1
|
Alam MR, Singh S. Neuromodulation in Parkinson's disease targeting opioid and cannabinoid receptors, understanding the role of NLRP3 pathway: a novel therapeutic approach. Inflammopharmacology 2023:10.1007/s10787-023-01259-0. [PMID: 37318694 DOI: 10.1007/s10787-023-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, resulting in motor and non-motor symptoms. Although levodopa is the primary medication for PD, its long-term use is associated with complications such as dyskinesia and drug resistance, necessitating novel therapeutic approaches. Recent research has highlighted the potential of targeting opioid and cannabinoid receptors as innovative strategies for PD treatment. Modulating opioid transmission, particularly through activating µ (MOR) and δ (DOR) receptors while inhibiting κ (KOR) receptors, shows promise in preventing motor complications and reducing L-DOPA-induced dyskinesia. Opioids also possess neuroprotective properties and play a role in neuroprotection and seizure control. Similar to this, endocannabinoid signalling via CB1 and CB2 receptors influences the basal ganglia and may contribute to PD pathophysiology, making it a potential therapeutic target. In addition to opioid and cannabinoid receptor targeting, the NLRP3 pathway, implicated in neuroinflammation and neurodegeneration, emerges as another potential therapeutic avenue for PD. Recent studies suggest that targeting this pathway holds promise as a therapeutic strategy for PD management. This comprehensive review focuses on neuromodulation and novel therapeutic approaches for PD, specifically highlighting the targeting of opioid and cannabinoid receptors and the NLRP3 pathway. A better understanding of these mechanisms has the potential to enhance the quality of life for PD patients.
Collapse
Affiliation(s)
- Md Reyaz Alam
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Cozene B, Sadanandan N, Farooq J, Kingsbury C, Park YJ, Wang ZJ, Moscatello A, Saft M, Cho J, Gonzales-Portillo B, Borlongan CV. Mesenchymal Stem Cell-Induced Anti-Neuroinflammation Against Traumatic Brain Injury. Cell Transplant 2021; 30:9636897211035715. [PMID: 34559583 PMCID: PMC8485159 DOI: 10.1177/09636897211035715] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a pervasive and damaging form of acquired brain injury (ABI). Acute, subacute, and chronic cell death processes, as a result of TBI, contribute to the disease progression and exacerbate outcomes. Extended neuroinflammation can worsen secondary degradation of brain function and structure. Mesenchymal stem cell transplantation has surfaced as a viable approach as a TBI therapeutic due to its immunomodulatory and regenerative features. This article examines the role of inflammation and cell death in ABI as well as the effectiveness of bone marrow-derived mesenchymal stem/stromal cell (BM-MSC) transplants as a treatment for TBI. Furthermore, we analyze new studies featuring transplanted BM-MSCs as a neurorestorative and anti-inflammatory therapy for TBI patients. Although clinical trials support BM-MSC transplants as a viable TBI treatment due to their promising regenerative characteristics, further investigation is imperative to uncover innovative brain repair pathways associated with cell-based therapy as stand-alone or as combination treatments.
Collapse
Affiliation(s)
| | | | - Jeffrey Farooq
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Chase Kingsbury
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Alexa Moscatello
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | | | - Justin Cho
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
3
|
Russo E, Lee JY, Nguyen H, Corrao S, Anzalone R, La Rocca G, Borlongan CV. Energy Metabolism Analysis of Three Different Mesenchymal Stem Cell Populations of Umbilical Cord Under Normal and Pathologic Conditions. Stem Cell Rev Rep 2021; 16:585-595. [PMID: 32185666 PMCID: PMC7253397 DOI: 10.1007/s12015-020-09967-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) are a pivotal source of therapeutically active cells for regenerative medicine due to their multipotent differentiation potential, immunomodulatory and anti-inflammatory proprieties, as well as logistical collection advantages without ethical concerns. However, it remains poorly understood whether MSCs from different compartments of the human umbilical cord are therapeutically superior than others. In this study, MSCs were isolated from Wharton’s jelly (WJ-MSCs), perivascular region (PV-MSCs) and cord lining (CL-MSCs) of hUC. These cells expressed the mesenchymal markers (CD90, CD73), stemness marker (OCT4), endothelial cell adhesion molecular marker (CD146), and the monocyte/macrophage marker (CD14) found within the MSC population implicated as a key regulator of inflammatory responses to hypoxia, was displayed by WJ-, PV-, and CL-MSCs respectively. A direct consequence of oxygen and glucose deprivation during stroke and reperfusion is impaired mitochondrial function that contributes to cellular death. Emerging findings of mitochondria transfer provide the basis for the replenishment of healthy mitochondria as a strategy for the treatment of stroke. Cell Energy Phenotype and Mito Stress tests were performed the energy metabolic profile of the three MSC populations and their mitochondrial function in both ambient and OGD cell culture conditions. PV-MSCs showed the highest mitochondrial activity. CL-MSCs were the least affected by OGD/R condition, suggesting their robust survival in ischemic environment. In this study, MSC populations in UC possess comparable metabolic capacities and good survival under normal and hypoxic conditions suggesting their potential as transplantable cells for mitochondrial-based stem cell therapy in stroke and other ischemic diseases.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA.,Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Hung Nguyen
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Simona Corrao
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Rita Anzalone
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Giampiero La Rocca
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy.
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
4
|
Cozene BM, Russo E, Anzalone R, Rocca GL, Borlongan CV. Mitochondrial activity of human umbilical cord mesenchymal stem cells. Brain Circ 2021; 7:33-36. [PMID: 34084975 PMCID: PMC8057105 DOI: 10.4103/bc.bc_15_21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) serve as a potential cell-based therapy for degenerative disease. They provide immunomodulatory and anti-inflammatory properties, multipotent differentiation potential and are harvested with no ethical concern. It is unknown whether MSCs collected from different areas of the human umbilical cord elicit more favorable effects than others. Three MSC populations were harvested from various regions of the human umbilical cord: cord lining (CL-MSCs), perivascular region (PV-MSCs), and Wharton's jelly (WJ-MSCs). Mesenchymal markers (CD90 and CD73) were expressed by all three cell populations. Stemness marker (OCT4), endothelial cell adhesion molecular marker (CD146), and monocyte-macrophage marker (CD14) were expressed by WJ-MSCs, PV-MSCs, and CL-MSCs, respectively. Stroke presents with oxygen and glucose deprivation and leads to dysfunctional mitochondria and consequently cell death. Targeting the restoration of mitochondrial function in the stroke brain through mitochondrial transfer may be effective in treating stroke. In vitro exposure to ambient and OGD conditions resulted in CL-MSCs number decreasing the least post-OGD/R exposure, and PV-MSCs exhibiting the greatest mitochondrial activity. All three hUC-MSC populations presented similar metabolic activity and survival in normal and pathologic environments. These characteristics indicate hUC-MSCs potential as a potent therapeutic in regenerative medicine.
Collapse
Affiliation(s)
- Blaise M Cozene
- School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Eleonora Russo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rita Anzalone
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Cesario V Borlongan
- Department of Cell and Molecular Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
5
|
Wang ZJ, Yasuhara T. An Examination of Mobile Spinal Cord Stimulators on Treating Parkinson Disease. Brain Circ 2021; 7:8-12. [PMID: 34084970 PMCID: PMC8057101 DOI: 10.4103/bc.bc_6_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/24/2022] Open
Abstract
In animal models of Parkinson disease (PD), spinal cord stimulation (SCS) exhibits neuroprotective effects. Recent advancements in SCS technology, most importantly mobile stimulators, allow for the conventional limitations of SCS such as limited stimulation time and restricted animal movements to be bypassed, offering potential avenues for improved clinical translation to PD patients. Small devices that could deliver continuous SCS to freely moving parkinsonian rats were shown to significantly improve behavior, preserve neurons and fibers in the substantia Nigra/striatum, reduce microglia infiltration, and increase laminin-positive area of the cerebral cortex. Through possible anti-inflammatory and angiogenic mechanisms, it has been demonstrated that there are behavioral and histological benefits to continuous SCS in a time-dependent manner. This review will discuss the benefits of this technology as well as focus on the limitations of current animal models.
Collapse
Affiliation(s)
- Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Takao Yasuhara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Kuwahara K, Sasaki T, Yasuhara T, Kameda M, Okazaki Y, Hosomoto K, Kin I, Okazaki M, Yabuno S, Kawauchi S, Tomita Y, Umakoshi M, Kin K, Morimoto J, Lee JY, Tajiri N, Borlongan CV, Date I. Long-Term Continuous Cervical Spinal Cord Stimulation Exerts Neuroprotective Effects in Experimental Parkinson's Disease. Front Aging Neurosci 2020; 12:164. [PMID: 32612523 PMCID: PMC7309445 DOI: 10.3389/fnagi.2020.00164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/12/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Spinal cord stimulation (SCS) exerts neuroprotective effects in animal models of Parkinson's disease (PD). Conventional stimulation techniques entail limited stimulation time and restricted movement of animals, warranting the need for optimizing the SCS regimen to address the progressive nature of the disease and to improve its clinical translation to PD patients. OBJECTIVE Recognizing the limitations of conventional stimulation, we now investigated the effects of continuous SCS in freely moving parkinsonian rats. METHODS We developed a small device that could deliver continuous SCS. At the start of the experiment, thirty female Sprague-Dawley rats received the dopamine (DA)-depleting neurotoxin, 6-hydroxydopamine, into the right striatum. The SCS device was fixed below the shoulder area of the back of the animal, and a line from this device was passed under the skin to an electrode that was then implanted epidurally over the dorsal column. The rats were divided into three groups: control, 8-h stimulation, and 24-h stimulation, and behaviorally tested then euthanized for immunohistochemical analysis. RESULTS The 8- and 24-h stimulation groups displayed significant behavioral improvement compared to the control group. Both SCS-stimulated groups exhibited significantly preserved tyrosine hydroxylase (TH)-positive fibers and neurons in the striatum and substantia nigra pars compacta (SNc), respectively, compared to the control group. Notably, the 24-h stimulation group showed significantly pronounced preservation of the striatal TH-positive fibers compared to the 8-h stimulation group. Moreover, the 24-h group demonstrated significantly reduced number of microglia in the striatum and SNc and increased laminin-positive area of the cerebral cortex compared to the control group. CONCLUSIONS This study demonstrated the behavioral and histological benefits of continuous SCS in a time-dependent manner in freely moving PD animals, possibly mediated by anti-inflammatory and angiogenic mechanisms.
