis AS, Pinz MP, Voss GT, Oliveira RL, Vogt AG, Roman S, Jesse CR, Luchese C, Wilhelm EA. Selective A 2A receptor antagonist SCH 58261 modulates striatal oxidative stress and alleviates toxicity induced by 3-Nitropropionic acid in male Wistar rats. Metab Brain Dis 2017; 32:1919-1927. [PMID: 28795281 DOI: 10.1007/s11011-017-0086-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
The aim of the present study was to investigate the effects of SCH58261, a selective adenosine A2A receptor antagonist, on striatal toxicity induced by 3-nitropropionic acid (3-NP) in rats. The experimental protocol consisted of 10 administrations (once a day) of SCH58261 (0.01 or 0.05 mg/kg/day, intraperitoneal, i.p.). From 7th to 10th day, 3-NP (20 mg/kg/day, i.p.) was injected 1 h after SCH58261 administration. Twenty-four hours after the last 3-NP injection, the body weight gain, locomotor activity (open-field test), motor coordination (rotarod test), striatal succinate dehydrogenase (SDH) activity and parameters linked to striatal oxidative status were evaluated in rats. The marked body weight loss resulting from 3-NP injections in rats was partially protected by SCH 58261 at both doses. SCH 58261 at the highest dose was effective against impairments on motor coordination and locomotor activity induced by 3-NP. SCH 58261 was unable to restore the inhibition of SDH activity caused by 3-NP. In addition, the increase in striatal reactive species (RS) levels, depletion of reduced glutathione (GSH) content and stimulation of glutathione reductase (GR) activity provoked by 3-NP injections were alleviated by both doses of SCH 58261. The highest dose of SCH 58261 was also effective in attenuating the increase of protein carbonyl levels as well as the inhibition of glutathione peroxidase (GPx) activity in rats exposed to 3-NP. Our results revealed that reduction of oxidative stress in rat striatum by adenosine A2A receptor antagonism contributes for alleviating 3-NP-induced toxicity.
Collapse
Affiliation(s)
- Cristiani F Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil.
| | - Angélica S Reis
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Mikaela P Pinz
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Guilherme T Voss
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Renata L Oliveira
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Ane G Vogt
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Silvane Roman
- Universidade Regional Integrada, Campus Erechim, Erechim, RS, CEP 99700-000, Brazil
| | - Cristiano R Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Ethel A Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
10
|
In Vivo PET Imaging of Adenosine 2A Receptors in Neuroinflammatory and Neurodegenerative Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6975841. [PMID: 29348737 PMCID: PMC5733838 DOI: 10.1155/2017/6975841] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023]
Abstract
Adenosine receptors are G-protein coupled P1 purinergic receptors that are broadly expressed in the peripheral immune system, vasculature, and the central nervous system (CNS). Within the immune system, adenosine 2A (A2A) receptor-mediated signaling exerts a suppressive effect on ongoing inflammation. In healthy CNS, A2A receptors are expressed mainly within the neurons of the basal ganglia. Alterations in A2A receptor function and expression have been noted in movement disorders, and in Parkinson's disease pharmacological A2A receptor antagonism leads to diminished motor symptoms. Although A2A receptors are expressed only at a low level in the healthy CNS outside striatum, pathological challenge or inflammation has been shown to lead to upregulation of A2A receptors in extrastriatal CNS tissue, and this has been successfully quantitated using in vivo positron emission tomography (PET) imaging and A2A receptor-binding radioligands. Several radioligands for PET imaging of A2A receptors have been developed in recent years, and A2A receptor-targeting PET imaging may thus provide a potential additional tool to evaluate various aspects of neuroinflammation in vivo. This review article provides a brief overview of A2A receptors in healthy brain and in a selection of most important neurological diseases and describes the recent advances in A2A receptor-targeting PET imaging studies.
Collapse
|
11
|
Lefin R, van der Walt MM, Milne PJ, Terre'Blanche G. Imidazo[1,2-α]pyridines possess adenosine A1 receptor affinity for the potential treatment of cognition in neurological disorders. Bioorg Med Chem Lett 2017; 27:3963-3967. [DOI: 10.1016/j.bmcl.2017.07.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 01/01/2023]
|
12
|
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pathological overproduction: the bad side of adenosine. Br J Pharmacol 2017; 174:1945-1960. [PMID: 28252203 PMCID: PMC6398520 DOI: 10.1111/bph.13763] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine is an endogenous ubiquitous purine nucleoside, which is increased by hypoxia, ischaemia and tissue damage and mediates a number of physiopathological effects by interacting with four GPCRs, identified as A1 , A2A , A2B and A3 . Physiological and acutely increased adenosine is mostly associated with beneficial effects that include vasodilatation and a decrease in inflammation. In contrast, chronic overproduction of adenosine occurs in important pathological states, where long-lasting increases in the nucleoside levels are responsible for the bad side of adenosine associated with chronic inflammation, fibrosis and organ damage. In this review, we describe and critically discuss the pathological overproduction of adenosine and analyse when, where and how adenosine exerts its detrimental effects throughout the body.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Stefania Gessi
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Stefania Merighi
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Fabrizio Vincenzi
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Katia Varani
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| |
Collapse
|
13
|
Wang Y, Venton BJ. Correlation of transient adenosine release and oxygen changes in the caudate-putamen. J Neurochem 2016; 140:13-23. [PMID: 27314215 DOI: 10.1111/jnc.13705] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/19/2016] [Accepted: 06/10/2016] [Indexed: 12/01/2022]
Abstract
Adenosine is an endogenous nucleoside that modulates important physiological processes, such as vasodilation, in the central nervous system. A rapid, 2-4 s, mode of adenosine signaling has been recently discovered, but the relationship between this type of adenosine and blood flow change has not been characterized. In this study, adenosine and oxygen changes were simultaneously measured using fast-scan cyclic voltammetry. Oxygen changes occur when there is an increase in local cerebral blood flow and thus are a measure of vasodilation. About 34% of adenosine transients in the rat caudate-putamen are correlated with a subsequent transient change in oxygen. The amount of oxygen was correlated with the concentration of adenosine release and larger adenosine transients (over 0.4 μM) always had subsequent oxygen changes. The average duration of adenosine and oxygen transients was 3.2 and 3.5 s, respectively. On average, the adenosine release starts and peaks 0.2 s prior to the oxygen. The A2a antagonist, SCH442416, decreased the number of both adenosine and oxygen transient events by about 32%. However, the A1 antagonist, DPCPX, did not significantly affect simultaneous adenosine and oxygen release. The nitric oxide (NO) synthase inhibitor l-NAME also did not affect the concentration or number of adenosine and oxygen release events. These results demonstrate that both adenosine and oxygen release are modulated via A2a receptors. The correlation of transient concentrations, time delay between adenosine and oxygen peaks, and effect of A2a receptors suggests that adenosine modulates blood flow on a rapid, sub-second time scale. Read the Editorial Highlight for this article on page 10.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Arosio B, Casati M, Gussago C, Ferri E, Abbate C, Scortichini V, Colombo E, Rossi PD, Mari D. Adenosine Type A2A Receptor in Peripheral Cell from Patients with Alzheimer’s Disease, Vascular Dementia, and Idiopathic Normal Pressure Hydrocephalus: A New/Old Potential Target. J Alzheimers Dis 2016; 54:417-25. [DOI: 10.3233/jad-160324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Beatrice Arosio
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Casati
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
- Nutritional Sciences, University of Milan, Milan, Italy
| | - Cristina Gussago
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
| | - Evelyn Ferri
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
- Nutritional Sciences, University of Milan, Milan, Italy
| | - Carlo Abbate
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Elena Colombo
