1
|
Sarkar B, Ma X, Agas A, Siddiqui Z, Iglesias-Montoro P, Nguyen PK, Kim KK, Haorah J, Kumar VA. In vivo Neuroprotective Effect of a Self-assembled Peptide Hydrogel. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 408:127295. [PMID: 37842134 PMCID: PMC10571100 DOI: 10.1016/j.cej.2020.127295] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Traumatic brain injury (TBI) is associated with poor intrinsic healing responses and long-term cognitive decline. A major pathological outcome of TBI is acute glutamate-mediated excitotoxicity (GME) experienced by neurons. Short peptides based on the neuroprotective extracellular glycoprotein ependymin have shown the ability to slow down the effect of GME - however, such short peptides tend to diffuse away from target sites after in vivo delivery. We have designed a self-assembling peptide containing an ependymin mimic that can form nanofibrous matrices. The peptide was evaluated in situ to assess neuroprotective utility after an acute fluidpercussion injury. This biomimetic matrix can conform to the intracranial damaged site after delivery, due its shear-responsive rheological properties. We demonstrated the potential efficacy of the peptide for supporting neuronal survival in vitro and in vivo. Our study demonstrates the potential of these implantable acellular hydrogels for managing the acute (up to 7 days) pathophysiological sequelae after traumatic brain injury. Further work is needed to evaluate less invasive administrative routes and long-term functional and behavioral improvements after injury.
Collapse
Affiliation(s)
- Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Xiaotang Ma
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Agnieszka Agas
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | - Peter K. Nguyen
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Ka Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - James Haorah
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| |
Collapse
|
2
|
Salim S, Nasir J, Chen PE. Overexpression of the dopamine receptor-interacting protein Alix/AIP1 modulates NMDA receptor-triggered cell death. FEBS Lett 2019; 593:1381-1391. [PMID: 31077357 DOI: 10.1002/1873-3468.13434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 01/13/2023]
Abstract
Alix/AIP1 is an adaptor protein involved in apoptosis, endocytic membrane trafficking and brain development. Alix has been found within the human postsynaptic density (PSD) and, since NMDA receptors (NMDARs) are central components of the PSD, we hypothesized that the close proximity of both proteins may allow Alix to influence the downstream pathways following NMDAR activation. NMDARs play important roles in excitotoxicity and we evaluated the effects of recombinant Alix in an NMDAR cell death assay. Overexpression of Alix with NMDARs increases the potency of NMDAR- induced cell death compared to cells expressing only NMDARs, and this requires expression of the Alix C-terminal region. Therefore, we demonstrate a previously unreported role for Alix as a potential modulator of NMDAR function.
Collapse
Affiliation(s)
- Sharifah Salim
- Centres for Biomedical Sciences and Gene & Cell Therapy, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Jamal Nasir
- Molecular Biosciences Research Group, Faculty of Health & Society, University of Northampton, Waterside Campus, Northampton, UK
| | - Philip E Chen
- Centres for Biomedical Sciences and Gene & Cell Therapy, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| |
Collapse
|
3
|
Neutrophils as sources of extracellular nucleotides: functional consequences at the vascular interface. Trends Cardiovasc Med 2008; 18:103-7. [PMID: 18436149 DOI: 10.1016/j.tcm.2008.01.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 01/29/2008] [Accepted: 01/31/2008] [Indexed: 11/23/2022]
Abstract
Nucleotide signaling is currently an area of intense investigation. Extracellular adenosine triphosphate (ATP) liberated during hypoxia or inflammation can either signal directly to purinergic receptors or, after phosphohydrolytic metabolism, can activate surface adenosine receptors. Given the association of polymorphonuclear leukocytes (PMNs) with adenine nucleotide/nucleoside signaling in the inflammatory milieu, it was recently demonstrated that PMNs actively release ATP via a connexin 43 hemichannel-dependent mechanism. Here, we review the mechanisms of ATP release and subsequent functional implications of ATP metabolism at the interface between PMN and vascular endothelial cells during inflammation and in hypoxia.