Collapse
Affiliation(s)
- Ken Kuwahara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yosuke Okazaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kakeru Hosomoto
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ittetsu Kin
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mihoko Okazaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoru Yabuno
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoshi Kawauchi
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yousuke Tomita
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Michiari Umakoshi
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kyohei Kin
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun Morimoto
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Isao Date
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
7
|
Ferreira C, Almeida C, Tenreiro S, Quintas A. Neuroprotection or Neurotoxicity of Illicit Drugs on Parkinson's Disease. Life (Basel) 2020; 10:life10060086. [PMID: 32545328 PMCID: PMC7344445 DOI: 10.3390/life10060086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson's Disease (PD) is currently the most rapid growing neurodegenerative disease and over the past generation, its global burden has more than doubled. The onset of PD can arise due to environmental, sporadic or genetic factors. Nevertheless, most PD cases have an unknown etiology. Chemicals, such as the anthropogenic pollutant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amphetamine-type stimulants, have been associated with the onset of PD. Conversely, cannabinoids have been associated with the treatment of the symptoms'. PD and medical cannabis is currently under the spotlight, and research to find its benefits on PD is on-going worldwide. However, the described clinical applications and safety of pharmacotherapy with cannabis products are yet to be fully supported by scientific evidence. Furthermore, the novel psychoactive substances are currently a popular alternative to classical drugs of abuse, representing an unknown health hazard for young adults who may develop PD later in their lifetime. This review addresses the neurotoxic and neuroprotective impact of illicit substance consumption in PD, presenting clinical evidence and molecular and cellular mechanisms of this association. This research area is utterly important for contemporary society since illicit drugs' legalization is under discussion which may have consequences both for the onset of PD and for the treatment of its symptoms.
Collapse
Affiliation(s)
- Carla Ferreira
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário–Quinta da Granja, Monte de Caparica, P-2825-084 Caparica, Portugal
- Faculty of Medicine of Porto University, Al. Prof. Hernâni Monteiro, P-4200–319 Porto, Portugal
| | - Catarina Almeida
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
| | - Sandra Tenreiro
- CEDOC–Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, P-1150-082 Lisboa, Portugal;
| | - Alexandre Quintas
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário–Quinta da Granja, Monte de Caparica, P-2825-084 Caparica, Portugal
- Correspondence:
| |
Collapse
|
8
|
Bonsack B, Corey S, Shear A, Heyck M, Cozene B, Sadanandan N, Zhang H, Gonzales-Portillo B, Sheyner M, Borlongan CV. Mesenchymal stem cell therapy alleviates the neuroinflammation associated with acquired brain injury. CNS Neurosci Ther 2020; 26:603-615. [PMID: 32356605 PMCID: PMC7248547 DOI: 10.1111/cns.13378] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke and traumatic brain injury (TBI) comprise two particularly prevalent and costly examples of acquired brain injury (ABI). Following stroke or TBI, primary cell death and secondary cell death closely model disease progression and worsen outcomes. Mounting evidence indicates that long‐term neuroinflammation extensively exacerbates the secondary deterioration of brain structure and function. Due to their immunomodulatory and regenerative properties, mesenchymal stem cell transplants have emerged as a promising approach to treating this facet of stroke and TBI pathology. In this review, we summarize the classification of cell death in ABI and discuss the prominent role of inflammation. We then consider the efficacy of bone marrow–derived mesenchymal stem/stromal cell (BM‐MSC) transplantation as a therapy for these injuries. Finally, we examine recent laboratory and clinical studies utilizing transplanted BM‐MSCs as antiinflammatory and neurorestorative treatments for stroke and TBI. Clinical trials of BM‐MSC transplants for stroke and TBI support their promising protective and regenerative properties. Future research is needed to allow for better comparison among trials and to elaborate on the emerging area of cell‐based combination treatments.
Collapse
Affiliation(s)
- Brooke Bonsack
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Blaise Cozene
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | | | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Abstract
Since ancient times, opioids have been used clinically and abused recreationally. In the early stages (about 1,000 AD) of opium history, an Arab physician, Avicenna, administered opioids to control diarrhea and eye diseases. 1 Opioids have very strong pain relieving properties and they also regulate numerous cellular responses. Opioid receptors are expressed throughout the body, including the nervous system, heart, lungs, liver, gastrointestinal tract, and retina. 2-6 Delta opioid receptors (DORs) are a very attractive target from the perspective of both receptor function and their therapeutic potential. Due to a rapid progress in mouse mutagenesis and development of small molecules as DOR agonist, novel functions and roles of DORs have emerged in recent years. This review article focuses on the recent advances in the neuroprotective roles of DOR agonists in general and retina neuroprotection in particular. Rather than being exhaustive, this review highlights the selected studies of DOR function in neuroprotection. We also highlight our preclinical studies using rodent models to demonstrate the potentials of DOR agonists for retinal neuroprotection. Based on existing literature and our recently published data on the eye, DOR agonists possess therapeutic abilities that protect the retina and optic nerve injury against glaucoma and perhaps other retinopathies as well. This review also highlights the signaling events associated with DOR for neuroprotection in the eye. There is a need for translational research on DORs to recognize their potential for clinical application such as in glaucoma.
Collapse
Affiliation(s)
- Shahid Husain
- Hewitt Laboratory of the Ola B. Williams Glaucoma Center, Department of Ophthalmology, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
10
|
Zhang Y, Ma L, Su Y, Su L, Lan X, Wu D, Han S, Li J, Kvederis L, Corey S, Borlongan CV, Ji X. Hypoxia conditioning enhances neuroprotective effects of aged human bone marrow mesenchymal stem cell-derived conditioned medium against cerebral ischemia in vitro. Brain Res 2019; 1725:146432. [PMID: 31491422 DOI: 10.1016/j.brainres.2019.146432] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 12/24/2022]
Abstract
Therapeutic transplantation of autologous bone marrow mesenchymal stem cells (BMSCs) holds great promise for ischemic stroke, yet the efficacy is negatively impacted by aging. Here, we examined whether hypoxia conditioning could enhance aged human BMSCs-induced neuroprotection via secretome action. Primary cultured mouse neurons were exposed to oxygen glucose deprivation (OGD) to mimic ischemic stroke in vitro, then randomized into a hypoxia conditioned aged human BMSCs-conditioned medium (BMSC-hypoCM) versus normoxia conditioned (BMSC-norCM). After 22 h of reperfusion, cell viability was significantly increased in neurons treated with BMSC-hypoCM rather than BMSC-norCM. ELISA revealed that hypoxia conditioning enhanced vascular endothelial growth factor (VEGF) release into BMSC-derived CM. Blocking the VEGF receptor negated BMSC-hypoCM-induced protection for neurons against OGD insult. Altogether, our data indicates that hypoxia conditioning improves aged human BMSCs' therapeutic efficacy for neurons with ischemic challenge, in part via promoting secretion of VEGF.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Longhui Ma
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yuwen Su
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Li Su
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoxi Lan
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Di Wu
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Song Han
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Lauren Kvederis
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
11
|
Liska MG, Crowley MG, Tuazon JP, Borlongan CV. Neuroprotective and neuroregenerative potential of pharmacologically-induced hypothermia with D-alanine D-leucine enkephalin in brain injury. Neural Regen Res 2018; 13:2029-2037. [PMID: 30323116 PMCID: PMC6199924 DOI: 10.4103/1673-5374.241427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Neurovascular disorders, such as traumatic brain injury and stroke, persist as leading causes of death and disability - thus, the search for novel therapeutic approaches for these disorders continues. Many hurdles have hindered the translation of effective therapies for traumatic brain injury and stroke primarily because of the inherent complexity of neuropathologies and an inability of current treatment approaches to adapt to the unique cell death pathways that accompany the disorder symptoms. Indeed, developing potent treatments for brain injury that incorporate dynamic and multiple disorder-engaging therapeutic targets are likely to produce more effective outcomes than traditional drugs. The therapeutic use of hypothermia presents a promising option which may fit these criteria. While regulated temperature reduction has displayed great promise in preclinical studies of brain injury, clinical trials have been far less consistent and associated with adverse effects, especially when hypothermia is pursued via systemic cooling. Accordingly, devising better methods of inducing hypothermia may facilitate the entry of this treatment modality into the clinic. The use of the delta opioid peptide D-alanine D-leucine enkephalin (DADLE) to pharmacologically induce temperature reduction may offer a potent alternative, as DADLE displays both the ability to cause temperature reduction and to confer a broad profile of other neuroprotective and neuroregenerative processes. This review explores the prospect of DADLE-mediated hypothermia to treat neurovascular brain injuries, emphasizing the translational steps necessary for its clinical translation.
Collapse
Affiliation(s)
- M. Grant Liska
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Marci G. Crowley
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Julian P. Tuazon
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
12
|
δ-Opioid Receptor Activation Attenuates the Oligomer Formation Induced by Hypoxia and/or α-Synuclein Overexpression/Mutation Through Dual Signaling Pathways. Mol Neurobiol 2018; 56:3463-3475. [DOI: 10.1007/s12035-018-1316-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
|
13
|
Dewan S, Schimmel S, Borlongan CV. Treating childhood traumatic brain injury with autologous stem cell therapy. Expert Opin Biol Ther 2018; 18:515-524. [PMID: 29421958 PMCID: PMC6086119 DOI: 10.1080/14712598.2018.1439473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Neonatal traumatic brain injury (TBI) is a significant cause of developmental disorders. Autologous stem cell therapy may enhance neonatal brain plasticity towards repair of the injured neonatal brain. AREAS COVERED The endogenous neonatal anti-inflammatory response can be enhanced through the delivery of anti-inflammatory agents. Stem cell therapy stands as a robust approach for sequestering the inflammation-induced cell death in the injured brain. Here, we discuss the use of umbilical cord blood cells and bone marrow stromal cells for acute and chronic treatment of experimental neonatal TBI. Autologous stem cell transplantation may dampen neuroinflammation. Clinical translation of this stem cell therapy will require identifying the therapeutic window post-injury and harvesting ample supply of transplantable autologous stem cells. Stem cell banking of cryopreserved cells may allow readily available transplantable cells and circumvent the unpredictable nature of neonatal TBI. Harnessing the anti-inflammatory properties of stem cells is key in combating the progressive neurodegeneration after the initial injury. EXPERT OPINION Combination treatments, such as with hypothermia, may enhance the therapeutic effects of stem cells. Stem cell therapy has immense potential as a stand-alone or adjunctive therapy for treating neuroinflammation associated with neonatal TBI acutely and for preventing further progression of the injury.