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Daniela Mari
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
15
|
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139:1019-1055. [PMID: 27365148 DOI: 10.1111/jnc.13724] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The adenosine modulation system mostly operates through inhibitory A1 (A1 R) and facilitatory A2A receptors (A2A R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1 R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A2A R; A2A R switch off A1 R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A1 R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A1 R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A2A R, probably to bolster adaptive changes, but this heightens brain damage since A2A R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A2A R, whereas astrocytic and microglia A2A R might control the spread of damage. The A2A R signaling mechanisms are largely unknown since A2A R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A1 R preconditioning and preventing excessive A2A R function might afford maximal neuroprotection. The main physiological role of the adenosine modulation system is to sharp the salience of information encoding through a combined action of adenosine A2A receptors (A2A R) in the synapse undergoing an alteration of synaptic efficiency with an increased inhibitory action of A1 R in all surrounding synapses. Brain insults trigger an up-regulation of A2A R in an attempt to bolster adaptive plasticity together with adenosine release and A1 R desensitization; this favors synaptotocity (increased A2A R) and decreases the hurdle to undergo degeneration (decreased A1 R). Maximal neuroprotection is expected to result from a combined A2A R blockade and increased A1 R activation. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
16
|
Vala C, Morley TJ, Zhang X, Papin C, Tavares AAS, Lee HS, Constantinescu C, Barret O, Carroll VM, Baldwin RM, Tamagnan GD, Alagille D. Synthesis and in vivo Evaluation of Fluorine-18 and Iodine-123 Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine Derivatives as PET and SPECT Radiotracers for Mapping A2A Receptors. ChemMedChem 2016; 11:1936-43. [PMID: 27407017 DOI: 10.1002/cmdc.201600219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/15/2016] [Indexed: 11/06/2022]
Abstract
Imaging agents that target adenosine type 2A (A2A ) receptors play an important role in evaluating new pharmaceuticals targeting these receptors, such as those currently being developed for the treatment of movement disorders like Parkinson's disease. They are also useful for monitoring progression and treatment efficacy by providing a noninvasive tool to map changes in A2A receptor density and function in neurodegenerative diseases. We previously described the successful evaluation of two A2A -specific radiotracers in both nonhuman primates and in subsequent human clinical trials: [(123) I]MNI-420 and [(18) F]MNI-444. Herein we describe the development of both of these radiotracers by selection from a series of A2A ligands, based on the pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine core of preladenant. Each of this series of 16 ligands was found to bind to recombinant human A2A receptor in the low nanomolar range, and of these 16, six were radiolabeled with either fluorine-18 or iodine-123 and evaluated in nonhuman primates. These initial in vivo results resulted in the identification of 7-(2-(4-(4-(2-[(18) F]fluoroethoxy)phenyl)piperazin-1-yl)ethyl)-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine ([(18) F]MNI-444) and 7-(2-(4-(2-fluoro-4-[(123) I]iodophenyl)piperazin-1-yl)ethyl)-2-(furan-2-yl)-7H-imidazo[1,2-c]pyrazolo[4,3-e]pyrimidin-5-amine ([(123) I]MNI-420) as PET and SPECT radiopharmaceuticals for mapping A2A receptors in brain.
Collapse
Affiliation(s)
- Christine Vala
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Thomas J Morley
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA.
| | - Xuechun Zhang
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Caroline Papin
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | | | - H Sharon Lee
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Cristian Constantinescu
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Olivier Barret
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Vincent M Carroll
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Ronald M Baldwin
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - Gilles D Tamagnan
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| | - David Alagille
- Molecular NeuroImaging, a division of inviCRO, 60 Temple Street, Suite 8B, New Haven, CT, 06510, USA
| |
Collapse
|
17
|
Pedata F, Dettori I, Coppi E, Melani A, Fusco I, Corradetti R, Pugliese AM. Purinergic signalling in brain ischemia. Neuropharmacology 2015; 104:105-30. [PMID: 26581499 DOI: 10.1016/j.neuropharm.2015.11.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022]
Abstract
Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia a primary damage due to the early massive increase of extracellular glutamate is followed by activation of resident immune cells, i.e microglia, and production or activation of inflammation mediators. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. Extracellular concentrations of ATP and adenosine in the brain increase dramatically during ischemia in concentrations able to stimulate their respective specific P2 and P1 receptors. Both ATP P2 and adenosine P1 receptor subtypes exert important roles in ischemia. Although adenosine exerts a clear neuroprotective effect through A1 receptors during ischemia, the use of selective A1 agonists is hampered by undesirable peripheral effects. Evidence up to now in literature indicate that A2A receptor antagonists provide protection centrally by reducing excitotoxicity, while agonists at A2A (and possibly also A2B) and A3 receptors provide protection by controlling massive infiltration and neuroinflammation in the hours and days after brain ischemia. Among P2X receptors most evidence indicate that P2X7 receptor contribute to the damage induced by the ischemic insult due to intracellular Ca(2+) loading in central cells and facilitation of glutamate release. Antagonism of P2X7 receptors might represent a new treatment to attenuate brain damage and to promote proliferation and maturation of brain immature resident cells that can promote tissue repair following cerebral ischemia. Among P2Y receptors, antagonists of P2Y12 receptors are of value because of their antiplatelet activity and possibly because of additional anti-inflammatory effects. Moreover strategies that modify adenosine or ATP concentrations at injury sites might be of value to limit damage after ischemia. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Elisabetta Coppi
- Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Alessia Melani
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Irene Fusco
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
18
|
Burnstock G. An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology 2015; 104:4-17. [PMID: 26056033 DOI: 10.1016/j.neuropharm.2015.05.031] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022]
Abstract
Purinergic signalling appears to play important roles in neurodegeneration, neuroprotection and neuroregeneration. Initially there is a brief summary of the background of purinergic signalling, including release of purines and pyrimidines from neural and non-neural cells and their ectoenzymatic degradation, and the current characterisation of P1 (adenosine), and P2X (ion channel) and P2Y (G protein-coupled) nucleotide receptor subtypes. There is also coverage of the localization and roles of purinoceptors in the healthy central nervous system. The focus is then on the roles of purinergic signalling in trauma, ischaemia, stroke and in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, as well as multiple sclerosis and amyotrophic lateral sclerosis. Neuroprotective mechanisms involving purinergic signalling are considered and its involvement in neuroregeneration, including the role of adult neural stem/progenitor cells. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; Department of Pharmacology and Therapeutics, The University of Melbourne, Australia.
| |
Collapse
|
19
|
Time-course of protection by the selective A2A receptor antagonist SCH58261 after transient focal cerebral ischemia. Neurol Sci 2015; 36:1441-8. [DOI: 10.1007/s10072-015-2160-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/07/2015] [Indexed: 10/23/2022]
|
20
|
Adenosine A2A receptors modulate acute injury and neuroinflammation in brain ischemia. Mediators Inflamm 2014; 2014:805198. [PMID: 25165414 PMCID: PMC4138795 DOI: 10.1155/2014/805198] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/26/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023] Open
Abstract
The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.