Collapse
|
4
|
Ghisleni G, Porciúncula LO, Mioranzza S, Boeck CR, Rocha JBT, Souza DO. Selenium compounds counteract the stimulation of ecto-nucleotidase activities in rat cultured cerebellar granule cells: putative correlation with neuroprotective effects. Brain Res 2008; 1221:134-40. [PMID: 18554575 DOI: 10.1016/j.brainres.2008.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/15/2008] [Accepted: 04/17/2008] [Indexed: 11/18/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in brain involved in pathophysiology of several brain injuries. In this context, glutamate showed to stimulate ecto-nucleotidase activities in cerebellar granule cells increasing extracellular adenosine levels, an important neuromodulator in the CNS able to prevent cell damage. The organoselenium compounds, such as ebselen and diphenyl diselenide [(PhSe)(2)], display neuroprotective activities mediated at least in part by their antioxidant and anti-inflammatory properties. Ebselen was described to prevent glutamate-induced lipid peroxidation and cell death in cerebellar granule cells and (PhSe)(2) modify glutamatergic synapse parameters in vitro and in vivo. In the present study, we investigated the effects of ebselen or (PhSe)(2) on glutamate-induced stimulation of ecto-nucleotidase activities in rat cultured cerebellar granule cells. Glutamate increased nucleotide hydrolysis at lower concentrations (10 and 100 microM) than described in the literature and this effect was counteracted by both organoselenium compounds tested. Based on these results, we investigated the association of organoselenium effects with their antioxidant properties searching for redox site modulation by using the alkylant agent N-ethylmaleimide (NEM). Our results suggest that selenium compounds, as well as the well-known antioxidant trolox, can avoid the increase on glutamate-induced stimulation of ecto-nucleotidase activities probably due to their antioxidant properties.
Collapse
Affiliation(s)
- Gabriele Ghisleni
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Boeck CR, Kroth EH, Bronzatto MJ, Vendite D. Effect of the L- or D-aspartate on ecto-5'nucleotidase activity and on cellular viability in cultured neurons: participation of the adenosine A(2A) receptors. Amino Acids 2007; 33:439-44. [PMID: 17619122 DOI: 10.1007/s00726-006-0455-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Accepted: 09/29/2006] [Indexed: 12/20/2022]
Abstract
Glutamate increases the extracellular adenosine levels, an important endogenous neuromodulator. The neurotoxicity induced by glutamate increases the ecto-5'-nucleotidase activity in neurons, which produces adenosine from AMP. L- and D-aspartate (Asp) mimic most of the actions of glutamate in the N-methyl-D-aspartate (NMDA) receptors. In the present study, both amino acids stimulated the ecto-5'-nucleotidase activity in cerebellar granule cells. MK-801 and AP-5 prevented the L- and D-Asp-evoked activation of ecto-5'-nucleotidase. Both NMDA receptor antagonists prevented completely the damage induced by L-Asp, but partially the D-Asp-induced damage. The antagonist of adenosine A(2A) receptors (ZM 241385) prevented totally the L- Asp-induced cellular death, but partially the neurotoxicity induced by D-Asp and the antagonist of adenosine A(1) receptors (CPT) had no effect. The results indicated a different involvement of NMDA receptors on the L- or D-Asp-evoked activation of ecto-5'-nucleotidase and on cellular damage. The adenosine formed from ecto-5'-nucleotidase stimulation preferentially acted on adenosine A(2A) receptor which is probably co-operating with the neurotoxicity induced by amino acids.
Collapse
Affiliation(s)
- C R Boeck
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | |
Collapse
|
6
|
Girardi ES, Canitrot J, Antonelli M, González NN, Coirini H. Differential Expression of Cerebellar Metabotropic Glutamate Receptors mGLUR2/3 and mGLUR4a after the Administration of a Convulsant Drug and the Adenosine Analogue Cyclopentyladenosine. Neurochem Res 2007; 32:1120-8. [PMID: 17401670 DOI: 10.1007/s11064-006-9275-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
Metabotropic glutamate receptors (mGluR) play a role in synaptic transmission, neuronal modulation and plasticity but their action in epileptic activity is still controversial. On the other hand adenosine acts as a neuromodulator with endogenous anticonvulsive properties. Since cerebellum from epileptic patients has shown neuronal damage, sometimes associated with Purkinje cells loss, we have explored the effect of repetitive seizures on two types of mGluR in the cerebellum. Seizures were induced by the convulsant drug 3-mercaptopropionic acid (MP) and the effect of the adenosine analogue cyclopentyladenosine (CPA) alone or before MP administration (CPA+MP) were also evaluated. The expression of the receptors subtypes 2/3 (mGluR2/3) and 4a (mGluR4a) was assessed by immunocitochemistry. Granular cell layer was labeled with mGluR2/3 antibody and increased immunoreactivity was observed after MP (60%), CPA (53%) and CPA + MP (85%) treatments. Control cerebellum slices showed mGluR4a reactivity around Purkinje cells, while MP, CPA and CPA+MP treatment decreased this immunostaining. Repetitive administration of MP and CPA induces an increased cerebellar mGluR2/3 and a decreased mGluR4a immunostaining, suggesting a distinct participation of both receptors that may be related to the type of cell involved. A protective action and /or an apoptotic effect may not be discarded. CPA repetitive administration although increase seizure latency, cannot prevent seizure activity.