Collapse
Affiliation(s)
- Shyam Dewan
- Center of Excellence for Aging and Brain Repair, Department of Neurosugery and Brain Repair, University of South Florida Morsani College of Medicine. 3515 E. Fletcher Avenue, Tampa, FL 33613, USA
| | - Samantha Schimmel
- Center of Excellence for Aging and Brain Repair, Department of Neurosugery and Brain Repair, University of South Florida Morsani College of Medicine. 3515 E. Fletcher Avenue, Tampa, FL 33613, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosugery and Brain Repair, University of South Florida Morsani College of Medicine. 3515 E. Fletcher Avenue, Tampa, FL 33613, USA
| |
Collapse
|
14
|
Xu Y, Zhi F, Peng Y, Shao N, Khiati D, Balboni G, Yang Y, Xia Y. δ-Opioid Receptor Activation Attenuates Hypoxia/MPP +-Induced Downregulation of PINK1: a Novel Mechanism of Neuroprotection Against Parkinsonian Injury. Mol Neurobiol 2018; 56:252-266. [PMID: 29687347 DOI: 10.1007/s12035-018-1043-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
There is emerging evidence suggesting that neurotoxic insults and hypoxic/ischemic injury are underlying causes of Parkinson's disease (PD). Since PTEN-induced kinase 1 (PINK1) dysfunction is involved in the molecular genesis of PD and since our recent studies have demonstrated that the δ-opioid receptor (DOR) induced neuroprotection against hypoxic and 1-methyl-4-phenyl-pyridimium (MPP+) insults, we sought to explore whether DOR protects neuronal cells from hypoxic and/or MPP+ injury via the regulation of PINK1-related pathways. Using highly differentiated rat PC12 cells exposed to either severe hypoxia (0.5-1% O2) for 24-48 h or varying concentrations of MPP+, we found that both hypoxic and MPP+ stress reduced the level of PINK1 expression, while incubation with the specific DOR agonist UFP-512 reversed this reduction and protected the cells from hypoxia and/or MPP+-induced injury. However, the DOR-mediated cytoprotection largely disappeared after knocking down PINK1 by PINK1 small interfering RNA. Moreover, we examined several important signaling molecules related to cell survival and apoptosis and found that DOR activation attenuated the hypoxic and/or MPP+-induced reduction in phosphorylated Akt and inhibited the activation of cleaved caspase-3, whereas PINK1 knockdown largely deprived the cell of the DOR-induced effects. Our novel data suggests a unique mechanism underlying DOR-mediated cytoprotection against hypoxic and MPP+ stress via a PINK1-mediated regulation of signaling.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Naiyuan Shao
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Dhiaedin Khiati
- Royal College of Surgeons of Ireland - Medical University of Bahrain, Busaiteen, Bahrain
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Yilin Yang
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China. .,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Moghal ETB, Venkatesh K, Sen D. The delta opioid peptide D-Alanine 2, Leucine 5 Enkephaline (DADLE)-induces neuroprotection through cross-talk between the UPR and pro-survival MAPK-NGF-Bcl2 signaling pathways via modulation of several micro-RNAs in SH-SY5Y cells subjected to ER stress. Cell Biol Int 2018; 42:543-569. [DOI: 10.1002/cbin.10923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Erfath Thanjeem Begum Moghal
- Cellular and Molecular Therapeutics Laboratory; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT); Vellore Tamil Nadu 632014 India
| | - Katari Venkatesh
- Cellular and Molecular Therapeutics Laboratory; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT); Vellore Tamil Nadu 632014 India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT); Vellore Tamil Nadu 632014 India
| |
Collapse
|
16
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that compromises multiple neurochemical substrates including dopamine, norepinephrine, serotonin, acetylcholine, and glutamate systems. Loss of these transmitter systems initiates a cascade of neurological deficits beginning with motor function and ending with dementia. Current therapies primarily address the motor symptoms of the disease via dopamine replacement therapy. Exogenous dopamine replacement brings about additional challenges since after years of treatment it almost invariably gives rise to dyskinesia as a side effect. Therefore there is a clear unmet clinical need for improved PD therapeutics. Opioid receptors and their respective peptides are expressed throughout the basal ganglia and cortex where monoaminergic denervation strongly contributes to PD pathology. Delta opioid receptors are of particular interest because of their dense localization in basal ganglia and because activating this system is known to enhance locomotor activity under a variety of conditions. This chapter will outline much of the work that has demonstrated the effectiveness of delta opioid receptor activation in models of PD and its neuroprotective properties. It also discusses some of the challenges that must be addressed before moving delta opioid receptor agonists into a clinical setting.
Collapse
Affiliation(s)
- Omar S Mabrouk
- Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI, 48109, USA.
- Department of Pharmacology, University of Michigan, 930 North University, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158:94-131. [PMID: 28743464 DOI: 10.1016/j.pneurobio.2017.07.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide. A key secondary cell death mechanism mediating neurological damage following the initial episode of ischemic stroke is the upregulation of endogenous neuroinflammatory processes to levels that destroy hypoxic tissue local to the area of insult, induce apoptosis, and initiate a feedback loop of inflammatory cascades that can expand the region of damage. Stem cell therapy has emerged as an experimental treatment for stroke, and accumulating evidence supports the therapeutic efficacy of stem cells to abrogate stroke-induced inflammation. In this review, we investigate clinically relevant stem cell types, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), very small embryonic-like stem cells (VSELs), neural stem cells (NSCs), extraembryonic stem cells, adipose tissue-derived stem cells, breast milk-derived stem cells, menstrual blood-derived stem cells, dental tissue-derived stem cells, induced pluripotent stem cells (iPSCs), teratocarcinoma-derived Ntera2/D1 neuron-like cells (NT2N), c-mycER(TAM) modified NSCs (CTX0E03), and notch-transfected mesenchymal stromal cells (SB623), comparing their potential efficacy to sequester stroke-induced neuroinflammation and their feasibility as translational clinical cell sources. To this end, we highlight that MSCs, with a proven track record of safety and efficacy as a transplantable cell for hematologic diseases, stand as an attractive cell type that confers superior anti-inflammatory effects in stroke both in vitro and in vivo. That stem cells can mount a robust anti-inflammatory action against stroke complements the regenerative processes of cell replacement and neurotrophic factor secretion conventionally ascribed to cell-based therapy in neurological disorders.
Collapse
|
18
|
Mullick M, Venkatesh K, Sen D. d-Alanine 2, Leucine 5 Enkephaline (DADLE)-mediated DOR activation augments human hUCB-BFs viability subjected to oxidative stress via attenuation of the UPR. Stem Cell Res 2017; 22:20-28. [DOI: 10.1016/j.scr.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 01/16/2023] Open
|
19
|
Borlongan CV, Su TP, Wang Y. Delta Opioid Peptide Augments Functional Effects and Intrastriatal Graft Survival of Rat Fetal Ventral Mesencephalic Cells. Cell Transplant 2017. [DOI: 10.3727/000000001783987007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Cesario V. Borlongan
- Cellular Neurobiology, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Tsung-Ping Su
- Cellular Neurobiology, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Yun Wang
- Cellular Neurobiology, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| |
Collapse
|
20
|
Grant Liska M, Crowley MG, Lippert T, Corey S, Borlongan CV. Delta Opioid Receptor and Peptide: A Dynamic Therapy for Stroke and Other Neurological Disorders. Handb Exp Pharmacol 2017; 247:277-299. [PMID: 28315071 DOI: 10.1007/164_2017_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Research of the opioid system and its composite receptors and ligands has revealed its promise as a potential therapy for neurodegenerative diseases such as stroke and Parkinson's Disease. In particular, delta opioid receptors (DORs) have been elucidated as a therapeutically distinguished subset of opioid receptors and a compelling target for novel intervention techniques. Research is progressively shedding light on the underlying mechanism of DORs and has revealed two mechanisms of DOR neuroprotection; DORs function to maintain ionic homeostasis and also to trigger endogenous neuroprotective pathways. Delta opioid agonists such as (D-Ala2, D-Leu5) enkephalin (DADLE) have been shown to promote neuronal survival and decrease apoptosis, resulting in a substantial amount of research for its application as a neurological therapeutic. Most notably, DADLE has demonstrated significant potential to reduce cell death following ischemic events. Current research is working to reveal the complex mechanisms of DADLE's neuroprotective properties. Ultimately, our knowledge of the DOR receptors and agonists has made the opioid system a promising target for therapeutic intervention in many neurological disorders.
