1
|
Wu J, Jia J, Ji D, Jiao W, Huang Z, Zhang Y. Advances in nitric oxide regulators for the treatment of ischemic stroke. Eur J Med Chem 2023; 262:115912. [PMID: 37931330 DOI: 10.1016/j.ejmech.2023.115912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Ischemic stroke (IS) is a life-threatening disease worldwide. Nitric oxide (NO) derived from l-arginine catalyzed by NO synthase (NOS) is closely associated with IS. Three isomers of NOS (nNOS, eNOS and iNOS) produce different concentrations of NO, resulting in quite unlike effects during IS. Of them, n/iNOSs generate high levels of NO, detrimental to brain by causing nerve cell apoptosis and/or necrosis, whereas eNOS releases small amounts of NO, beneficial to the brain via increasing cerebral blood flow and improving nerve function. As a result, a large variety of NO regulators (NO donors or n/iNOS inhibitors) have been developed for fighting IS. Regrettably, up to now, no review systematically introduces the progresses in this area. This article first outlines dynamic variation rule of NOS/NO in IS, subsequently highlights advances in NO regulators against IS, and finally presents perspectives based on concentration-, site- and timing-effects of NO production to promote this field forward.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China; Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Weijie Jiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Wierońska JM, Cieślik P, Kalinowski L. Nitric Oxide-Dependent Pathways as Critical Factors in the Consequences and Recovery after Brain Ischemic Hypoxia. Biomolecules 2021; 11:biom11081097. [PMID: 34439764 PMCID: PMC8392725 DOI: 10.3390/biom11081097] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ischemia is one of the leading causes of disability and mortality worldwide. Nitric oxide (NO•), a molecule that is involved in the regulation of proper blood flow, vasodilation, neuronal and glial activity constitutes the crucial factor that contributes to the development of pathological changes after stroke. One of the early consequences of a sudden interruption in the cerebral blood flow is the massive production of reactive oxygen and nitrogen species (ROS/RNS) in neurons due to NO• synthase uncoupling, which leads to neurotoxicity. Progression of apoptotic or necrotic neuronal damage activates reactive astrocytes and attracts microglia or lymphocytes to migrate to place of inflammation. Those inflammatory cells start to produce large amounts of inflammatory proteins, including pathological, inducible form of NOS (iNOS), which generates nitrosative stress that further contributes to brain tissue damage, forming vicious circle of detrimental processes in the late stage of ischemia. S-nitrosylation, hypoxia-inducible factor 1α (HIF-1α) and HIF-1α-dependent genes activated in reactive astrocytes play essential roles in this process. The review summarizes the roles of NO•-dependent pathways in the early and late aftermath of stroke and treatments based on the stimulation or inhibition of particular NO• synthases and the stabilization of HIF-1α activity.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Biobank Fahrenheit BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Debinki Street 7, 80-211 Gdansk, Poland
- BioTechMed Center/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza 11/12, 80-223 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1182
| |
Collapse
|
3
|
Hirfanoglu I, Turkyilmaz C, Turkyilmaz Z, Onal E, Soylemezoglu F, Karabulut R, Atalay Y. Neuroprotective effect of L-arginine in a neonatal rat model of hypoxic-ischemia. Int J Neurosci 2019; 129:1139-1144. [DOI: 10.1080/00207454.2019.1636794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ibrahim Hirfanoglu
- Department of Pediatrics, Neonatology, School of Medicine, Gazi University, Ankara, Turkey
| | - Canan Turkyilmaz
- Department of Pediatrics, Neonatology, School of Medicine, Gazi University, Ankara, Turkey
| | - Zafer Turkyilmaz
- Department of Pediatric Surgery, School of Medicine, Gazi University, Ankara, Turkey
| | - Esra Onal
- Department of Pediatrics, Neonatology, School of Medicine, Gazi University, Ankara, Turkey
| | - Figen Soylemezoglu
- Department of Pathology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Ramazan Karabulut
- Department of Pediatric Surgery, School of Medicine, Gazi University, Ankara, Turkey
| | - Yildiz Atalay
- Department of Pediatrics, Neonatology, School of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Rio E, Moseley L, Purdam C, Samiric T, Kidgell D, Pearce AJ, Jaberzadeh S, Cook J. The Pain of Tendinopathy: Physiological or Pathophysiological? Sports Med 2013; 44:9-23. [DOI: 10.1007/s40279-013-0096-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Kunimatsu T, Yamashita A, Kitahama H, Misaki T, Yamamoto T. Measurement of cerebral reactive hyperemia at the initial post-ischemia reperfusion stage under normothermia and moderate hypothermia in rats. J Oral Sci 2009; 51:615-21. [DOI: 10.2334/josnusd.51.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