Collapse
Affiliation(s)
- Elena Silvia Girardi
- Instituto de Biología Celular y Neurociencia Prof. Eduardo De Robertis Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
7
|
Boeck CR, Kroth EH, Bronzatto MJ, Jardim FM, Souza DO, Vendite D. Effects of glutamate transporter and receptor ligands on neuronal glutamate uptake. Neurosci Res 2005; 53:77-83. [PMID: 16011854 DOI: 10.1016/j.neures.2005.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 05/04/2005] [Accepted: 06/03/2005] [Indexed: 11/22/2022]
Abstract
The excitatory amino acids (EAAs) transporters regulate the balance between physiological and pathological signaling over stimulation of the glutamatergic system pathway. The effect of transportable substrates and glutamate (Glu) receptor agonists on Glu uptake in neuronal cells was assessed at different conditions. Cells pre-incubated with Glu, L- or D-aspartate (Asp) and washed presented an inhibition on [(3)H]-Glu uptake and this effect was not mimicked by Glu receptors agonists. The effects of L- and D-Asp were not altered by the presence of N-methyl-d-aspartate (NMDA) receptor antagonists. Thus, the reduction on Glu uptake induced by EAAs is probably linked to the transporter activity. In contrast, the presence of NMDA or (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (SR-ACPD) during the pre-incubation and the [(3)H]-Glu uptake assay period increased Glu uptake, whilst kainic acid (KA) had no effect. The NMDA effect was not altered by its antagonists (+/-)-2-amino-5-phosphonopentanoic acid (AP-5) or dizocilpine (MK-801). The SR-ACPD effect was due to the activation of metabotropic Glu receptor, since it was abolished by its antagonist, L(+/-)-2-amino-3-phosphonopropionic acid (L-AP3). Thus, the current studies suggest that the neuronal EAAs transporter is regulated in different manner by transportable substrates and Glu receptor agonists. The possible involvement of this modulation after certain neurotoxicity insults is discussed.
Collapse
Affiliation(s)
- Carina R Boeck
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 (anexo), 90035-035 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Nicolaidis R, Bruno AN, Sarkis JJF, Souza DO. Increase of adenine nucleotide hydrolysis in rat hippocampal slices after seizures induced by quinolinic acid. Neurochem Res 2005; 30:385-90. [PMID: 16018583 DOI: 10.1007/s11064-005-2613-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Quinolinic acid (QUIN), an endogenous convulsant compound, overstimulates the glutamatergic system stimulating N-methyl-D-aspartate receptors, enhancing glutamate release and inhibiting glutamate uptake. Glutamate releases the neuroprotector adenosine, which in turn reduces glutamate release and depresses the neuronal activity. Additionally, adenine nucleotides are an important source of adenosine, by action of ecto-nucleotidases. Here we evaluated the adenine nucleotide hydrolysis in hippocampal slices of adult rats in different times after seizures induced by QUIN. After 45 min, there was an increase of ATP and ADP hydrolysis. After 5 h, there was an increase of ATP, ADP and AMP hydrolysis. After 12 h, there was an increase only of ATP hydrolysis. After 24 h, all hydrolysis returned to control levels. As slice preparations maintain tissue integrity, this study indicates, more than previously observed with synaptosomal preparations, that the extracellular production of the neuroprotector adenosine may be involved in brain responses to seizures.