Collapse
|
21
|
Antonioli L, Csóka B, Fornai M, Colucci R, Kókai E, Blandizzi C, Haskó G. Adenosine and inflammation: what's new on the horizon? Drug Discov Today 2014; 19:1051-68. [DOI: 10.1016/j.drudis.2014.02.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 12/18/2022]
|
22
|
Abstract
The reduction or cessation of the blood supply to an organ results in tissue ischemia. Ischemia can cause significant tissue damage, and is observed as a result of a thrombosis, as part of a disease process, and during surgery. However, the restoration of the blood supply often causes more damage to the tissue than the ischemic episode itself. Research is therefore focused on identifying the cellular pathways involved in the protection of organs from the damage incurred by this process of ischemia reperfusion (I/R). The hypoxia-inducible factors (HIFs) are a family of heterodimeric transcription factors that are stabilized during ischemia. The genes that are expressed downstream of HIF activity enhance oxygen-independent ATP generation, cell survival, and angiogenesis, amongst other phenotypes. They are, therefore, important factors in the protection of tissues from I/R injury. Interestingly, a number of the mechanisms already known to induce organ protection against I/R injury, including preconditioning, postconditioning, and activation of signaling pathways such as adenosine receptor signaling, converge on the HIF system. This review describes the evidence for HIFs playing a role in I/R protection mediated by these factors, highlights areas that require further study, and discuss whether HIFs themselves are good therapeutic targets for protecting tissues from I/R injury.
Collapse
Affiliation(s)
- Neil J Howell
- Department of Cardiothoracic Surgery, University Hospital Birmingham, Edgbaston, Birmingham, UK
| | - Daniel A Tennant
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Melani A, Corti F, Cellai L, Giuliana Vannucchi M, Pedata F. Low doses of the selective adenosine A2A receptor agonist CGS21680 are protective in a rat model of transient cerebral ischemia. Brain Res 2014; 1551:59-72. [DOI: 10.1016/j.brainres.2014.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/17/2013] [Accepted: 01/14/2014] [Indexed: 12/18/2022]
|
24
|
Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sci 2014; 101:1-9. [PMID: 24530739 DOI: 10.1016/j.lfs.2014.01.083] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/22/2014] [Accepted: 01/29/2014] [Indexed: 12/22/2022]
Abstract
Caffeine is the most consumed pychostimulant in the world, and it is known to affect basic and fundamental human processes such as sleep, arousal, cognition and learning and memory. It works as a nonselective blocker of adenosine receptors (A1, A2a, A2b and A3) and has been related to the regulation of heart rate, the contraction/relaxation of cardiac and smooth muscles, and the neural signaling in the central nervous system (CNS). Since the late 1990s, studies using adenosine receptor antagonists, such as Caffeine, to block the A1 and A2a adenosine receptor subtypes have shown to reduce the physical, cellular and molecular damages caused by a spinal cord injury (SCI) or a stroke (cerebral infarction) and by other neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Interestingly, other studies using adenosine receptor agonists have also shown to provide a neuroprotective effect on various models of neurodegenerative diseases through the reduction of excitatory neurotransmitter release, apoptosis and inflammatory responses, among others. The seemingly paradoxical use of both adenosine receptor agonists and antagonists as neuroprotective agents has been attributed to differences in dosage levels, drug delivery method, extracellular concentration of excitatory neurotransmitters and stage of disease progression. We discuss and compare recent findings using both antagonists and agonists of adenosine receptors in animal models and patients that have suffered spinal cord injuries, brain strokes, and Parkinson's and Alzheimer's diseases. Additionally, we propose alternative interpretations on the seemingly paradoxical use of these drugs as potential pharmacological tools to treat these various types of neurodegenerative diseases.
Collapse
|
25
|
|
26
|
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
27
|
Fronz U, Deten A, Baumann F, Kranz A, Weidlich S, Härtig W, Nieber K, Boltze J, Wagner DC. Continuous adenosine A2A receptor antagonism after focal cerebral ischemia in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:165-73. [PMID: 24170241 DOI: 10.1007/s00210-013-0931-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 10/16/2013] [Indexed: 12/12/2022]
Abstract
Antagonism of the adenosine A2A receptor (A2AR) has been shown to elicit substantial neuroprotective properties when given immediately after cerebral ischemia. We asked whether the continuous application of a selective A2AR antagonist within a clinically relevant time window will be a feasible and effective approach to treat focal cerebral ischemia. To answer this question, we subjected 20 male spontaneously hypertensive rats to permanent middle cerebral artery occlusion and randomized them equally to a verum and a control group. Two hours after stroke onset, the animals received a subcutaneous implantation of an osmotic minipump filled with 5 mg kg(-1) day(-1) 8-(3-chlorostyryl) caffeine (CSC) or vehicle solution. The serum level of CSC was measured twice a day for three consecutive days. The infarct volume was determined at days 1 and 3 using magnetic resonance imaging. We found the serum level of CSC showing a bell-shaped curve with its maximum at 36 h. The infarct volume was not affected by continuous CSC treatment. These results suggest that delayed and continuous CSC application was not sufficient to treat acute ischemic stroke, potentially due to unfavorable hepatic elimination and metabolization of the pharmaceutical.