6
|
Zhao H, Steinberg GK, Sapolsky RM. General versus specific actions of mild-moderate hypothermia in attenuating cerebral ischemic damage. J Cereb Blood Flow Metab 2007; 27:1879-94. [PMID: 17684517 DOI: 10.1038/sj.jcbfm.9600540] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mild or moderate hypothermia is generally thought to block all changes in signaling events that are detrimental to ischemic brain, including ATP depletion, glutamate release, Ca(2+) mobilization, anoxic depolarization, free radical generation, inflammation, blood-brain barrier permeability, necrotic, and apoptotic pathways. However, the effects and mechanisms of hypothermia are, in fact, variable. We emphasize that, even in the laboratory, hypothermic protection is limited. In certain models of permanent focal ischemia, hypothermia may not protect at all. In cases where hypothermia reduces infarct, some studies have overemphasized its ability to maintain cerebral blood flow and ATP levels, and to prevent anoxic depolarization, glutamate release during ischemia. Instead, hypothermia may protect against ischemia by regulating cascades that occur after reperfusion, including blood-brain barrier permeability and the changes in gene and protein expressions associated with necrotic and apoptotic pathways. Hypothermia not only blocks multiple damaging cascades after stroke, but also selectively upregulates some protective genes. However, most of these mechanisms are addressed in models with intraischemic hypothermia; much less information is available in models with postischemic hypothermia. Moreover, although it has been confirmed that mild hypothermia is clinically feasible for acute focal stroke treatment, no definite beneficial effect has been reported yet. This lack of clinical protection may result from suboptimal criteria for patient entrance into clinical trials. To facilitate clinical translation, future efforts in the laboratory should focus more on the protective mechanisms of postischemic hypothermia, as well as on the effects of sex, age and rewarming during reperfusion on hypothermic protection.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, California 94305-5327, USA.
| | | | | |
Collapse
|
7
|
Jiang MH, Hada J. Early and sharp nitric oxide production and anoxic depolarization in the rat hippocampus during transient forebrain ischemia. Eur J Pharmacol 2007; 567:83-8. [PMID: 17451676 DOI: 10.1016/j.ejphar.2007.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 03/09/2007] [Accepted: 03/13/2007] [Indexed: 11/17/2022]
Abstract
This study was designed to characterize nitric oxide (NO) production and anoxic depolarization in the rat hippocampus during transient forebrain ischemia using two NO synthase (NOS) inhibitors, L-N(5)-(1-iminoethyl)ornithine (L-NIO), a relatively selective endothelial NOS (eNOS) inhibitor, and 7-nitroindazole, a relatively selective neuronal NOS (nNOS) inhibitor, and an NO scavenger, [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] (carboxy-PTIO). We measured the mean arterial blood pressure, hippocampal blood flow, NO concentration and direct current potential before, during and after transient forebrain ischemia, which was induced by 4-vessel occlusion for 10 min. Saline, L-NIO (20 mg/kg), 7-nitroindazole (25 mg/kg), L-NIO (20 mg/kg)+7-nitroindazole (25 mg/kg) or carboxy-PTIO (1 mg/kg) was administered intraperitoneally 20 min before the onset of ischemia. We observed early and sharp NO production in the hippocampus during ischemia in the saline group. This NO increase during ischemia was significantly reduced by L-NIO (20 mg/kg)+7-nitroindazole (25 mg/kg) or carboxy-PTIO (1 mg/kg), but not L-NIO (20 mg/kg) or 7-nitroindazole (25 mg/kg). On the other hand, NO production after ischemia was significantly reduced by 7-nitroindazole (25 mg/kg), L-NIO (20 mg/kg)+7-nitroindazole (25 mg/kg) or carboxy-PTIO (1 mg/kg), but not L-NIO (20 mg/kg). The peak latency of NO production during ischemia always preceded the onset latency of anoxic depolarization in both the saline group and the carboxy-PTIO group. In the carboxy-PTIO group, the onset latency of anoxic depolarization was significantly longer than that in the saline group. Moreover, carboxy-PTIO significantly reduced the anoxic depolarization amplitude, compared with that of the saline group. These results suggest that both NOS-dependent and-independent NO formation contributes to early and sharp NO production during ischemia, and that this NO increase is, at least in part, related to the triggering of anoxic depolarization.