Collapse
Affiliation(s)
- Rafael Nicolaidis
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | |
Collapse
|
9
|
Boeck CR, Kroth EH, Bronzatto MJ, Vendite D. Adenosine receptors co-operate with NMDA preconditioning to protect cerebellar granule cells against glutamate neurotoxicity. Neuropharmacology 2005; 49:17-24. [PMID: 15992577 DOI: 10.1016/j.neuropharm.2005.01.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 01/10/2005] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
N-Methyl-D-aspartate (NMDA) preconditioning is evoked by subtoxic concentrations of NMDA (50 microM), which has been shown previously to lead to transient resistance to subsequent lethal dose of glutamate or NMDA in cultured neurons. The purpose of this study was to investigate the participation of adenosine A1 and A2A receptors on NMDA preconditioning against glutamate-induced cellular damage in cerebellar granule cells. NMDA preconditioning prevented the stimulatory effect induced by glutamate on AMP hydrolysis, but not on ADP hydrolysis. The neuroprotection evoked by NMDA preconditioning against glutamate-induced cellular damage was prevented by the presence of adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dimethylxanthine (CPT, 100 nM), but not by the adenosine A2A receptors antagonist, (4-(2[7-amino-2-(2-furyl {1,2,4}-triazolo{2,3-a{1,3,5}triazian-5-yl-aminoethyl)phenol (ZM 241385, 50 nM). Interestingly, a long-term treatment with CPT or ZM 241385 alone protected cells against glutamate-induced neurotoxicity. Moreover, the functionality of adenosine A1 receptor was not affected by NMDA preconditioning, but this treatment promoted adenosine A2A receptor desensitization, measured by cAMP accumulation. Taken together, the results described herein suggest that the neuroprotection evoked by NMDA preconditioning against cellular damage elicited by glutamate occurs through mechanisms involving adenosine A2A receptors desensitization co-operating with adenosine A1 receptors activation in cerebellar granule cells.
Collapse
Affiliation(s)
- Carina R Boeck
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 (anexo), 90035-035, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
10
|
da Silva RS, Bruno AN, Battastini AMO, Sarkis JJF, Lara DR, Bonan CD. Acute caffeine treatment increases extracellular nucleotide hydrolysis from rat striatal and hippocampal synaptosomes. Neurochem Res 2003; 28:1249-54. [PMID: 12834266 DOI: 10.1023/a:1024292831762] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The psychostimulant caffeine promotes behavioral effects such as hyperlocomotion, anxiety, and disruption of sleep by blockade of adenosine receptors. The availability of extracellular adenosine depends on its release by transporters or by the extracellular ATP catabolism performed by the ecto-nucleotidase pathway. This study verified the effect of caffeine on NTPDase 1 (ATP diphosphohydrolase) and 5'-nucleotidase of synaptosomes from hippocampus and striatum of rats. Caffeine and theophylline tested in vitro were unable to modify nucleotide hydrolysis. Caffeine chronically administered in the drinking water at 0.3 g/L or 1 g/L for 14 days failed to affect nucleotide hydrolysis. However, acute administration of caffeine (30 mg/kg, i.p.) produced an enhancement of ATP (50%) and ADP (32%) hydrolysis in synaptosomes of hippocampus and striatum, respectively. This activation of ATP and ADP hydrolysis after acute treatment suggests a compensatory effect to increase adenosine levels and counteract the antagonist action of caffeine.
Collapse
Affiliation(s)
- Rosane Souza da Silva
- Laboratório de Enzimologia, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Kommers T, Rodnight R, Boeck C, Vendite D, Oliveira D, Horn J, Oppelt D, Wofchuk S. Phosphorylation of glial fibrillary acidic protein is stimulated by glutamate via NMDA receptors in cortical microslices and in mixed neuronal/glial cell cultures prepared from the cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 137:139-48. [PMID: 12220706 DOI: 10.1016/s0165-3806(02)00434-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In previous work we showed that phosphorylation of glial fibrillary acidic protein (GFAP), an astrocyte marker, is increased by glutamate in hippocampal slices from immature rats via a type II metabotropic receptor. In the present work we show that glutamate also stimulates GFAP phosphorylation in microslices prepared from immature cerebellar cortex, but by a different receptor mechanism from that observed in the hippocampus. Thus, in cerebellar microslices, NMDA consistently stimulated GFAP phosphorylation, whereas no effect of metabotropic or non-NMDA ionotropic agonists was observed. Glutamate and NMDA also stimulated GFAP phosphorylation in mixed neuronal/glial cell cultures from the cerebellum, although no effect of these agonists was observed in primary cultures of cerebellar astrocytes. In both models, the effects of glutamate and NMDA were dependent on external Ca(2+), were reversed by the NMDA receptor antagonist AP5 and were not blocked by tetrodotoxin. In the slice study the effect of NMDA was confined to a period starting with the first detectable expression of GFAP at 10 days and finishing at 16 days postnatal, as previously observed with metabotropic agonists in hippocampal slices. This period in the rat corresponds to the start of synaptogenesis when astrocyte hypertrophy is occurring. The results are discussed in the light of information in the literature on the occurrence of functional NMDA receptor subunits in glia.