Collapse
Affiliation(s)
- Ulrike Fronz
- Translational Centre for Regenerative Medicine, Leipzig, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Protection against neuronal damage is a major objective of current research in areas such as stroke medicine, Alzheimer's disease and other neurodegenerative conditions. Adenosine receptors are important modulators of cell survival, and thus agents targeting these receptors could be valuable therapeutic agents. Agonists at A(1) receptors and antagonists at A(2A) receptors are known to protect acutely against neuronal damage caused by toxins or ischemia-reperfusion, and these compounds can also protect against the cell damage inflicted by reactive oxygen species. Even endogenous adenosine may be neuroprotective, since its levels rise substantially in association with a period of ischemia-reperfusion. Unfortunately, there is growing evidence that the efficacy of adenosine receptor activation can be reduced by the concomitant activation of glutamate receptors responding to N-methyl-D-aspartate (NMDA), probably acting via the release of nitric oxide. Such problems will need to be resolved before adenosine receptor agonists can proceed far as neuroprotective agents. The use of receptor antagonists may prove a more valuable approach.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
29
|
Pang X, Yang M, Han K. Antagonist binding and induced conformational dynamics of GPCR A2A
adenosine receptor. Proteins 2013; 81:1399-410. [DOI: 10.1002/prot.24283] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/12/2013] [Accepted: 03/04/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Xueqin Pang
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian Liaoning 116023 China
| | - Mingjun Yang
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian Liaoning 116023 China
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian Liaoning 116023 China
| |
Collapse
|
30
|
Gniel HM, Martin RL. Cortical spreading depression-induced preconditioning in mouse neocortex is lamina specific. J Neurophysiol 2013; 109:2923-36. [PMID: 23515796 DOI: 10.1152/jn.00855.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical spreading depression (CSD) is able to confer neuroprotection when delivered at least 1 day in advance of an ischemic event. However, its ability to confer neuroprotection in a more immediate time frame has not previously been investigated. Here we have used mouse neocortical brain slices to study the effects of repeated episodes of CSD in layer V and layer II/III pyramidal neurons. In layer V, CSD evoked at 15-min intervals caused successively smaller membrane depolarizations and increases in intracellular calcium compared with the response to the first CSD. With an inter-CSD interval of 30 min this preconditioning effect was much less marked, indicating that preconditioning lasts between 15 and 30 min. A single episode of CSD also provided a degree of protection in oxygen-glucose deprivation (OGD) by significantly lengthening the time a cell could withstand OGD before anoxic depolarization occurred. In layer II/III pyramidal neurons no preconditioning by CSD on subsequent episodes of CSD was observed, demonstrating that the response of pyramidal neurons to repeated CSD is lamina specific. The A1 receptor antagonist 8-cyclopentyl theophylline (8-CPT) reduced the layer V preconditioning in a concentration-related manner. Inhibition of extracellular formation of adenosine by blocking ecto-5'-nucleotidase with α,β-methyleneadenosine 5'-diphosphate prevented preconditioning in most but not all cells. Block of equilibrative nucleoside transporters 1 and 2 with dipyramidole alone or in combination with 6-[(4-nitrobenzyl)thio]-9-β-d-ribofuranosylpurine also prevented preconditioning in some but not all cells. These data provide evidence that rapid preconditioning of one CSD by another is primarily mediated by adenosine.
Collapse
Affiliation(s)
- Helen M Gniel
- Research School of Biology, The Australian National Univ. Bldg. 134, Linnaeus Way, Acton, ACT, 0200, Australia.
| | | |
Collapse
|
31
|
Weilinger NL, Maslieieva V, Bialecki J, Sridharan SS, Tang PL, Thompson RJ. Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction. Acta Pharmacol Sin 2013; 34:39-48. [PMID: 22864302 DOI: 10.1038/aps.2012.95] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Loss of energy supply to neurons during stroke induces a rapid loss of membrane potential that is called the anoxic depolarization. Anoxic depolarizations result in tremendous physiological stress on the neurons because of the dysregulation of ionic fluxes and the loss of ATP to drive ion pumps that maintain electrochemical gradients. In this review, we present an overview of some of the ionotropic receptors and ion channels that are thought to contribute to the anoxic depolarization of neurons and subsequently, to cell death. The ionotropic receptors for glutamate and ATP that function as ligand-gated cation channels are critical in the death and dysfunction of neurons. Interestingly, two of these receptors (P2X7 and NMDAR) have been shown to couple to the pannexin-1 (Panx1) ion channel. We also discuss the important roles of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in responses to ischemia. The central challenge that emerges from our current understanding of the anoxic depolarization is the need to elucidate the mechanistic and temporal interrelations of these ion channels to fully appreciate their impact on neurons during stroke.
Collapse
|
32
|
Maraula G, Traini C, Mello T, Coppi E, Galli A, Pedata F, Pugliese AM. Effects of oxygen and glucose deprivation on synaptic transmission in rat dentate gyrus: role of A2A adenosine receptors. Neuropharmacology 2012; 67:511-20. [PMID: 23261865 DOI: 10.1016/j.neuropharm.2012.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 01/01/2023]
Abstract
The hippocampus is comprised of two distinct subfields that show different responses to hypoxic-ischemic brain injury: the CA1 region is particularly susceptible whereas the dentate gyrus (DG) is quite resistant. Our aim was to determine the synaptic and proliferative response of the DG to severe oxygen and glucose deprivation (OGD) in acute rat hippocampal slices and to investigate the contribution of A(2A) adenosine receptor antagonism to recovery of synaptic activity after OGD. Extracellular recordings of field excitatory post-synaptic potentials (fEPSPs) in granule cells of the DG in brain slices prepared from male Wistar rats were used. A 9-min OGD is needed in the DG to always induce the appearance of anoxic depolarization (AD) and the irreversible block of synaptic activity, as recorded up to 24 h from the end of the insult, whereas only 7-min OGD is required in the CA1 region. Selective antagonism of A(2A) adenosine receptors by ZM241385 significantly prevents or delays the appearance of AD and protects from the irreversible block of neurotransmission induced by 9-min OGD in the DG. The effects of 9-min OGD on proliferation and maturation of cells localized in the subgranular zone of DG in slices prepared from 5-bromo-2'-deoxyuridine (BrdU) treated rats was investigated. Slices were further incubated with an immature neuronal marker, doublecortin (DCX). The number of BrdU(+) cells was significantly decreased 6 h after 9-min OGD and this effect was antagonized by ZM241385. After 24 h from the end of 9-min OGD, the number of BrdU(+) cells returned to that found before OGD and increased arborization of tertiary dendrites of DCX(+) cells was observed. The adenosine A(2A) antagonist ZM241385 protects from synaptic failure and from decreased proliferation of immature neuronal cells at a precocious time after OGD.
Collapse
Affiliation(s)
- Giovanna Maraula
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Valadas JS, Batalha VL, Ferreira DG, Gomes R, Coelho JE, Sebastião AM, Diógenes MJ, Lopes LV. Neuroprotection afforded by adenosine A2A
receptor blockade is modulated by corticotrophin-releasing factor (CRF) in glutamate injured cortical neurons. J Neurochem 2012; 123:1030-40. [DOI: 10.1111/jnc.12050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/21/2012] [Accepted: 10/07/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Jorge S. Valadas
- Institute of Pharmacology and Neurosciences; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
| | - Vânia L. Batalha
- Institute of Pharmacology and Neurosciences; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
| | - Diana G. Ferreira
- Institute of Pharmacology and Neurosciences; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
| | - Rui Gomes
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
- Faculdade de Ciências da Universidade de Lisboa; Lisboa Portugal
| | - Joana E. Coelho
- Institute of Pharmacology and Neurosciences; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
| | - Ana M. Sebastião
- Institute of Pharmacology and Neurosciences; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
| | - Maria José Diógenes
- Institute of Pharmacology and Neurosciences; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
| | - Luísa V. Lopes
- Institute of Pharmacology and Neurosciences; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
| |
Collapse
|
34
|
Abstract
Stroke is a major neurological disorder characterized by an increase in the Glu (glutamate) concentration resulting in excitotoxicity and eventually cellular damage and death in the brain. HIF-1 (hypoxia-inducible factor-1), a transcription factor, plays an important protective role in promoting cellular adaptation to hypoxic conditions. It is known that HIF-1α, the regulatable subunit of HIF-1, is expressed by astrocytes under severe ischaemia. However, the effect of HIF-1 on astrocytes following Glu toxicity during ischaemia has not been well studied. We investigated the role of HIF-1 in protecting ischaemic astrocytes against Glu toxicity. Immunostaining with GFAP (glial fibrillary acidic protein) confirmed the morphological modification of astrocytes in the presence of 1 mM Glu under normoxia. Interestingly, when the astrocytes were exposed to severe hypoxia (0.1% O2), the altered cell morphology was ameliorated with up-regulation of HIF-1α. To ascertain HIF-1's protective role, effects of two HIF-1α inhibitors, YC-1 [3-(50-hydroxymethyl-20-furyl)-1-benzylindazole] and 2Me2 (2-methoxyoestradiol), were tested. Both the inhibitors decreased the recovery in astrocyte morphology and increased cell death. Given that ischaemia increases ROS (reactive oxygen species), we examined the role of GSH (reduced glutathione) in the mechanism for this protection. GSH was increased under hypoxia, and this correlated with an increase in HIF-1α stabilization in the astrocytes. Furthermore, inhibition of GSH with BSO (l-butathione sulfoximine) decreased HIF-1α expression, suggesting its role in the stabilization of HIF-1α. Overall, our results indicate that the expression of HIF-1α under hypoxia has a protective effect on astrocytes in maintaining cell morphology and viability in response to Glu toxicity.