Collapse
Affiliation(s)
- Min Hai Jiang
- Department of Neurology, Hangzhou First People's Hospital, 261, Huansha Road, Hangzhou, Zhejiang, 310006, China
| | | |
Collapse
|
8
|
Martínez-Orgado J, Fernández-Frutos B, González R, Fernández-López D, Urigüen L, Romero E, Moro M, Bonet B, Viveros MP. Neuroprotective effect of L-arginine in a newborn rat model of acute severe asphyxia. Neonatology 2005; 88:291-8. [PMID: 16113523 DOI: 10.1159/000087626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 01/24/2005] [Indexed: 11/19/2022]
Abstract
The left common carotid artery was ligated in anaesthetized 7-day-old Wistar rats (P7), prior to asphyxia by inhaling 100% nitrogen for 9 min. Pups recovered from asphyxia received i.p. saline (n = 16), or L-Arg 300 mg/kg (n = 14). Pups undergoing sham operation remained as controls (n = 12). At day 14, the amount of surviving or degenerating neurons was quantified under optical microscopy by Nissl technique or by Fluoro-Jade B (FJB) in CA1 area of hippocampus and in parietal cortex. In these areas, asphyxia reduced the neuronal density by 23.6 and 30%, and increased the proportion of degenerating neurons two and four times, respectively. L-Arg administration to asphyxiated pups reduced the neuronal loss and the proportion of degenerating neurons by 50% (p < 0.05). We conclude that L-Arg administration after acute severe asphyxia in newborn rats is neuroprotective, reducing early and delayed neuronal loss.
Collapse
|
9
|
Willmot M, Gray L, Gibson C, Murphy S, Bath PMW. A systematic review of nitric oxide donors and L-arginine in experimental stroke; effects on infarct size and cerebral blood flow. Nitric Oxide 2005; 12:141-9. [PMID: 15797842 DOI: 10.1016/j.niox.2005.01.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2004] [Revised: 01/16/2005] [Accepted: 01/23/2005] [Indexed: 11/18/2022]
Abstract
BACKGROUND Nitric oxide (NO) is a candidate treatment for acute ischaemic stroke, however published studies in experimental stroke have given conflicting results. METHODS We performed a systematic review of published controlled studies of L-arginine (the precursor for NO) and NO donors in experimental stroke. Data were analysed using the Cochrane Collaboration Review Manager software. Standardised mean difference (SMD) and 95% confidence intervals (95% CI) were calculated. RESULTS Altogether, 25 studies(s) were identified. L-Arginine and NO donors reduced total cerebral infarct volume in permanent (SMD -1.21, 95% CI -1.69 to -0.73, p < 0.01, s = 10) and transient models of ischaemia (SMD -0.78, 95% CI -1.21 to -0.35, p < 0.01, s = 7). Drug administration increased cortical CBF in permanent (SMD +0.86, 95% CI 0.52-1.21, p < 0.01, s = 8) but not transient models (SMD +0.34, 95% CI -0.02 to 0.70, p = 0.07, s = 4). CONCLUSIONS Administration of NO in experimental stroke reduces stroke lesion volume in permanent and transient models. This may be mediated, in part, by increased cerebral perfusion in permanent models. These data support clinical trials in stroke patients, although the presence of a narrow therapeutic time window may be a limiting factor.