Collapse
Affiliation(s)
- M Grant Liska
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Marci G Crowley
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Trenton Lippert
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
21
|
Protective effect of delta opioid agonist [d-Ala2, d-Leu5] enkephalin on spinal cord ischemia reperfusion injury by regional perfusion into abdominal aorta in rabbits. Neurosci Lett 2015; 584:1-6. [DOI: 10.1016/j.neulet.2014.09.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/11/2022]
|
22
|
Mabrouk OS, Viaro R, Volta M, Ledonne A, Mercuri N, Morari M. Stimulation of δ opioid receptor and blockade of nociceptin/orphanin FQ receptor synergistically attenuate parkinsonism. J Neurosci 2014; 34:12953-62. [PMID: 25253844 PMCID: PMC6608339 DOI: 10.1523/jneurosci.4677-13.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 11/21/2022] Open
Abstract
δ opioid peptide (DOP) receptors are considered a therapeutic target in Parkinson's disease, although the use of DOP agonists may be limited by side effects, including convulsions. To circumvent this issue, we evaluated whether blockade of nociceptin/orphanin FQ (N/OFQ) tone potentiated the antiparkinsonian effects of DOP agonists, thus allowing for reduction of their dosage. Systemic administration of the N/OFQ receptor (NOP) antagonist J-113397 [(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H benzimidazol-2-one] and the DOP receptor agonist SNC-80 [(+)-4-[(αR)-α-(2S,5R)-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxy-benzyl]-N-N-diethylbenzamide] revealed synergistic attenuation of motor deficits in 6-hydroxydopamine hemilesioned rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. In this model, repeated administration of the combination produced reproducible antiparkinsonian effects and was not associated with rescued striatal dopamine terminals. Microdialysis studies revealed that either systemic administration or local intranigral perfusion of J-113397 and SNC-80 led to the enhancement of nigral GABA, reduction of nigral Glu, and reduction of thalamic GABA levels, consistent with the view that NOP receptor blockade and DOP receptor stimulation caused synergistic overinhibition of nigro-thalamic GABA neurons. Whole-cell recording of GABA neurons in nigral slices confirmed that NOP receptor blockade enhanced the DOP receptor-induced effect on IPSCs via presynaptic mechanisms. Finally, SNC-80 more potently stimulated stepping activity in mice lacking the NOP receptor than wild-type controls, confirming the in vivo occurrence of an NOP-DOP receptor interaction. We conclude that endogenous N/OFQ functionally opposes DOP transmission in substantia nigra reticulata and that NOP receptor antagonists might be used in combination with DOP receptor agonists to reduce their dosage while maintaining their full therapeutic efficacy.
Collapse
Affiliation(s)
- Omar S Mabrouk
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| | - Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, 44121 Ferrara, Italy, Department of Robotics, Brain, and Cognitive Sciences, Italian Institute of Technology, 16163 Genoa, Italy
| | - Mattia Volta
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| | - Ada Ledonne
- Department of System Medicine, Neurophysiopathology, University of Rome "Tor Vergata," 00133 Rome, Italy, and Foundation S. Lucia, Institute for Inpatient Treatment and Scientific Studies, Laboratory of Experimental Neurology, 00143 Rome Italy
| | - Nicola Mercuri
- Department of System Medicine, Neurophysiopathology, University of Rome "Tor Vergata," 00133 Rome, Italy, and Foundation S. Lucia, Institute for Inpatient Treatment and Scientific Studies, Laboratory of Experimental Neurology, 00143 Rome Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| |
Collapse
|
23
|
Gonzales-Portillo GS, Reyes S, Aguirre D, Pabon MM, Borlongan CV. Stem cell therapy for neonatal hypoxic-ischemic encephalopathy. Front Neurol 2014; 5:147. [PMID: 25161645 PMCID: PMC4130306 DOI: 10.3389/fneur.2014.00147] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 07/22/2014] [Indexed: 11/27/2022] Open
Abstract
Treatments for neonatal hypoxic-ischemic encephalopathy (HIE) have been limited. The aim of this paper is to offer translational research guidance on stem cell therapy for neonatal HIE by examining clinically relevant animal models, practical stem cell sources, safety and efficacy of endpoint assays, as well as a general understanding of modes of action of this cellular therapy. In order to do so, we discuss the clinical manifestations of HIE, highlighting its overlapping pathologies with stroke and providing insights on the potential of cell therapy currently investigated in stroke, for HIE. To this end, we draw guidance from recommendations outlined in stem cell therapeutics as an emerging paradigm for stroke or STEPS, which have been recently modified to Baby STEPS to cater for the “neonatal” symptoms of HIE. These guidelines recognized that neonatal HIE exhibit distinct disease symptoms from adult stroke in need of an innovative translational approach that facilitates the entry of cell therapy in the clinic. Finally, new information about recent clinical trials and insights into combination therapy are provided with the vision that stem cell therapy may benefit from available treatments, such as hypothermia, already being tested in children diagnosed with HIE.
Collapse
Affiliation(s)
| | - Stephanny Reyes
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Daniela Aguirre
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Mibel M Pabon
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| |
Collapse
|
24
|
Advancing critical care medicine with stem cell therapy and hypothermia for cerebral palsy. Neuroreport 2014; 24:1067-71. [PMID: 24169604 DOI: 10.1097/wnr.0000000000000062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With limited clinical trials on stem cell therapy for adult stroke underway, the assessment of efficacy also needs to be considered for neonatal hypoxic-ischemic brain injury, considering its distinct symptoms. The critical nature of this condition leads to establishment of deficits that last a lifetime. Here, we will highlight the progress of current translational research, commenting on the critical nature of the disease, stem cell sources, the use of hypothermia, safety and efficacy of each treatment, modes of action, and the possibility of combination therapy. With this in mind, we reference translational guidelines established by a consortium of research partners called Stem cell Therapeutics as an Emerging Paradigm for Stroke (STEPS). The guidelines of STEPS are directed toward evaluating outcomes of cell therapy in adult stroke; however, we identify the overlapping pathology, as we believe that these guidelines will serve well in the investigation of neonatal hypoxic-ischemic therapy. Finally, we discuss emerging treatments and a case report, altogether suggesting that the potential for these treatments to be used in synergy has arrived and the time for advancing stem cell use in combination with hypothermia for cerebral palsy is now.
Collapse
|
25
|
Bissonnette S, Muratot S, Vernoux N, Bezeau F, Calon F, Hébert SS, Samadi P. The effect of striatal pre-enkephalin overexpression in the basal ganglia of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Eur J Neurosci 2014; 40:2406-16. [PMID: 24750443 DOI: 10.1111/ejn.12596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/12/2014] [Accepted: 03/24/2014] [Indexed: 11/29/2022]
Abstract
The midbrain dopamine (DA) cell death underlying Parkinson's disease (PD) is associated with upregulation of pre-enkephalin (pENK) in striatopallidal neurons. Our previous results obtained with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) parkinsonian monkeys suggest that increased striatal expression of pENK mRNA is a compensatory mechanism to alleviate PD-related motor symptoms. In this study, we tested the hypothesis that increased pENK expression in the striatum protects against the neurotoxic insults of MPTP in mice. To this end, recombinant adeno-associated virus serotype 2 also containing green fluorescent protein was used to overexpress pENK prior to DA depletion. Our results showed that overexpression of pENK in the striatum of MPTP mice induced: (i) increased levels of the opioid peptide enkephalin (ENK) in the striatum; (ii) higher densities of ENK-positive fibers in both the globus pallidus (GP) and the substantia nigra; (iii) higher locomotor activity; and (iv) a higher density of striatal tyrosine hydroxylase-positive fibers in the striatum. In addition, striatal overexpression of pENK in MPTP -treated mice led to 52 and 43% higher DA concentrations and DA turnover, respectively, in the GP compared to sham-treated MPTP mice. These observations are in agreement with the idea that increased expression of pENK at an early stage of disease can improve PD symptoms.
Collapse
Affiliation(s)
- Stéphanie Bissonnette
- Axe Neurosciences, Centre de recherche du CHU de Québec, CHUL, 2705, boul. Laurier, Québec, QC, G1V 4G2, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Tian J, Gu Y, Sun K, Wang B, Chen J, Wang X, Su D. [D-Ala2, D-Leu5] encephalin (DADLE) reversibly inhibits cellular transcription in neurons without causing cell injury. Brain Res 2014; 1565:1-7. [PMID: 24735650 DOI: 10.1016/j.brainres.2014.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 01/01/2023]
Abstract
[d-Ala(2)-d-Leu(5)]-Enkephalin (DADLE) has shown promising results in protecting neurons from damages. However, the mechanism for this protection is still under investigation. The current study was carried out to test the hypothesis that DADLE may regulate cellular transcription in neurons. SH-SY5Y cells and primary cortical neurons were treated with various doses of DADLE for 24-72h. Results demonstrated that DADLE, at all doses and time points examined, significantly inhibited cellular transcription in both cells without causing cell injury. Following recovery for 72h without DADLE in primary neurons, the transcriptional activity fully resumed. Delta opioid receptor (DOR) is not involved in this process, as Naltrindole could not abolish DADLE׳s transcriptional inhibitory effects. Further studies in primary cortical neurons show that DADLE significantly inhibited phosphorylation of Ser2 and Ser5 of the C-terminal domain (CTD) of RNA polymerase II. These data indicate that DADLE is able to decrease cellular transcription through inhibiting phosphorylation of RNA polymerase II in neurons, which may provide mechanistic insight into its reported neuroprotective effects, and suggests that it warrants further exploration as a potential therapeutic strategy for neuroprotection.
Collapse
Affiliation(s)
- Jie Tian
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian road, Shanghai 200127, China
| | - Yang Gu
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian road, Shanghai 200127, China
| | - Ke Sun
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian road, Shanghai 200127, China
| | - Beilei Wang
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian road, Shanghai 200127, China
| | - Jie Chen
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian road, Shanghai 200127, China
| | - Xiangrui Wang
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian road, Shanghai 200127, China.
| | - Diansan Su
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian road, Shanghai 200127, China.
| |
Collapse
|
27
|
Bissonnette S, Vaillancourt M, Hébert SS, Drolet G, Samadi P. Striatal pre-enkephalin overexpression improves Huntington's disease symptoms in the R6/2 mouse model of Huntington's disease. PLoS One 2013; 8:e75099. [PMID: 24040390 PMCID: PMC3770591 DOI: 10.1371/journal.pone.0075099] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/09/2013] [Indexed: 12/25/2022] Open
Abstract
The reduction of pre-enkephalin (pENK) mRNA expression might be an early sign of striatal neuronal dysfunction in Huntington’s disease (HD), due to mutated huntingtin protein. Indeed, striatopallidal (pENK-containing) neurodegeneration occurs at earlier stage of the disease, compare to the loss of striatonigral neurons. However, no data are available about the functional role of striatal pENK in HD. According to the neuroprotective properties of opioids that have been recognized recently, the objective of this study was to investigate whether striatal overexpression of pENK at early stage of HD can improve motor dysfunction, and/or reduce striatal neuronal loss in the R6/2 transgenic mouse model of HD. To achieve this goal recombinant adeno-associated-virus (rAAV2)-containing green fluorescence protein (GFP)-pENK was injected bilaterally in the striatum of R6/2 mice at 5 weeks old to overexpress opioid peptide pENK. Striatal injection of rAAV2-GFP was used as a control. Different behavioral tests were carried out before and/or after striatal injections of rAAV2. The animals were euthanized at 10 weeks old. Our results demonstrate that striatal overexpression of pENK had beneficial effects on behavioral symptoms of HD in R6/2 by: delaying the onset of decline in muscular force; reduction of clasping; improvement of fast motor activity, short-term memory and recognition; as well as normalization of anxiety-like behavior. The improvement of behavioral dysfunction in R6/2 mice having received rAAV2-GFP-pENK associated with upregulation of striatal pENK mRNA; the increased level of enkephalin peptide in the striatum, globus pallidus and substantia nigra; as well as the slight increase in the number of striatal neurons compared with other groups of R6/2. Accordingly, we suggest that at early stage of HD upregulation of striatal enkephalin might play a key role at attenuating illness symptoms.