Collapse
|
35
|
Reiss AB, Cronstein BN. Regulation of foam cells by adenosine. Arterioscler Thromb Vasc Biol 2012; 32:879-86. [PMID: 22423040 PMCID: PMC3306592 DOI: 10.1161/atvbaha.111.226878] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/02/2011] [Indexed: 12/20/2022]
Abstract
Macrophages rely on reverse cholesterol transport mechanisms to rid themselves of excess cholesterol. By reducing accumulation of cholesterol in the artery wall, reverse cholesterol transport slows or prevents development of atherosclerosis. In stable macrophages, efflux mechanisms balance influx mechanisms, and accumulating lipids do not overwhelm the cell. Under atherogenic conditions, inflow of cholesterol exceeds outflow, and the cell is ultimately transformed into a foam cell, the prototypical cell in the atherosclerotic plaque. Adenosine is an endogenous purine nucleoside released from metabolically active cells by facilitated diffusion and generated extracellularly from adenine nucleotides. Under stress conditions, such as hypoxia, a depressed cellular energy state leads to an acute increase in the extracellular concentration of adenosine. Extracellular adenosine interacts with 1 or more of a family of G protein-coupled receptors (A(1), A(2A), A(2B), and A(3)) to modulate the function of nearly all cells and tissues. Modulation of adenosine signaling participates in regulation of reverse cholesterol transport. Of particular note for the development of atherosclerosis, activation of A(2A) receptors dramatically inhibits inflammation and protects against tissue injury. Potent antiatherosclerotic effects of A(2A) receptor stimulation include inhibition of macrophage foam cell transformation and upregulation of the reverse cholesterol transport proteins cholesterol 27-hydroxylase and ATP binding cassette transporter A1. Thus, A(2A) receptor agonists may correct or prevent the adverse effects of inflammatory processes on cellular cholesterol homeostasis. This review focuses on the importance of extracellular adenosine acting at specific receptors as a regulatory mechanism to control the formation of foam cells under conditions of lipid loading.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Winthrop Research Institute, Winthrop-University Hospital, 222 Station Plaza North, Suite 502A, Mineola, NY 11501, USA
| | - Bruce N. Cronstein
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine, NBV16N-1, 550 First Avenue, New York, NY, 10016, USA
| |
Collapse
|
36
|
Mohamed RA, Agha AM, Nassar NN. SCH58261 the selective adenosine A(2A) receptor blocker modulates ischemia reperfusion injury following bilateral carotid occlusion: role of inflammatory mediators. Neurochem Res 2011; 37:538-47. [PMID: 22071908 DOI: 10.1007/s11064-011-0640-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/18/2011] [Accepted: 10/28/2011] [Indexed: 12/20/2022]
Abstract
In the present study, the effects of SCH58261, a selective adenosine A(2A) receptor antagonist that crosses the blood brain barrier (BBB) and 8-(4-sulfophenyl) theophylline (8-SPT), a non-selective adenosine receptor antagonist that acts peripherally, were investigated on cerebral ischemia reperfusion injury (IR). Male Wistar rats (200-250 g) were divided into four groups: (1) sham-operated (SO), IR pretreated with either (2) vehicle (DMSO); (3) SCH58261 (0.01 mg/kg); (4) 8-SPT (2.5 mg/kg). Animals were anesthetized and submitted to occlusion of both carotid arteries for 45 min. All treatments were administered intraperitoneally (i.p.) post carotid occlusion prior to exposure to a 24 h reperfusion period. Ischemic rats showed increased infarct size compared to their control counterparts that corroborated with histopathological changes as well as increased lactate dehydrogenase (LDH) activity in the hippocampus. Moreover, ischemic animals showed habituation deficit, increased anxiety and locomotor activity. IR increased hippocampal glutamate (Glu), GABA, glycine (Gly) and aspartate (ASP). SCH58261 significantly reversed these effects while 8-SPT elicited minimal change. IR raised myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), prostaglandin E₂ (PGE₂) accompanied by a decrease in interleukin-10 (IL-10), effects that were again reversed by SCH58261, but 8-SPT elicited less changes. Results from the present study point towards the importance of central blockade of adenosine A(2A) receptor in ameliorating hippocampal damage following IR injury by halting inflammatory cascades as well as modulating excitotoxicity.
Collapse
Affiliation(s)
- R A Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | | | | |
Collapse
|
37
|
Capiotti KM, Menezes FP, Nazario LR, Pohlmann JB, de Oliveira GM, Fazenda L, Bogo MR, Bonan CD, Da Silva RS. Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio). Neurotoxicol Teratol 2011; 33:680-5. [DOI: 10.1016/j.ntt.2011.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
38
|
Rosim FE, Persike DS, Nehlig A, Amorim RP, de Oliveira DM, Fernandes MJDS. Differential neuroprotection by A(1) receptor activation and A(2A) receptor inhibition following pilocarpine-induced status epilepticus. Epilepsy Behav 2011; 22:207-13. [PMID: 21852200 DOI: 10.1016/j.yebeh.2011.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/16/2011] [Accepted: 07/05/2011] [Indexed: 12/20/2022]
Abstract
Aiming at a better understanding of the role of A(2A) in temporal lobe epilepsy (TLE), we characterized the effects of the A(2A) antagonist SCH58261 (7-(2-phenylethyl)-5-amino-2(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) on seizures and neuroprotection in the pilocarpine model. The effects of SCH58261 were further analyzed in combination with the A(1) agonist R-Pia (R(-)-N(6)-(2)-phenylisopropyl adenosine). Eight groups were studied: pilocarpine (Pilo), SCH+Pilo, R-Pia+Pilo, R-Pia+SCH+Pilo, Saline, SCH+Saline, R-Pia+Saline, and R-Pia+SCH+Saline. The administration of SCH58261, R-Pia, and R-Pia+SCH58261 prior to pilocarpine increased the latency to SE, and decreased either the incidence of or rate of mortality from SE compared with controls. Administration of R-Pia and R-Pia+SCH58261 prior to pilocarpine reduced the number of Fluoro-Jade B-stained cells in the hippocampus and piriform cortex when compared with control. This study showed that pretreatment with R-Pia and SCH58261 reduces seizure occurrence, although only R-Pia has neuroprotective properties. Further studies are needed to clarify the neuroprotective role of A(2A) in TLE.