Collapse
Affiliation(s)
- Trícia Kommers
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo 90035003, RS, Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Collard CD, Park KA, Montalto MC, Alapati S, Buras JA, Stahl GL, Colgan SP. Neutrophil-derived glutamate regulates vascular endothelial barrier function. J Biol Chem 2002; 277:14801-11. [PMID: 11847215 DOI: 10.1074/jbc.m110557200] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial barrier function is altered by the release of soluble polymorphonuclear leukocyte (PMN)-derived mediators during inflammatory states. However, endogenous pathways to describe such changes are only recently appreciated. Using an in vitro endothelial paracellular permeability model, cell-free supernatants from formylmethionylleucylphenylalanine-stimulated PMNs were observed to significantly alter endothelial permeability. Biophysical and biochemical analysis of PMN supernatants identified PMN-derived glutamate in modulating endothelial permeability. Furthermore, novel expression of metabotropic glutamate receptor 1 (mGluR1), mGluR4, and mGluR5 by human brain and dermal microvascular endothelial cells was demonstrated by reverse transcription-PCR, in situ hybridization, immunofluorescence, and Western blot analysis. Treatment of human brain endothelia with glutamate or selective, mGluR group I or III agonists resulted in a time-dependent loss of phosphorylated vasodilator-stimulated phosphoprotein (VASP) and significantly increased endothelial permeability. Glutamate-induced decreases in brain endothelial barrier function and phosphorylated VASP were significantly attenuated by pretreatment of human brain endothelia with selective mGluR antagonists. These observations were extended to an in vivo hypoxic mouse model in which pretreatment with mGluR antagonists significantly decreased fluorescein isothiocyanate-dextran flux across the blood-brain barrier. We conclude that activated human PMNs release glutamate and that endothelial expression of group I or III mGluRs function to decrease human brain endothelial VASP phosphorylation and barrier function. These results identify a novel pathway by which PMN-derived glutamate may regulate human endothelial barrier function.
Collapse
Affiliation(s)
- Charles D Collard
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Boeck CR, Sarkis JJF, Vendite D. Kinetic characterization and immunodetection of ecto-ATP diphosphohydrolase (EC 3.6.1.5) in cultured hippocampal neurons. Neurochem Int 2002; 40:449-53. [PMID: 11821153 DOI: 10.1016/s0197-0186(01)00099-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular ATP and adenosine modulate synaptic transmission in hippocampal neurons. ATP released from neural cells is hydrolyzed to adenosine by a chain of ecto-nucleotidases. ATP diphosphohydrolase hydrolyses ATP and ADP nucleotides to AMP and 5'-nucleotidase hydrolyses AMP to adenosine. In this work, we investigated the ATPase and ADPase activities of ATP diphosphohydrolase in cultured hippocampal neurons. The apparent Michaelis-Menten constant (K(m)) was 233.9 +/- 14.6 and 221.8 +/- 63.6 microM, with a calculated maximal velocity (V(max), approximately) of 49.2 +/- 10.7 and 10.9 +/- 5.2 nmol Pi/mg protein/min for ATP and ADP, respectively. The horizontal straight line obtained in the competition plot indicated that only one active site is able to hydrolyze both substrates. Furthermore, we detected the presence of this enzyme using anti-CD39 antibody, which strongly stained the soma of pyramidal and bipolar neurons, but the neurites connecting the cell clusters were also immunopositive. This antibody recognized three bands with a molecular mass close to 95, 80 and 60kDa in immunoblotting analysis. The present results show, for the first time, the kinetic and immunocytochemical characterization of an ATP diphosphohydrolase in cultured hippocampal neurons. Probably, the widespread distribution of this enzyme on the surface of neurons in culture could reflect its functional importance in studies of synaptic plasticity hippocampal.
Collapse
Affiliation(s)
- Carina Rodrigues Boeck
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 (anexo), 90035-003, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|