Collapse
Affiliation(s)
| | - Mylène Vaillancourt
- Axe Neurosciences, Centre de recherche du CHU de Québec, CHUL, Québec, Canada
| | - Sébastien S. Hébert
- Axe Neurosciences, Centre de recherche du CHU de Québec, CHUL, Québec, Canada
- Département de psychiatrie et de neurosciences, Université Laval, Québec, Canada
| | - Guy Drolet
- Axe Neurosciences, Centre de recherche du CHU de Québec, CHUL, Québec, Canada
- Département de psychiatrie et de neurosciences, Université Laval, Québec, Canada
| | - Pershia Samadi
- Axe Neurosciences, Centre de recherche du CHU de Québec, CHUL, Québec, Canada
- Département de psychiatrie et de neurosciences, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
28
|
Staples M, Acosta S, Tajiri N, Pabon M, Kaneko Y, Borlongan CV. Delta opioid receptor and its peptide: a receptor-ligand neuroprotection. Int J Mol Sci 2013; 14:17410-9. [PMID: 23979422 PMCID: PMC3794733 DOI: 10.3390/ijms140917410] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 11/29/2022] Open
Abstract
In pursuit of neurological therapies, the opioid system, specifically delta opioid receptors and delta opioid peptides, demonstrates promising therapeutic potential for stroke, Parkinson’s disease, and other degenerative neurological conditions. Recent studies offer strong evidence in support of the therapeutic use of delta opioid receptors, and provide insights into the underlying mechanisms of action. Delta opioid receptors have been shown to confer protective effects by mediating ionic homeostasis and activating endogenous neuroprotective pathways. Additionally, delta opioid agonists such as (D-Ala 2, D-Leu 5) enkephalin (DADLE) have been shown to decrease apoptosis and promote neuronal survival. In its entirety, the delta opioid system represents a promising target for neural therapies.
Collapse
Affiliation(s)
- Meaghan Staples
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Pabon MM, Borlongan CV. ADVANCES IN THE CELL-BASED TREATMENT OF NEONATAL HYPOXIC-ISCHEMIC BRAIN INJURY. FUTURE NEUROLOGY 2013; 8:193-203. [PMID: 23565051 DOI: 10.2217/fnl.12.85] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cell therapy for adult stroke has reached limited clinical trials. Here, we provide translational research guidance on stem cell therapy for neonatal hypoxic-ischemic brain injury requiring a careful consideration of clinically relevant animal models, feasible stem cell sources, and validated safety and efficacy endpoint assays, as well as a general understanding of modes of action of this cellular therapy. To this end, we refer to existing translational guidelines, in particular the recommendations outlined in the consortium of academicians, industry partners and regulators called Stem cell Therapeutics as an Emerging Paradigm for Stroke or STEPS. Although the STEPS guidelines are directed at enhancing the successful outcome of cell therapy in adult stroke, we highlight overlapping pathologies between adult stroke and neonatal hypoxic-ischemic brain injury. We are, however, cognizant that the neonatal hypoxic-ischemic brain injury displays disease symptoms distinct from adult stroke in need of an innovative translational approach that facilitates the entry of cell therapy in the clinic. Finally, insights into combination therapy are provided with the vision that stem cell therapy may benefit from available treatments, such as hypothermia, already being tested in children diagnosed with hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Mibel M Pabon
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, Florida 33612 USA
| | | |
Collapse
|
30
|
Kaneko Y, Tajiri N, Su TP, Wang Y, Borlongan CV. Combination treatment of hypothermia and mesenchymal stromal cells amplifies neuroprotection in primary rat neurons exposed to hypoxic-ischemic-like injury in vitro: role of the opioid system. PLoS One 2012; 7:e47583. [PMID: 23077646 PMCID: PMC3471862 DOI: 10.1371/journal.pone.0047583] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/17/2012] [Indexed: 11/19/2022] Open
Abstract
This study was designed to reveal the therapeutic regimen and mechanism of action underlying hypothermia treatment in combination with stem cell transplantation for ameliorating neonatal hypoxic-ischemic-like injury. Primary rat neurons were exposed to oxygen-glucose deprivation (OGD), which produced hypoxic-ischemic-like injury in vitro, then incubated at 25°C (severe hypothermia), 34°C (moderate hypothermia), and 37°C (normothermia) with or without subsequent co-culture with mesenchymal stromal cells (MSCs). Combination treatment of moderate hypothermia and MSCs significantly improved cell survival and mitochondrial activity after OGD exposure. The exposure of delta opioid human embryonic kidney cells (HEK293) to moderate hypothermia attenuated OGD-mediated cell alterations, which were much more pronounced in HEK293 cells overexpressing the delta opioid receptor. Further, the addition of delta opioid peptide to 34°C hypothermia and stem cell treatment in primary rat neurons showed synergistic neuroprotective effects against OGD which were significantly more robust than the dual combination of moderate hypothermia and MSCs, and were significantly reduced, but not completely abolished, by the opioid receptor antagonist naltrexone altogether implicating a ligand-receptor mechanism of neuroprotection. Further investigations into non-opioid therapeutic signaling pathways revealed growth factor mediation and anti-apoptotic function accompanying the observed therapeutic benefits. These results support combination therapy of hypothermia and stem cells for hypoxic-ischemic-like injury in vitro, which may have a direct impact on current clinical trials using stand-alone hypothermia or stem cells for treating neonatal encephalopathy.
Collapse
Affiliation(s)
- Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Tsung-Ping Su
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yun Wang
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
31
|
Yang B, Xi X, Aronowski J, Savitz SI. Ischemic stroke may activate bone marrow mononuclear cells to enhance recovery after stroke. Stem Cells Dev 2012; 21:3332-40. [PMID: 22731389 DOI: 10.1089/scd.2012.0037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bone marrow-derived mononuclear cells (MNCs) enhance recovery in rodent stroke models. Since stroke activates the bone marrow, there may be biological differences of autologous MNCs derived poststroke compared with the prestroke setting. We analyzed MNCs harvested from the same Long Evans rats 1 day before and 1 day after ischemic stroke or sham stroke. Stroke was induced by suture occlusion of the middle cerebral artery for 90 min. MNCs were characterized by flow cytometry to identify differences in the percentages of different cell subpopulations. MNCs were also placed in culture and cytokines were measured in the media. In separate experiments, Long Evans rats received 24 h after stroke an intracarotid injection of saline or autologous MNCs, prepared from the same animal, either 1 day before or 1 day after stroke. The rats were then followed on the cylinder and corner tests for 28 days. In poststroke MNCs compared with prestroke MNCs, there was a significant reduction in T and mesenchymal stem cells and a significant increase in CD34+ and natural killer cells. Postsham MNCs showed an elevation in CD11b and CD45R cells compared with presham MNCs. The concentrations of IL-10, IL-6, MCP-1, vascular endothelial growth factor (VEGF), and tumor necrosis factor-α were significantly increased in poststroke MNCs compared with prestroke MNCs. Postsham MNCs showed a decrease in VEGF. Poststroke MNCs in comparison with prestroke MNCs led to a greater recovery on neurological testing and reduced lesion size. Autologous MNCs exert different biological responses when derived from the poststroke setting compared with normal animals.
Collapse
Affiliation(s)
- Bing Yang
- Department of Neurology, University of Texas Medical School at Houston, UT-Health, Houston, TX, USA
| | | | | | | |
Collapse
|
32
|
Hudzik TJ, Maciag C, Smith MA, Caccese R, Pietras MR, Bui KH, Coupal M, Adam L, Payza K, Griffin A, Smagin G, Song D, Swedberg MDB, Brown W. Preclinical pharmacology of AZD2327: a highly selective agonist of the δ-opioid receptor. J Pharmacol Exp Ther 2011; 338:195-204. [PMID: 21444630 DOI: 10.1124/jpet.111.179432] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present article, we summarize the preclinical pharmacology of 4-{(R)-(3-aminophenyl)[4-(4-fluorobenzyl)-piperazin-1-yl]methyl}-N,N-diethylbenzamide (AZD2327), a highly potent and selective agonist of the δ-opioid receptor. AZD2327 binds with sub-nanomolar affinity to the human opioid receptor (K(i) = 0.49 and 0.75 nM at the C27 and F27 isoforms, respectively) and is highly selective (>1000-fold) over the human μ- and κ-opioid receptor subtypes as well as >130 other receptors and channels. In functional assays, AZD2327 shows full agonism at human δ-opioid receptors ([(35)S]GTPγ EC(50) = 24 and 9.2 nM at C27 and F27 isoforms, respectively) and also at the rat and mouse δ-opioid receptors. AZD2327 is active in a wide range of models predictive of anxiolytic activity, including a modified Geller-Seifter conflict test and social interaction test, as well as in antidepressant models, including learned helplessness. In animals implanted with microdialysis probes and then given an acute stressor by pairing electric shock delivery with a flashing light, there is an increase in norepinephrine release into the prefrontal cortex associated with this acute anxiety state. Both the benzodiazepine anxiolytic standard diazepam and AZD2327 blocked this norepinephrine release equally well, and there was no evidence of tolerance to these effects of AZD2327. Overall, these data support the role of the δ-opioid receptor in the regulation of mood, and data suggest that AZD2327 may possess unique antidepressant and anxiolytic activities that could make a novel contribution to the pharmacotherapy of psychiatric disorders.