Collapse
Affiliation(s)
- Fernanda Elisa Rosim
- Departamento de Neurologia e Neurocirurgia, Neurologia Experimental, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Scatena A, Fornai F, Trincavelli ML, Taliani S, Daniele S, Pugliesi I, Cosconati S, Martini C, Da Settimo F. 3-(Fur-2-yl)-10-(2-phenylethyl)-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one, a novel adenosine receptor antagonist with A(2A)-mediated neuroprotective effects. ACS Chem Neurosci 2011; 2:526-35. [PMID: 22860174 DOI: 10.1021/cn200036s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/10/2011] [Indexed: 12/20/2022] Open
Abstract
In this study, compound FTBI (3-(2-furyl)-10-(2-phenylethyl)[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one) was selected from a small library of triazinobenzimidazole derivatives as a potent A(2A) adenosine receptor (AR) antagonist and tested for its neuroprotective effects against two different kinds of dopaminergic neurotoxins, 1-methyl-4-phenylpyridinium (MPP+) and methamphetamine (METH), in rat PC12 and in human neuroblastoma SH-SY5Y cell lines. FTBI, in a concentration range corresponding to its affinity for A(2A) AR subtype, significantly increased the number of viable PC12 cells after their exposure to METH and, to a similar extent, to MPP+, as demonstrated in both trypan blue exclusion assay and in cytological staining. These neuroprotective effects were also observed with a classical A(2A) AR antagonist, ZM241385, and appeared to be completely counteracted by the AR agonist, NECA, supporting A(2A) ARs are directly involved in FTBI-mediated effects. Similarly, in human SH-SY5Y cells, FTBI was able to prevent cell toxicity induced by MPP+ and METH, showing that this A(2A) AR antagonist has a neuroprotective effect independently by the specific cell model. Altogether these results demonstrate that the A(2A) AR blockade mediates cell protection against neurotoxicity induced by dopaminergic neurotoxins in dopamine containing cells, supporting the potential use of A(2A) AR antagonists in dopaminergic degenerative diseases including Parkinson's disease.
Collapse
Affiliation(s)
- Alessia Scatena
- Dipartimento di Morfologia Umana e Biologia Applicata, Università di Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Francesco Fornai
- Dipartimento di Morfologia Umana e Biologia Applicata, Università di Pisa, Via Roma 55, 56126 Pisa, Italy
- Neurobiologia dei disturbi del movimento, IRCCS INM Neuromed, Via Atinense 18, 86077 Pozzilli, Isernia, Italy
| | - Maria Letizia Trincavelli
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simona Daniele
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Isabella Pugliesi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sandro Cosconati
- Dipartimento di Scienze Ambientali, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Claudia Martini
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
40
|
Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011; 95:229-74. [PMID: 21907261 DOI: 10.1016/j.pneurobio.2011.08.006] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 1972. Later, ATP was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ATP, together with some of its enzymatic breakdown products (ADP and adenosine) and uracil nucleotides are now recognised to act via P2X ion channels and P1 and P2Y G protein-coupled receptors, which are widely expressed in the brain. They mediate both fast signalling in neurotransmission and neuromodulation and long-term (trophic) signalling in cell proliferation, differentiation and death. Purinergic signalling is prominent in neurone-glial cell interactions. In this review we discuss first the evidence implicating purinergic signalling in normal behaviour, including learning and memory, sleep and arousal, locomotor activity and exploration, feeding behaviour and mood and motivation. Then we turn to the involvement of P1 and P2 receptors in pathological brain function; firstly in trauma, ischemia and stroke, then in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's, as well as multiple sclerosis and amyotrophic lateral sclerosis. Finally, the role of purinergic signalling in neuropsychiatric diseases (including schizophrenia), epilepsy, migraine, cognitive impairment and neuropathic pain will be considered.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
41
|
Dai SS, Zhou YG. Adenosine 2A receptor: a crucial neuromodulator with bidirectional effect in neuroinflammation and brain injury. Rev Neurosci 2011; 22:231-9. [PMID: 21476942 DOI: 10.1515/rns.2011.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes recent developments that have contributed to our understanding of how adenosine 2A receptors (A2ARs) modulate brain damage in various animal models of acute neurological injuries, including brain ischemia, traumatic brain injury, spinal cord injury and hemorrhage stroke. The main conclusions are: (1) pharmacological, neurochemical and molecular/genetic approaches to the complex actions of A2AR in different cellular elements suggest that A2AR activation exerts bidirectional effect (detrimental or protective) after brain insults; (2) modulation of glutamate excitotoxicity and neuroinflammation are involved in the protection of A2AR agonists or antagonists, but the bidirectional effect of A2AR is largely due to the bidirectional regulation of neuroinflammation (anti-inflammation or proinflammation) by A2AR on immune cells such as microglia cells and peripheral bone marrow cells; and (3) the bidirectional effect of A2AR on neuroinflammation and brain injury depends on the distinct and sometimes opposite actions of A2AR in various cellular elements and on different injury models and associated pathological conditions. The local glutamate level in the brain injury is one of the crucial factors that contribute to the direction of A2AR effect on neuroinflammation and brain injury outcome. These developments presented here clearly highlight the complexity of using A2AR agents therapeutically in acute neuronal injuries and confirm that A2AR ligands have many promising characteristics that encourage the pursuit of their full therapeutic potential.
Collapse
Affiliation(s)
- Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Third Military Medical University, 400038 Chongqing, China
| | | |
Collapse
|
42
|
Armentero MT, Pinna A, Ferré S, Lanciego JL, Müller CE, Franco R. Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson's disease. Pharmacol Ther 2011; 132:280-99. [PMID: 21810444 DOI: 10.1016/j.pharmthera.2011.07.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/07/2011] [Indexed: 12/20/2022]
Abstract
Several selective antagonists for adenosine A(2A) receptors (A(2A)R) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson's disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D₂ and adenosine A(2A) receptors in the basal ganglia. At present it is believed that A(2A)R antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson's patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A(2A)R antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized antiparkinsonian drug therapy, namely the existence of (hetero)dimers/oligomers of G protein-coupled receptors, a topic that is currently the focus of intense debate within the scientific community. Dopamine D₂ receptors (D₂Rs) expressed in the striatum are known to form heteromers with A(2A) adenosine receptors. Thus, the development of heteromer-specific A(2A) receptor antagonists represents a promising strategy for the identification of more selective and safer drugs.