Collapse
Affiliation(s)
- Mark Willmot
- Institute of Neuroscience, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
10
|
Ueda M, Nowak TS. Protective preconditioning by transient global ischemia in the rat: components of delayed injury progression and lasting protection distinguished by comparisons of depolarization thresholds for cell loss at long survival times. J Cereb Blood Flow Metab 2005; 25:949-58. [PMID: 15758943 DOI: 10.1038/sj.jcbfm.9600107] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Robust ischemic preconditioning has been shown in rodent brain, but there are concerns regarding the persistence of neuron protection. This issue was examined in rat hippocampus following 4-vessel occlusion (4-VO) ischemia, using DC shifts characteristic of ischemic depolarization to reproducibly define insult severity. Preconditioning ischemia producing 2 to 3.5 mins depolarization was followed at intervals of 2, 5, or 7 days by test insults of varied duration, after which CA1 counts were obtained at 1, 2, 4, or 12 weeks. Neuron loss in naive animals increased with depolarization time longer than 4 mins regardless of postischemic survival interval. Preconditioning 2, 5, or 7 days before test insults prolonged the injury threshold evaluated at 1 week survival to 15, 9, or 6 mins, respectively, showing robust protection and a rapid decay of the protected state. However, by 2 weeks survival after preconditioning at a 2-day interval, the injury threshold dramatically regressed from 15 to 9 mins. Thereafter protection remained relatively stable through 1 month, but slight progression of neuron injury was evident at 3 months. Inflammatory responses were seen in both naive and preconditioned hippocampi throughout this interval, appropriate to the extent of neuron injury. These studies show distinct components of transient and lasting protection after ischemic preconditioning. Finally, it was found that ischemic depolarization was delayed by approximately 1 min in optimally preconditioned rat hippocampus, in contrast to previous results in the gerbil, identifying one specific mechanism by which insult severity is reduced in this model.
Collapse
Affiliation(s)
- Masayuki Ueda
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
11
|
Willmot M, Gibson C, Gray L, Murphy S, Bath P. Nitric oxide synthase inhibitors in experimental ischemic stroke and their effects on infarct size and cerebral blood flow: a systematic review. Free Radic Biol Med 2005; 39:412-25. [PMID: 15993340 DOI: 10.1016/j.freeradbiomed.2005.03.028] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
Nitric oxide produced by the neuronal or inducible isoform of nitric oxide synthase (nNOS, iNOS) is detrimental in acute ischemic stroke (IS), whereas that derived from the endothelial isoform is beneficial. However, experimental studies with nitric oxide synthase inhibitors have given conflicting results. Relevant studies were found from searches of EMBASE, PubMed, and reference lists; of 456 references found, 73 studies involving 2321 animals were included. Data on the effects of NOS inhibition on lesion volume (mm3, %) and cerebral blood flow (CBF; %, ml * min(-1) * g(-1)) were analyzed using the Cochrane Review Manager software. NOS inhibitors reduced total infarct volume in models of permanent (standardized mean difference (SMD) -0.56, 95% confidence interval (95% CI) -0.86, -0.26) and transient (SMD -0.99, 95% CI -1.25, -0.72) ischemia. Cortical CBF was reduced in models of permanent but not transient ischemia. When assessed by type of inhibitor, total lesion volume was reduced in permanent models by nNOS and iNOS inhibitors, but not by nonselective inhibitors. All types of NOS inhibitors reduced infarct volume in transient models. NOS inhibition may have negative effects on CBF but further studies are required. Selective nNOS and iNOS inhibitors are candidate treatments for acute IS.