Collapse
MESH Headings
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Benzamides/chemistry
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Drug Evaluation, Preclinical/methods
- Guinea Pigs
- HEK293 Cells
- Helplessness, Learned
- Humans
- Male
- Mice
- Piperazines/chemistry
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Protein Binding/physiology
- Rats
- Rats, Long-Evans
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
Collapse
Affiliation(s)
- T J Hudzik
- AstraZeneca Research and Development, Wilmington, Delaware, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Opioids protect against substantia nigra cell degeneration under conditions of iron deprivation: A mechanism of possible relevance to the Restless Legs Syndrome (RLS) and Parkinson's Disease. J Neurol Sci 2011; 304:93-101. [DOI: 10.1016/j.jns.2011.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/28/2011] [Accepted: 02/04/2011] [Indexed: 11/22/2022]
|
34
|
Chung SP, Song FQ, Yu T, Weng Y, Sun S, Weil MH, Tang W. Effect of therapeutic hypothermia vs δ-opioid receptor agonist on post resuscitation myocardial function in a rat model of CPR. Resuscitation 2010; 82:350-4. [PMID: 21177015 DOI: 10.1016/j.resuscitation.2010.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/08/2010] [Accepted: 11/18/2010] [Indexed: 01/04/2023]
Abstract
AIM This study is to compare the effect of the δ-opioid receptor agonist, D-Ala(2)-D-Leu(5) enkephalin (DADLE) with normothermic control and therapeutic hypothermia on post resuscitation myocardial function and 72-h survival in a rat model of cardiac arrest and resuscitation. METHODS Ventricular fibrillation (VF) was induced in 15 male Sprague-Dawley rats. After 8 min of untreated VF, cardiopulmonary resuscitation was performed for 8 min before defibrillation. Animals were randomized to three groups of five: (a) normothermia; (b) hypothermia (32 °C); and (c) normothermia with DADLE intravenous infusion (1 mg/kg h(-1)). Hypothermia and drug infusion were started after successful defibrillation. Myocardial functions, including cardiac output (CO), left ventricular ejection fraction (LVEF), and myocardial performance index (MPI) were measured echocardiographically together with duration of survival. RESULTS The 72-h survival was significantly greater in the hypothermic group than in both DADLE and normothermic group (p = 0.02). However, the survival time of the DADLE treated animals was significantly longer than that of the normothermia group (51.8 ± 18.9 vs 18.8 ± 10.1h, p < 0.01). DADLE group showed significantly better CO (PR 60 min, p = 0.049), better LVEF (PR 60 min, p = 0.044; PR 240 min, p < 0.001) and lower MPI (PR 60 min, p = 0.043; PR 240 min, p = 0.045) than normothermic group. Hypothermia group also showed significantly better CO (PR 60m in, p = 0.044; PR 240 min, p = 0.007), better LVEF (PR 60 min, p = 0.001; PR 240 min, p < 0.001) and lower MPI (PR 60 min, p = 0.003; PR 240 min, p = 0.012) than the normothermic group. CONCLUSIONS DADLE attenuated post resuscitation myocardial dysfunction and increased short term survival time. However, the 72-h survival in the DADLE group was less than that in the hypothermia group.
Collapse
Affiliation(s)
- Sung Phil Chung
- Weil Institute of Critical Care Medicine, Rancho Mirage, CA, United States
| | | | | | | | | | | | | |
Collapse
|
35
|
Esposito E, Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 2010; 8:228-42. [PMID: 21358973 PMCID: PMC3001216 DOI: 10.2174/157015910792246155] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 04/25/2010] [Accepted: 05/08/2010] [Indexed: 12/15/2022] Open
Abstract
Melatonin is mainly produced in the mammalian pineal gland during the dark phase. Its secretion from the pineal gland has been classically associated with circadian and circanual rhythm regulation. However, melatonin production is not confined exclusively to the pineal gland, but other tissues including retina, Harderian glands, gut, ovary, testes, bone marrow and lens also produce it. Several studies have shown that melatonin reduces chronic and acute inflammation. The immunomodulatory properties of melatonin are well known; it acts on the immune system by regulating cytokine production of immunocompetent cells. Experimental and clinical data showing that melatonin reduces adhesion molecules and pro-inflammatory cytokines and modifies serum inflammatory parameters. As a consequence, melatonin improves the clinical course of illnesses which have an inflammatory etiology. Moreover, experimental evidence supports its actions as a direct and indirect antioxidant, scavenging free radicals, stimulating antioxidant enzymes, enhancing the activities of other antioxidants or protecting other antioxidant enzymes from oxidative damage. Several encouraging clinical studies suggest that melatonin is a neuroprotective molecule in neurodegenerative disorders where brain oxidative damage has been implicated as a common link. In this review, the authors examine the effect of melatonin on several neurological diseases with inflammatory components, including dementia, Alzheimer disease, Parkinson disease, multiple sclerosis, stroke, and brain ischemia/reperfusion but also in traumatic CNS injuries (traumatic brain and spinal cord injury).
Collapse
Affiliation(s)
- Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| |
Collapse
|
36
|
Tsai SY, Lee CT, Hayashi T, Freed WJ, Su TP. Delta opioid peptide DADLE and naltrexone cause cell cycle arrest and differentiation in a CNS neural progenitor cell line. Synapse 2010; 64:267-73. [PMID: 19953654 DOI: 10.1002/syn.20727] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Opioids have been demonstrated to play an important role in CNS development by affecting proliferation and differentiation in various types of neural cells. This study examined the effect of a stable delta opioid peptide [D-Ala(2), D-Leu(5)]-enkephalin (DADLE) on proliferation and differentiation in an AF5 CNS neural progenitor cell line derived from rat mesencephalic cells. DADLE (1 pM, 0.1 nM, or 10 nM) caused a significant growth inhibition on AF5 cells. The opioid antagonist naltrexone at 0.1 nM also caused growth inhibition in the same cells. When DADLE and naltrexone were both added to the AF5 cells, the resultant growth inhibition was apparently additive. DADLE alone or DADLE in combination with naltrexone did not cause apoptosis as evidenced by negative TUNEL staining. The cell-cycle progression analysis indicated that both DADLE (0.1 nM) and naltrexone (0.1 nM) caused an arrest of AF5 cell cycle progression at the G1 checkpoint. Neuronal marker indicated that DADLE- or naltrexone-treated AF5 cells tend to differentiate more when compared to controls. Results demonstrate the nonopioid action of both DADLE and naltrexone on cell cycle arrest and differentiation in a CNS neural progenitor cell line. Results also suggest some potential utilization of DADLE and/or naltrexone in stem cell research.
Collapse
Affiliation(s)
- Shang-Yi Tsai
- Cellular Pathobiology Section, Cellular Neurobiology Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
37
|
Effects of intracerebroventricular application of the delta opioid receptor agonist [D-Ala2, D-Leu5] enkephalin on neurological recovery following asphyxial cardiac arrest in rats. Neuroscience 2010; 168:531-42. [PMID: 20167252 DOI: 10.1016/j.neuroscience.2010.02.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/22/2010] [Accepted: 02/11/2010] [Indexed: 11/23/2022]
Abstract
The delta opioid receptor (DOR) agonist [D-Ala2, D-Leu5] enkephalin (DADLE) has been implicated as a novel neuroprotective agent in the CNS. The current study was designed to evaluate the effects of intracerebroventricular (ICV) application of DADLE on neurological outcomes following asphyxial cardiac arrest (CA) in rats. Male Sprague-Dawley rats were randomly assigned to four groups: Sham group, CA group, DADLE group (DADLE+CA), and Naltrindole group (Naltrindole and DADLE+CA). All drugs were administered into the left cerebroventricle 30 min before CA. CA was induced by 8-min asphyxiation and the animals were resuscitated with a standardized method. DOR protein expression in the hippocampus was significantly increased in the CA group at 1 h after restoration of spontaneous circulation (ROSC) compared with the Sham group. As time progressed, expression of DOR proteins decreased gradually in the CA group. Treatment with DADLE alone or co-administration with Naltrindole reversed the down-regulation of DOR proteins in the hippocampus induced by CA at 24 h after ROSC. Compared with the CA group, the DADLE group had persistently better neurological functional recovery, as assessed by neurological deficit score (NDS) and Morris water maze trials. The number of surviving hippocampal CA1 neurons in the DADLE group was significantly higher than those in the CA group. However, administration of Naltrindole abolished most of the neuroprotective effects of DADLE. We conclude that ICV administration of DADLE 30 min before asphyxial CA has significant protective effects in attenuating hippocampal CA1 neuronal damage and neurological impairments, and that DADLE executes its effects mainly through DOR.
Collapse
|
38
|
Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 2009; 90:439-70. [PMID: 20036308 DOI: 10.1016/j.pneurobio.2009.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 09/10/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022]
Abstract
Neurons in the mammalian central nervous system are extremely vulnerable to oxygen deprivation and blood supply insufficiency. Indeed, hypoxic/ischemic stress triggers multiple pathophysiological changes in the brain, forming the basis of hypoxic/ischemic encephalopathy. One of the initial and crucial events induced by hypoxia/ischemia is the disruption of ionic homeostasis characterized by enhanced K(+) efflux and Na(+)-, Ca(2+)- and Cl(-)-influx, which causes neuronal injury or even death. Recent data from our laboratory and those of others have shown that activation of opioid receptors, particularly delta-opioid receptors (DOR), is neuroprotective against hypoxic/ischemic insult. This protective mechanism may be one of the key factors that determine neuronal survival under hypoxic/ischemic condition. An important aspect of the DOR-mediated neuroprotection is its action against hypoxic/ischemic disruption of ionic homeostasis. Specially, DOR signal inhibits Na(+) influx through the membrane and reduces the increase in intracellular Ca(2+), thus decreasing the excessive leakage of intracellular K(+). Such protection is dependent on a PKC-dependent and PKA-independent signaling pathway. Furthermore, our novel exploration shows that DOR attenuates hypoxic/ischemic disruption of ionic homeostasis through the inhibitory regulation of Na(+) channels. In this review, we will first update current information regarding the process and features of hypoxic/ischemic disruption of ionic homeostasis and then discuss the opioid-mediated regulation of ionic homeostasis, especially in hypoxic/ischemic condition, and the underlying mechanisms.