Collapse
Affiliation(s)
- Marie Therese Armentero
- Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson's Disease, IRCCS National Institute of Neurology "C. Mondino", Pavia, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Ramkumar V, Jhaveri KA, Xie X, Jajoo S, Toth LA. Nuclear Factor κB and Adenosine Receptors: Biochemical and Behavioral Profiling. Curr Neuropharmacol 2011; 9:342-9. [PMID: 22131942 PMCID: PMC3131724 DOI: 10.2174/157015911795596559] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/26/2010] [Accepted: 07/02/2010] [Indexed: 12/20/2022] Open
Abstract
Adenosine is produced primarily by the metabolism of ATP and mediates its physiological actions by interacting primarily with adenosine receptors (ARs) on the plasma membranes of different cell types in the body. Activation of these G protein-coupled receptors promotes activation of diverse cellular signaling pathways that define their tissue-specific functions. One of the major actions of adenosine is cytoprotection, mediated primarily via two ARs - A(1) (A(1)AR) and A(3) (A(3)AR). These ARs protect cells exposed to oxidative stress and are also regulated by oxidative stress. Stress-mediated regulation of ARs involves two prominent transcription factors - activator protein-1 (AP-1) and nuclear factor (NF)-κB - that mediate the induction of genes important in cell survival. Mice that are genetically deficient in the p50 subunit of NF-κB (i.e., p50 knock-out mice) exhibit altered expression of A(1)AR and A(2A)AR and demonstrate distinct behavioral phenotypes under normal conditions or after drug challenges. These effects suggest an important role for NF-κB in dictating the level of expression of ARs in vivo, in regulating the cellular responses to stress, and in modifying behavior.
Collapse
Affiliation(s)
- Vickram Ramkumar
- Department of Pharmacology Southern Illinois University School of Medicine P.O. Box 19629 Springfield, IL 62794, USA
| | | | | | | | | |
Collapse
|
44
|
Chen JF, Chern Y. Impacts of methylxanthines and adenosine receptors on neurodegeneration: human and experimental studies. Handb Exp Pharmacol 2011:267-310. [PMID: 20859800 DOI: 10.1007/978-3-642-13443-2_10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Neurodegenerative disorders are some of the most feared illnesses in modern society, with no effective treatments to slow or halt this neurodegeneration. Several decades after the earliest attempt to treat Parkinson's disease using caffeine, tremendous amounts of information regarding the potential beneficial effect of caffeine as well as adenosine drugs on major neurodegenerative disorders have accumulated. In the first part of this review, we provide general background on the adenosine receptor signaling systems by which caffeine and methylxanthine modulate brain activity and their role in relationship to the development and treatment of neurodegenerative disorders. The demonstration of close interaction between adenosine receptor and other G protein coupled receptors and accessory proteins might offer distinct pharmacological properties from adenosine receptor monomers. This is followed by an outline of the major mechanism underlying neuroprotection against neurodegeneration offered by caffeine and adenosine receptor agents. In the second part, we discuss the current understanding of caffeine/methylxantheine and its major target adenosine receptors in development of individual neurodegenerative disorders, including stroke, traumatic brain injury Alzheimer's disease, Parkinson's disease, Huntington's disease and multiple sclerosis. The exciting findings to date include the specific in vivo functions of adenosine receptors revealed by genetic mouse models, the demonstration of a broad spectrum of neuroprotection by chronic treatment of caffeine and adenosine receptor ligands in animal models of neurodegenerative disorders, the encouraging development of several A(2A) receptor selective antagonists which are now in advanced clinical phase III trials for Parkinson's disease. Importantly, increasing body of the human and experimental studies reveals encouraging evidence that regular human consumption of caffeine in fact may have several beneficial effects on neurodegenerative disorders, from motor stimulation to cognitive enhancement to potential neuroprotection. Thus, with regard to neurodegenerative disorders, these potential benefits of methylxanthines, caffeine in particular, strongly argue against the common practice by clinicians to discourage regular human consumption of caffeine in aging populations.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
45
|
Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1380-99. [PMID: 21145878 DOI: 10.1016/j.bbamem.2010.12.001] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 02/06/2023]
Abstract
Adenosine acts in parallel as a neuromodulator and as a homeostatic modulator in the central nervous system. Its neuromodulatory role relies on a balanced activation of inhibitory A(1) receptors (A1R) and facilitatory A(2A) receptors (A2AR), mostly controlling excitatory glutamatergic synapses: A1R impose a tonic brake on excitatory transmission, whereas A2AR are selectively engaged to promote synaptic plasticity phenomena. This neuromodulatory role of adenosine is strikingly similar to the role of adenosine in the control of brain disorders; thus, A1R mostly act as a hurdle that needs to be overcame to begin neurodegeneration and, accordingly, A1R only effectively control neurodegeneration if activated in the temporal vicinity of brain insults; in contrast, the blockade of A2AR alleviates the long-term burden of brain disorders in different neurodegenerative conditions such as ischemia, epilepsy, Parkinson's or Alzheimer's disease and also seem to afford benefits in some psychiatric conditions. In spite of this qualitative agreement between neuromodulation and neuroprotection by A1R and A2AR, it is still unclear if the role of A1R and A2AR in the control of neuroprotection is mostly due to the control of glutamatergic transmission, or if it is instead due to the different homeostatic roles of these receptors related with the control of metabolism, of neuron-glia communication, of neuroinflammation, of neurogenesis or of the control of action of growth factors. In spite of this current mechanistic uncertainty, it seems evident that targeting adenosine receptors might indeed constitute a novel strategy to control the demise of different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Catarina V Gomes
- Center for Neurosciences of Coimbra, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
46
|
Sehba FA, Flores R, Muller A, Friedrich V, Chen JF, Britz GW, Winn HR, Bederson JB. Adenosine A(2A) receptors in early ischemic vascular injury after subarachnoid hemorrhage. Laboratory investigation. J Neurosurg 2010; 113:826-34. [PMID: 19895201 DOI: 10.3171/2009.9.jns09802] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The role of adenosine A(2A) receptors in the early vascular response after subarachnoid hemorrhage (SAH) is unknown. In other forms of cerebral ischemia both activation and inhibition of A(2A) receptors is reported to be beneficial. However, these studies mainly used pharmacological receptor modulation, and most of the agents available exhibit low specificity. The authors used adenosine A(2A) receptor knockout mice to study the role of A(2A) receptors in the early vascular response to SAH. METHODS Subarachnoid hemorrhage was induced in wild-type mice (C57BL/6) and A(2A) receptor knockout mice by endovascular puncture. Cerebral blood flow, intracranial pressure, and blood pressure were recorded, and cerebral perfusion pressure was deduced. Animals were sacrificed at 1, 3, or 6 hours after SAH or sham surgery. Coronal brain sections were immunostained for Type IV collagen, the major protein of the basal lamina. The internal diameter of major cerebral arteries and the area fraction of Type IV collagen-positive microvessels (< 100 μm) were determined. RESULTS The initial increase in intracranial pressure and decrease in cerebral perfusion pressure at SAH induction was similar in both types of mice, but cerebral blood flow decline was significantly smaller in A(2A) receptor knockout mice as compared with wild-type cohorts. The internal diameter of major cerebral vessels decreased progressively after SAH. The extent of diameter reduction was significantly less in A(2A) receptor knockout mice than in wild-type mice. Type IV collagen immunostaining decreased progressively after SAH. This decrease was significantly less in A(2A) receptor knockout mice than in wild-type mice. CONCLUSIONS These results demonstrate that global inactivation of A(2A) receptors decreases the intensity of the early vascular response to SAH. Early inhibition of A(2A) receptors after SAH might reduce cerebral injury.