Collapse
Affiliation(s)
- Mark Willmot
- Institute of Neuroscience, University of Nottingham, Nottingham NG7 2UK, UK
| | | | | | | | | |
Collapse
|
12
|
Jiang MH, Kaku T, Hada J, Hayashi Y. Different effects of eNOS and nNOS inhibition on transient forebrain ischemia. Brain Res 2002; 946:139-47. [PMID: 12133603 DOI: 10.1016/s0006-8993(02)02870-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To clarify the functions of nitric oxide (NO) induced by either neuronal NO synthase (nNOS) or endothelial NO synthase (eNOS) after transient cerebral ischemia, we investigated the effects of L-N(5)-(1-iminoethyl)ornithine (L-NIO), a relatively selective eNOS inhibitor, and 7-nitroindazole (7-NI), a relatively selective nNOS inhibitor, on hippocampal dysfunction caused by cerebral ischemia. We measured mean arterial blood pressure (MABP), hippocampal blood flow, direct current (DC) potential, CA1 population spike (PS) and extracellular concentrations of glutamate from rat hippocampus after transient forebrain ischemia, which was induced by four-vessel occlusion for 10 min. L-NIO (20 mg/kg) and 7-NI (25 mg/kg) were administered intraperitoneally 20 min before ischemia. L-NIO, but not 7-NI, increased MABP before, during and after ischemia, compared with the vehicle group. 7-NI, but not L-NIO, reduced the amplitude of anoxic depolarization induced by ischemia. 7-NI recovered the PS amplitude in part 60 min after ischemia. 7-NI, but not L-NIO, reduced the ischemia-induced levels of glutamate. These results indicate that nNOS inhibition with 7-NI improves, at least in part, hippocampal dysfunction after ischemia, while eNOS inhibition with L-NIO worsens it.
Collapse
Affiliation(s)
- Min Hai Jiang
- Department of Physiology, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | | | | | | |
Collapse
|
13
|
Saransaari P, Oja SS. Ischemia-induced taurine release is modified by nitric oxide-generating compounds in slices from the developing and adult mouse hippocampus. Neurochem Res 2002; 27:395-402. [PMID: 12064355 DOI: 10.1023/a:1015551914390] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The novel neurotransmitter/neuromodulator nitric oxide (NO), which is linked to the activation of the N-methyl-D-aspartate class of glutamate receptors, has been shown to modify transmitter release in brain tissue. Release of the inhibitory amino acid taurine is also markedly enhanced by N-methyl-D-aspartate and NO-producing agents under normal conditions in the mouse hippocampus. The release of preloaded [3H]taurine from hippocampal slices from adult (3-month-old) and developing (7-day-old) mice was characterized under ischemic conditions in the presence of different NO-generating compounds, hydroxylamine, sodium nitroprusside, and S-nitroso-N-acetylpenicillamine (SNAP), using a superfusion system. The ischemia-induced taurine release at both ages was markedly enhanced by 1.0 mM nitroprusside and 1.0 mM SNAP, whereas 5.0 mM hydroxylamine was effective only in adults. The nitroprusside- and SNAP-induced releases were reduced by the inhibitors of NO synthase (nitroarginine and 7-nitroindazole) and NO-sensitive soluble guanylyl cyclase [1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one], suggesting involvement of the NO/cGMP pathway. The release in ischemia in the absence of Na+ was modified by NO compounds only in adults; the 0.1 mM N-methyl-D-aspartate stimulated taurine release at both ages. The enhanced release of taurine associated with NO production could be beneficial to brain tissue under cell-damaging conditions and corroborates the neuroprotective role of this amino acid, particularly in the immature brain.
Collapse
Affiliation(s)
- Pirjo Saransaari
- Tampere Brain Research Center, Medical School, University of Tampere, Finland.
| | | |
Collapse
|