Collapse
Affiliation(s)
- Dongman Chao
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT 06520, USA
| | | |
Collapse
|
39
|
Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats. PLoS One 2009; 4:e7128. [PMID: 19771167 PMCID: PMC2742165 DOI: 10.1371/journal.pone.0007128] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 09/01/2009] [Indexed: 02/01/2023] Open
Abstract
Objective To investigate the effects of melatonin treatment in a rat model of white matter damage (WMD) in the developing brain. Additionally, we aim to delineate the cellular mechanisms of melatonin effect on the oligodendroglial cell lineage. Methods A unilateral ligation of the uterine artery in pregnant rat at the embryonic day 17 induces fetal hypoxia and subsequent growth restriction (GR) in neonatal pups. GR and control pups received a daily intra-peritoneal injection of melatonin from birth to post-natal day (P) 3. Results Melatonin administration was associated with a dramatic decrease in microglial activation and astroglial reaction compared to untreated GR pups. At P14, melatonin prevented white matter myelination defects with an increased number of mature oligodendrocytes (APC-immunoreactive) in treated GR pups. Conversely, melatonin was not found to be associated with an increased density of total oligodendrocytes (Olig2-immunoreactive), suggesting that melatonin is able to promote oligodendrocyte maturation but not proliferation. These effects appear to be melatonin-receptor dependent and were reproduced in vitro. Interpretation These data suggest that melatonin has a strong protective effect on developing damaged white matter through decreased microglial activation and oligodendroglial maturation leading to a normalization of the myelination process. Consequently, melatonin should be a considered as an effective neuroprotective candidate not only in perinatal brain damage but also in inflammatory and demyelinating diseases observed in adults.
Collapse
|
40
|
Delta opioid agonist [D-Ala2, D-Leu5] enkephalin (DADLE) reduced oxygen–glucose deprivation caused neuronal injury through the MAPK pathway. Brain Res 2009; 1292:100-6. [DOI: 10.1016/j.brainres.2009.06.104] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 06/18/2009] [Accepted: 06/22/2009] [Indexed: 12/29/2022]
|
41
|
Borlongan CV, Hayashi T, Oeltgen PR, Su TP, Wang Y. Hibernation-like state induced by an opioid peptide protects against experimental stroke. BMC Biol 2009; 7:31. [PMID: 19534760 PMCID: PMC2708132 DOI: 10.1186/1741-7007-7-31] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 06/17/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Delta opioid peptide [D-ala2,D-leU5]enkephalin (DADLE) induces hibernation in summer ground squirrels, and enhances preservation and survival of isolated or transplanted lungs and hearts. In the present study, we investigated the protective effect of DADLE in the central nervous system. RESULTS Adult Sprague-Dawley rats were pretreated with DADLE (4 mg/kg every 2 h x 4 injections, i.p.) or saline prior to unilateral occlusion of the middle cerebral artery (MCA). Daily behavioral tests revealed that ischemic animals treated with DADLE did not show any significant behavioral dysfunctions compared with saline-treated ischemic animals. Opioid antagonists only transiently inhibited the protective effect of DADLE, indicating the participation of non-opioid mechanisms in DADLE neuroprotection. Histological examination using triphenyltetrazolium chloride (TTC) revealed that brains from ischemic animals treated with DADLE, either alone or with adjuvant opioid blockers, exhibited almost completely intact striata. In contrast, brains from ischemic animals that received saline showed significant infarction in the lateral striatum. Analyses of apoptotic cell death revealed a significant increase in the p-53 mRNA expression in the striatum of ischemic animals that received saline, while those that received DADLE exhibited near normal striatal p-53 expression. This protective effect was accompanied by significant increments in protein levels of glial cell line-derived neurotrophic factor in the striatum of DADLE-treated ischemic animals. CONCLUSION These results indicate that DADLE protected against necrotic and apoptotic cell death processes associated with ischemia-reperfusion injury. The present study demonstrates that delta opioids are crucially involved in stroke, suggesting that the opioid system is important in the study of brain injury and protection.
Collapse
Affiliation(s)
- Cesar V Borlongan
- National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Cellular Neurobiology Branch, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
42
|
Yamamura S, Ohoyama K, Nagase H, Okada M. Zonisamide enhances delta receptor-associated neurotransmitter release in striato-pallidal pathway. Neuropharmacology 2009; 57:322-31. [PMID: 19482038 DOI: 10.1016/j.neuropharm.2009.05.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 05/17/2009] [Accepted: 05/19/2009] [Indexed: 11/26/2022]
Abstract
A recent randomized control study demonstrated that zonisamide (ZNS), an antiepileptic drug, is effective in Parkinson's disease at the lower than the therapeutic doses against epilepsy (25-50 mg/day); however, the detailed mechanism of antiparkinsonian effects of ZNS remains to be clarified. To determine the mechanism of antiparkinsonian effect of ZNS, we investigated the effects of ZNS on extracellular levels of dopamine in the striatum (STR), glutamate in substantia nigra pars reticulata (SNr), GABA in globus pallidus (GP), subthalamic nucleus (STN) and SNr, using multiple microdialysis probes. Striatal perfusion of 1000 microM ZNS (within therapeutic-relevant concentration against epilepsy) increased extracellular levels of dopamine in STR, whereas 100 microM ZNS (lower than the therapeutic-relevant concentration against epilepsy but within the therapeutic rage against Parkinson's disease) did not affect it. Striatal perfusion of ZNS (100 and 1000 microM) decreased the extracellular levels of GABA in STN and glutamate in SNr, but decreased extracellular GABA level in GP without affecting GABA level in SNr. These concentration-dependent effects of ZNS on extracellular neurotransmitter levels were independent of dopamine and delta(2) receptors; however, blockade of delta(1) receptor inhibited the effects of ZNS. Furthermore, activation of delta(1) receptor enhanced the effects of ZNS on neurotransmitter level. These results suggest that ZNS does not affect the direct pathway but inhibits the indirect pathway, which is mediated by delta(1) receptor. Therefore, the antiparkinsonian effects of ZNS seem to be mediated through the interaction between lower than therapeutically-relevant concentration against epilepsy of ZNS (100 microM) and delta(1) receptor.
Collapse
Affiliation(s)
- S Yamamura
- Department of Psychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | |
Collapse
|
43
|
|
44
|
Drabek T, Han F, Garman RH, Stezoski J, Tisherman SA, Stezoski SW, Morhard RC, Kochanek PM. Assessment of the delta opioid agonist DADLE in a rat model of lethal hemorrhage treated by emergency preservation and resuscitation. Resuscitation 2008; 77:220-228. [PMID: 18207625 DOI: 10.1016/j.resuscitation.2007.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/03/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
Abstract
Emergency preservation and resuscitation (EPR) is a new approach for resuscitation of exsanguination cardiac arrest (CA) victims. EPR uses a cold aortic flush to induce deep hypothermic preservation during no-flow to buy time for transport and damage control surgery, followed by resuscitation with cardiopulmonary bypass (CPB). We reported previously that 20-60 min EPR in rats was associated with intact outcome, while 75 min EPR resulted in high mortality and neurological impairment in survivors. The delta opioid agonist DADLE ([D-Ala(2),D-Leu(5)]-enkephalin) was shown previously to be protective against ischemia-reperfusion injury in multiple organs, including brain. We hypothesized that DADLE could augment neurological outcome after EPR in rats. After rapid lethal hemorrhage, EPR was initiated by perfusion with ice-cold crystalloid to induce hypothermia (15 degrees C). After 75 min EPR, resuscitation was attempted with CPB. After randomization, three groups were studied (n=10 per group): DADLE 0mg/kg (D0), 4 mg/kg (D4) or 10mg/kg (D10) added to the flush and during reperfusion. Survival, overall performance category (OPC; 1=normal, 5=death), neurological deficit score (NDS; 0-10% normal, 100%=max deficit), and histological damage score (HDS) were assessed in survivors on day 3. In D0 group, 2/10 rats survived, while in D4 and D10 groups, 4/10 and 5/10 rats survived, respectively (p=NS). Survival time (h) was 26.7+/-28.2 in D0, 36.3+/-31.9 in D4 and 47.1+/-30.3 in D10 groups, respectively (p=0.3). OPC, NDS and HDS were not significantly different between groups. In conclusion, DADLE failed to confer benefit on functional or histological outcome in our model of prolonged rat EPR.
Collapse
Affiliation(s)
- Tomas Drabek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Iwata M, Inoue S, Kawaguchi M, Nakamura M, Konishi N, Furuya H. Effects of delta-opioid receptor stimulation and inhibition on hippocampal survival in a rat model of forebrain ischaemia. Br J Anaesth 2007; 99:538-46. [PMID: 17704092 DOI: 10.1093/bja/aem220] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND It has been reported that delta-opioid (DOP) receptor agonists may be neuroprotective in the central nervous system. However, the DOP agonist [d-Ala(2), d-Leu(5)]enkephalin (DADLE) does not produce neuroprotection in severe forebrain ischaemia. The aim of this study was to examine the effects of DADLE on hippocampal neurone survival against less severe forebrain ischaemia. METHODS Intraperitoneal injection of DADLE (0 or 16 mg kg(-1)) in male Sprague-Dawley rats was performed 30 min before ischaemia. Severe (10 min), moderate (8 min), or mild (6 min) forebrain ischaemia was produced by bilateral carotid occlusion combined with hypotension (35 mm Hg) under isoflurane (1.5%) anaesthesia. Naltrindole (10 mg kg(-1)) (DOP antagonist) was administered 30 min before DADLE in order to confirm DOP receptor activation in the neuroprotective efficacy of DADLE. Naltrindole alone was also administered 30 min before ischaemia to examine endogenous DOP agonism as a self-protecting mechanism against ischaemia. All animals were evaluated neurologically and histologically after a 1 week recovery period. RESULTS DADLE improved neurone survival in hippocampal CA3 and dentate gyrus (DG) sectors. CA1 neurones were not protected against moderate and mild ischaemia. Naltrindole abolished DADLE neuroprotection in the CA3 and DG after both moderate and mild ischaemia. Interestingly, regardless of co-administration of DADLE, naltrindole significantly worsened neuronal injury in the CA1 region after mild ischaemia. CONCLUSIONS These results suggest that DADLE provides limited neuroprotection to relatively ischaemia-resistant regions but not to selectively vulnerable regions. This was probably mediated by DOP stimulation. Pre-ischaemic treatment with a DOP antagonist, regardless of co-administration of DADLE, worsened neuronal damage at the selectively vulnerable regions only after mild forebrain ischaemia. These data suggest that DOP activation with endogenous DOP ligand may be involved in self-protecting ischaemia-sensitive regions of the brain.