Collapse
Affiliation(s)
- Fatima A Sehba
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Dowie MJ, Scotter EL, Molinari E, Glass M. The therapeutic potential of G-protein coupled receptors in Huntington's disease. Pharmacol Ther 2010; 128:305-23. [PMID: 20708032 DOI: 10.1016/j.pharmthera.2010.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 01/29/2023]
Abstract
Huntington's disease is a late-onset autosomal dominant inherited neurodegenerative disease characterised by increased symptom severity over time and ultimately premature death. An expanded CAG repeat sequence in the huntingtin gene leads to a polyglutamine expansion in the expressed protein, resulting in complex dysfunctions including cellular excitotoxicity and transcriptional dysregulation. Symptoms include cognitive deficits, psychiatric changes and a movement disorder often referred to as Huntington's chorea, which involves characteristic involuntary dance-like writhing movements. Neuropathologically Huntington's disease is characterised by neuronal dysfunction and death in the striatum and cortex with an overall decrease in cerebral volume (Ho et al., 2001). Neuronal dysfunction begins prior to symptom presentation, and cells of particular vulnerability include the striatal medium spiny neurons. Huntington's is a devastating disease for patients and their families and there is currently no cure, or even an effective therapy for disease symptoms. G-protein coupled receptors are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many neurological diseases. This review will highlight the potential of G-protein coupled receptor drug targets as emerging therapies for Huntington's disease.
Collapse
Affiliation(s)
- Megan J Dowie
- Centre for Brain Research, University of Auckland, Private Bag 92019 Auckland, New Zealand
| | | | | | | |
Collapse
|
48
|
Yang A, Palmer AA, de Wit H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology (Berl) 2010; 211:245-57. [PMID: 20532872 PMCID: PMC4242593 DOI: 10.1007/s00213-010-1900-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 05/25/2010] [Indexed: 12/30/2022]
Abstract
RATIONALE Caffeine is widely consumed in foods and beverages and is also used for a variety of medical purposes. Despite its widespread use, relatively little is understood regarding how genetics affects consumption, acute response, or the long-term effects of caffeine. OBJECTIVE This paper reviews the literature on the genetics of caffeine from the following: (1) twin studies comparing heritability of consumption and of caffeine-related traits, including withdrawal symptoms, caffeine-induced insomnia, and anxiety, (2) association studies linking genetic polymorphisms of metabolic enzymes and target receptors to variations in caffeine response, and (3) case-control and prospective studies examining relationship between polymorphisms associated with variations in caffeine response to risks of Parkinson's and cardiovascular diseases in habitual caffeine consumers. RESULTS Twin studies find the heritability of caffeine-related traits to range between 0.36 and 0.58. Analysis of polysubstance use shows that predisposition to caffeine use is highly specific to caffeine itself and shares little common disposition to use of other substances. Genome association studies link variations in adenosine and dopamine receptors to caffeine-induced anxiety and sleep disturbances. Polymorphism in the metabolic enzyme cytochrome P-450 is associated with risk of myocardial infarction in caffeine users. CONCLUSION Modeling based on twin studies reveals that genetics plays a role in individual variability in caffeine consumption and in the direct effects of caffeine. Both pharmacodynamic and pharmacokinetic polymorphisms have been linked to variation in response to caffeine. These studies may help guide future research in the role of genetics in modulating the acute and chronic effects of caffeine.
Collapse
Affiliation(s)
- Amy Yang
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, 5841 S. Maryland Ave, MC 3077, Chicago, IL 60637, USA
| | - Abraham A. Palmer
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, 5841 S. Maryland Ave, MC 3077, Chicago, IL 60637, USA. Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Harriet de Wit
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, 5841 S. Maryland Ave, MC 3077, Chicago, IL 60637, USA
| |
Collapse
|
49
|
Williams-Karnesky RL, Stenzel-Poore MP. Adenosine and stroke: maximizing the therapeutic potential of adenosine as a prophylactic and acute neuroprotectant. Curr Neuropharmacol 2010; 7:217-27. [PMID: 20190963 PMCID: PMC2769005 DOI: 10.2174/157015909789152209] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of morbidity and mortality in the United States. Despite intensive research into the development of treatments that lessen the severity of cerebrovascular injury, no major therapies exist. Though the potential use of adenosine as a neuroprotective agent in the context of stroke has long been realized, there are currently no adenosine-based therapies for the treatment of cerebral ischemia and reperfusion. One of the major obstacles to developing adenosine-based therapies for the treatment of stroke is the prevalence of functional adenosine receptors outside the central nervous system. The activities of peripheral immune and vascular endothelial cells are particularly vulnerable to modulation via adenosine receptors. Many of the pathophysiological processes in stroke are a direct result of peripheral immune infiltration into the brain. Ischemic preconditioning, which can be induced by a number of stimuli, has emerged as a promising area of focus in the development of stroke therapeutics. Reprogramming of the brain and immune responses to adenosine signaling may be an underlying principle of tolerance to cerebral ischemia. Insight into the role of adenosine in various preconditioning paradigms may lead to new uses for adenosine as both an acute and prophylactic neuroprotectant.
Collapse
Affiliation(s)
- Rebecca L Williams-Karnesky
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, USA.
| | | |
Collapse
|
50
|
Castillo CA, León DA, Ballesteros-Yáñez I, Albasanz JL, Martín M. Glutamate differently modulates excitatory and inhibitory adenosine receptors in neuronal and glial cells. Neurochem Int 2010; 57:33-42. [PMID: 20399823 DOI: 10.1016/j.neuint.2010.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/31/2010] [Accepted: 04/03/2010] [Indexed: 12/20/2022]
Abstract
Adenosine is a neuromodulator which acts through adenosine receptors regulating functions such as inhibition of glutamate release. Adenosine A(1) and A(2A) receptor activations most often regulate opposing actions. Primary rat cortical neurons and rat C6 cells, an astrocytic derived cell line, were exposed to 100muM l-glutamate, and cell viability and transduction pathways mediated by both A(1) and A(2A) receptors were analyzed. Glutamate-induced excitotoxic damage was found only in cortical neurons, with C6 cells preserved. In C6 cells, adenosine A(1) and A(2A) receptors were increased and decreased, respectively. Consequently, A(1)-mediated adenylyl cyclase inhibition and A(2A)-mediated adenylyl cyclase stimulation were, respectively, increased and decreased after glutamate exposure. In cortical neurons, glutamate treatment increased both A(1) and A(2A) receptors. Moreover, adenylyl cyclase responsiveness to A(1) or A(2A) receptor agonists was heightened in these cells, in which pharmacological activation of AC induced cell death. Finally, activation of A(1) receptor or blockade of A(2A) receptor during glutamate treatment partially prevented the glutamate-induced cell death detected in cultured cortical neurons. Results show that adenosine receptors are regulated by glutamate, and that this regulation is dependent on the cell type, suggesting that adenosine receptors might be promising targets in the therapy against excitotoxic cell death.
Collapse
Affiliation(s)
- Carlos Alberto Castillo
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias Químicas, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha (UCLM), Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | | | | | | | | |
Collapse
|