Collapse
MESH Headings
- Animals
- Brain Ischemia/pathology
- Brain Ischemia/prevention & control
- Cell Survival/drug effects
- Drug Evaluation, Preclinical
- Enkephalin, Leucine-2-Alanine/pharmacology
- Enkephalin, Leucine-2-Alanine/therapeutic use
- Hippocampus/drug effects
- Hippocampus/pathology
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neurons/drug effects
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Prosencephalon/blood supply
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
Collapse
Affiliation(s)
- M Iwata
- Department of Anesthesiology, Nara Medical University, 840 Shijo-cho Kashihara, Nara, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Inuo H, Eguchi S, Yanaga K, Hamada T, Yamanouchi K, Okudaira S, Kanematsu T. Protective effects of a hibernation-inducer on hepatocyte injury induced by hypothermic preservation. ACTA ACUST UNITED AC 2007; 14:509-13. [PMID: 17909722 DOI: 10.1007/s00534-007-1214-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 01/05/2007] [Indexed: 10/25/2022]
Abstract
BACKGROUND/PURPOSE For hepatocyte-based cell therapy to be realistic, the method chosen for cryopreservation or hypothermic preservation is critical. The aim of the present study was to clarify whether D-Ala2-Leu5-enkephalin (DADLE), a hibernation inducer, has protective effects on hepatocytes with regard to hypothermic preservation injury. METHODS A suspension of rat hepatocytes was stored at 4 degrees C for 24 h with or without DADLE. Their viability was measured by the trypan blue dye exclusion method, and alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels in the preservation solution were measured. After 24 h of cold storage, viable hepatocytes were cultured at 37 degrees C for another 24 h. Then albumin production and lidocaine clearance were measured. RESULTS DADLE significantly improved the survival rate of hepatocytes. The levels of ALT and LDH in the preservation solution with DADLE were significantly lower than those in the preservation solution without DADLE. The treated viable hepatocytes maintained both albumin synthesis and lidocaine clearance. CONCLUSIONS DADLE appears to have protective effects on hepatocytes with regard to hypothermic preservation injury in vitro. This hibernation-inducer is useful in prolonged hypothermic preservation for hepatocyte-based therapy.
Collapse
Affiliation(s)
- Hiroyuki Inuo
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Su DS, Wang ZH, Zheng YJ, Zhao YH, Wang XR. Dose-dependent neuroprotection of delta opioid peptide [d-Ala2, d-Leu5] enkephalin in neuronal death and retarded behavior induced by forebrain ischemia in rats. Neurosci Lett 2007; 423:113-7. [PMID: 17689189 DOI: 10.1016/j.neulet.2007.06.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/26/2007] [Accepted: 06/27/2007] [Indexed: 11/29/2022]
Abstract
Cerebral ischemic insult, mainly induced by cardiovascular disease, is one of the most severe neurological diseases in clinical. There's mounting evidence showing that delta opioid agonist [D-Ala2, D-Leu5] enkephalin (DADLE) has a tissue-protective effect. However, whether this property is effective to prevent neuronal death induced by forebrain ischemia is not clear. This study was aimed to investigate whether intracerebroventricular (ICV) administration of DADLE has a neuroprotective effect against forebrain ischemia in rats. We found in our study that administration of DADLE 45 min before forebrain ischemia had significant protective effect against CA1 neuronal lose. Further more, we found that DADLE had a dose-dependent protection for improving behavioral retardation revealed by Morris water maze and motor score test, while naltrindole, the antagonist of delta opioid receptor, partially abolished neuroprotective effect of DADLE, which implicated that both opioid and non-opioid systems are involved in ischemic insults and neuroprotection.
Collapse
Affiliation(s)
- Dian-san Su
- Department of Anesthesiology, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
48
|
Iwata M, Inoue S, Kawaguchi M, Kurita N, Horiuchi T, Nakamura M, Konishi N, Furuya H. Delta opioid receptors stimulation with [D-Ala2, D-Leu5] enkephalin does not provide neuroprotection in the hippocampus in rats subjected to forebrain ischemia. Neurosci Lett 2006; 414:242-6. [PMID: 17207574 DOI: 10.1016/j.neulet.2006.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 12/14/2006] [Accepted: 12/15/2006] [Indexed: 11/18/2022]
Abstract
It has been reported that delta opioid agonists can have neuroprotective efficacy in the central nervous system. This study was conducted to test the hypothesis that a delta opioid receptor (DOR) agonist, [D-Ala2, D-Leu5] enkephalin (DADLE), can improve neuron survival against experimental forebrain ischemia in rats. Using male rats (n=125), intraperitoneal injection of DADLE (0, 0.25, 1, 4, 16 mg kg-1) was performed 30 min before ischemia. Ten minutes interval forebrain ischemia was provided by the bilateral carotid occlusion combined with hypotension (35 mm Hg) under isoflurane (1.5%) anesthesia. All animals were neurologically and histologically evaluated after a recovery period of 1 week. As histological evaluation, percentages of ischemic neurons in the CA1, CA3, dentate gyrus (DG) were measured. During the recovery period, 27 rats died because of apparent upper airway obstruction, seizure, or unidentified causes. There were no differences in the motor activity score among the groups. Ten minutes forebrain ischemia induced approximately 75, 20, and 10% neuronal death in the CA1, CA3, and DG, respectively. Any doses of DADLE did not attenuate neuronal injury in the hippocampus after ischemia. Pre-ischemic treatment of DORs agonism with DADLE did not provide any neuroprotection to the hippocampus in rats subjected to forebrain ischemia.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Brain Ischemia/drug therapy
- Brain Ischemia/metabolism
- Brain Ischemia/physiopathology
- Cell Survival/drug effects
- Cell Survival/physiology
- Cerebral Infarction/drug therapy
- Cerebral Infarction/physiopathology
- Cerebral Infarction/prevention & control
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Dentate Gyrus/physiopathology
- Dose-Response Relationship, Drug
- Enkephalin, Leucine-2-Alanine/pharmacology
- Enkephalin, Leucine-2-Alanine/therapeutic use
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/physiopathology
- Male
- Nerve Degeneration/drug therapy
- Nerve Degeneration/physiopathology
- Nerve Degeneration/prevention & control
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Treatment Failure
Collapse
Affiliation(s)
- Masato Iwata
- Department of Anesthesiology, Nara Medical University, 840 Shijo-cho Kashihara, Nara 634-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Linden R, Martins RAP, Silveira MS. Control of programmed cell death by neurotransmitters and neuropeptides in the developing mammalian retina. Prog Retin Eye Res 2004; 24:457-91. [PMID: 15845345 DOI: 10.1016/j.preteyeres.2004.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It has long been known that a barrage of signals from neighboring and connecting cells, as well as components of the extracellular matrix, control cell survival. Given the extensive repertoire of retinal neurotransmitters, neuromodulators and neurotrophic factors, and the exhuberant interconnectivity of retinal interneurons, it is likely that various classes of released neuroactive substances may be involved in the control of sensitivity to retinal cell death. The aim of this article is to review evidence that neurotransmitters and neuropeptides control the sensitivity to programmed cell death in the developing retina. Whereas the best understood mechanism of execution of cell death is that of caspase-mediated apoptosis, current evidence shows that not only there are many parallel pathways to apoptotic cell death, but non-apoptotic programs of execution of cell death are also available, and may be triggered either in isolation or combined with apoptosis. The experimental data show that many upstream signaling pathways can modulate cell death, including those dependent on the second messengers cAMP-PKA, calcium and nitric oxide. Evidence for anterograde neurotrophic control is provided by a variety of models of the central nervous system, and the data reviewed here indicate that an early function of certain neurotransmitters, such as glutamate and dopamine, as well as neuropeptides such as pituitary adenylyl cyclase-activating polypeptide and vasoactive intestinal peptide is the trophic support of cell populations in the developing retina. This may have implications both regarding the mechanisms of retinal organogenesis, as well as pathological conditions leading to retinal dystrophies and to dysfunctional cellular behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Centro de Ciencias da Saude, Instituto de Biofísica da UFRJ, Cidade Universitária, bloco G, Rio de Janeiro 21949-900, Brazil.
| | | | | |
Collapse
|
50
|
Horiuchi T, Kawaguchi M, Sakamoto T, Kurita N, Inoue S, Nakamura M, Konishi N, Furuya H. The effects of the delta-opioid agonist SNC80 on hind-limb motor function and neuronal injury after spinal cord ischemia in rats. Anesth Analg 2004; 99:235-240. [PMID: 15281536 DOI: 10.1213/01.ane.0000130389.77859.1c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent investigation suggested neuroprotective efficacy of a delta-opioid agonist in the brain. We investigated the effects of intrathecal treatment with a delta-opioid agonist (SNC80) on spinal cord ischemia (SCI) in rats. SCI was induced with an intraaortic balloon catheter. The animals were randomly allocated to one of the following five groups: 1) SNC80 before 9 min of SCI (SNC-9; n = 12), 2) vehicle before 9 min of SCI (V-9; n = 12), 3) SNC80 before 11 min of SCI (SNC-11; n = 10), 4) vehicle before 11 min of SCI (V-11; n = 12), or 5) sham (n = 12). SNC80 (400 nmol) or vehicle was administered 15 min before SCI. Forty-eight hours after reperfusion, hind-limb motor function was assessed by using the Basso, Beattie, Bresnahan (BBB) scale (0 = paraplegia; 21 = normal) and histological assessment of the L4 and L5 spinal segments was performed. BBB scores in the SNC-9 group were higher compared with those in the V-9 group (P < 0.05), whereas there were no differences in BBB scores between the SNC-11 and V-11 groups. There were significantly more normal neurons in the SNC-9 and SNC-11 groups than in the V-9 and V-11 groups (P < 0.05). The results indicate that intrathecal treatment with the delta-opioid agonist SNC80 can attenuate hind-limb motor dysfunction and neuronal injury after SCI in rats.
Collapse
Affiliation(s)
- Toshinori Horiuchi
- Departments of *Anesthesiology and †Pathology, Nara Medical University, Nara, Japan
| | | | | | | | | | | | | | | |
Collapse
|